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Duality gap

Given primal feasible x and dual feasible u, v , the quantity

f (x)− g(u, v)

is called the duality gap between x and u, v . Note that

f (x)− f ? ≤ f (x)− g(u, v)

so if the duality gap is zero, then x is primal optimal (and similarly u, v are
dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if
f (x)− g(u, v) ≤ ε, then we are guaranteed that f (x)− f ? ≤ ε

Very useful, especially in conjunction with iterative methods.
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Karush-Kuhn-Tucker conditions

Give general problem

min f (x)
subject to hi (x) ≤ 0, i = 1, 2, · · · ,m

`j(x) = 0, j = 1, 2, · · · , r

The Karush-Kuhn-Tucker conditions or KKT conditions are

• 0 ∈ ∂f (x) +
∑m

i=1 ui∂hi (x) +
∑r

j=1 vj∂`j(x) (stationarity)

• ui · hi (x) = 0 for all i (complementary slackness)
• hi (x) ≤ 0, `j(x) = 0 for all i , j (primal feasibility)
• ui ≥ 0 for all i (dual feasibility)
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Necessity

Let x? and u?, v? be primal and dual solutions with zero duality gap
(strong duality holds, e.g. under Slater’s condition). Then

f (x?) = g(u?, v?)

= min
x

f (x) +
m∑
i=1

u?i hi (x) +
r∑

j=1

v?j `j(x)

≤ f (x?) +
m∑
i=1

u?i hi (x
?) +

r∑
j=1

v?j `j(x
?)

≤ f (x?)

In other words, all these inequalities are actually equalities.
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Necessity

Two things to learn from this

The point x? minimizes L(x , u?, v?) over x ∈ Rn. Hence the
subdifferential of L(x , u?, v?) must contain 0 at x = x?— this is
exactly the stationarity condition

We must have
∑

i u
?
i hi (x

?) = 0, and since each term here is ≤ 0, this
implies u?i hi (x

?) = 0 for every i— this is exactly complementary
slackness

Primal and dual feasibility hold by virtue of optimality. Therefore,

If x? and u?, v? be primal and dual solutions, with zero duality gap, then
x?, u?, v? satisfy the KKT conditions.

Note that this statement assumes nothing a prior about convexity of the
problem, i.e. of f , hi , `j
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Sufficiency

If there exists x?, u?, v? that satisfy the KKT conditions, then

g(u?, v?) = f (x?) +
m∑
i=1

u?i hi (x
?) +

r∑
j=1

v?j `j(x
?) = f (x?)

where the first equality holds from stationarity, and the second holds from
complementary slackness.

Therefore, the duality gap is zero (and x? and u?, v? are primal and dual
feasible), so x?, u?, v? are primal and dual optimal. Here we’ve shown

If x? and u?, v? satisfy the KKT conditions, then they are primal and
dual solutions respectively.
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Putting it together

In summary KKT conditions are

always sufficient

necessary under strong duality

Putting it together

For a problem with strong duality (e.g. assume Slater’s condition: con-
vex problem and there exists x strictly satisfying non-affine inequality
constraints),

x?, u?, v? are primal and dual solutions

⇐⇒ x?, u?, v? satisfy the KKT conditions.

Warning: concerning the stationarity condition: for a differentiable
function f , we cannot use ∂f (x) = {∇f (x)} unless f is convex
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For unconstrained problem, the KKT conditions are nothing more than the
subgradient optimality condition

For general problems, the KKT conditions could have been derived entirely
from studying optimality via subgradients

0 ∈ ∂f (x?) +
m∑
i=1

N{hi≤0}(x
?) +

r∑
j=1

N{`j=0}(x
?)

where recall NC (x) is the normal cone of C at x .
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Quadratic with equality constraints

Consider for Q � 0,

minx∈Rn
1
2x

TQx + cT x
subject to Ax = 0

Convex problem, no inequality constraints, so by KKT conditions: x is a
solution if and only if [

Q AT

A 0

] [
x
u

]
=

[
−c
0

]
for some u. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous).
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Example: support vector machine

Given y ∈ {−1, 1}n,X ∈ Rn×p, rows x1, · · · , xn, recall the support vector
machine problem

minβ,β0,ξ
1
2‖β‖

2
2 + C

∑n
i=1 ξi

subject to ξi ≥ 0, i = 1, · · · , n
yi (x

T
i β + β0) ≥ 1− ξi , i = 1, · · · , n

Introduce dual variables v ,w ≥ 0. KKT stationarity condition:

0 =
n∑

i=1

wiyi , β =
n∑

i=1

wiyixi , w = C1− v

Complementary slackness

viξi = 0, wi

(
1− ξi − yi (x

T
i β + β0)

)
= 0, i = 1, · · · , n
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Hence at optimality, we have β =
∑n

i=1 wiyixi and wi is nonzero only if
yi (x

T
i β + β0) = 1− ξi . Such points i are called the support points

For support point i , if ξi = 0, then xi lies on edge of margin, and
wi ∈ (0,C ]
For support point i , if ξi 6= 0, then xi lies on wrong side of margin
and wi = C

KKT conditions do not really give us a way to find solution, but gives a
better understanding
In fact we can use this to screen non-support points before performing
optimization
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Constrained and Lagrange forms

Often in statistics and machine learning, we’ll switch back and forth
between constrained form, where t ∈ R is a tuning parameter

min f (x) subject to h(x) ≤ t (C)

and Lagrange form, where λ ≥ 0 is a tuning parameter

min f (x) + λ · h(x) (L)

and claim these are equivalent. Is this true (assuming convex f , h)?

(C) to (L): if problem (C) is strictly feasible, then strong duality holds, and
there exists some λ ≥ 0 (dual solution) such that any solutions x? in (C)
minimizes

f (x) + λ · (h(x)− t)

so x? is also a solution in (L)
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Constrained and Lagrange forms

(L) to (C): if x? is a solution in (L), then the KKT conditions for (C) are
satisfied by taking t = h(x?), so x? is a solution in (C)

Conclusion:⋃
λ≥0
{solutions in (L)} ⊆

⋃
t

{solutions in (C)}

⋃
λ≥0
{solutions in (L)} ⊇

⋃
t such that (C) is strictly feasible

{solutions in (C)}

This is nearly a perfect equivalence. Note: when the only value of t that
leads to a feasible but not strictly feasible constraint set is t = 0, i.e.

{x : h(x) ≤ t} 6= ∅, {x : h(x) < t} = ∅ ⇒ t = 0

(e.g. this is true if h is a norm), then we do get perfect equivalence
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Uniqueness in `1 penalized problems

Using the KKT conditions and simple probability arguments, we have the
following (perhaps surprising) result:

Theorem

Let f be differentiable and strictly convex, let X ∈ Rn×p, λ > 0. Consider

min
β∈Rp

f (Xβ) + λ‖β‖1

If the entries of X are drawn from a continuous probability distribution on
Rn×p, then w.p. 1 there is a unique solution β̂ ∈ Rp and it has at most
min{n, p} nonzero components.

Remark: here f must be strictly convex, but no restrictions on the
dimensions of X (we could have p � n).
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Solving the primal via the dual

One of the most important use of duality is that, under strong duality, we
can characterize primal solutions from dual solutions.

Recall that under strong duality, the KKT conditions are necessary for
optimality. Given dual solutions u?, v?, any primal solution x? satisfies the
stationarity condition

0 ∈ ∂f (x?) +
m∑
i=1

u?i ∂hi (x
?) +

r∑
j=1

v?j ∂`j(x
?)

In other words, x? solves min L(x , u?, v?)

Generally, this reveals a characterization of primal solutions

In particular, if this is satisfied uniquely (i.e. above problem has a
unique minimizer), then the corresponding point must be the primal
solution
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Example

Consider

min
x

n∑
i=1

f (x) subject to aT x = b

where each fi : R→ R is smooth, strictly convex. Dual function

g(v) = min
x

n∑
i=1

fi (xi ) + v(b − aT x)

= bv +
n∑

i=1

min
xi∈R

(fi (xi )− aivxi )

= bv −
n∑

i=1

f ∗i (aiv)

where f ∗i is the conjugate of fi , to be defined shortly
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Example

Therefore, the dual problem is

max
v∈R

bv −
n∑

i=1

f ∗i (aiv)

or equivalently

min
v∈R

n∑
i=1

f ∗i (aiv)− bv

This is a convex minimization problem with scalar variable—much easier
to solve than primal

Given v?, the primal solution x? solves

min
x

n∑
i=1

fi (xi )− aiv
?xi

Strict convexity of each fi implies that this has a unique solution, namely
x?, which we compute by solving ∇fi (xi ) = aiv

? for each i
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Back to SVM

The SVM:

minβ,β0,ξ
1
2‖β‖

2
2 + C

∑n
i=1 ξi

s.t. ξi ≥ 0, i = 1, · · · , n yi (x
T
i β + β0) ≥ 1− ξi , i = 1, · · · , n

The Lagrangian

L(β, β0, ξ,w , v) =
1

2
‖β‖22+C

n∑
i=1

ξi−
n∑

i=1

wi

[
yi (x

T
i β + β0)− 1 + ξi

]
−

n∑
i=1

viξi

The dual problem

max
w

D(w) =
∑n

i=1 wi − 1
2

∑n
ij=1 yiyjwiwj〈xi , xj〉

s.t. 0 ≤ wi ≤ C , i = 1, · · · , n
∑n

i=1 wiyi = 0

The primal solution:

β? =
n∑

i=1

w?
i yixi , β

?
0 =

maxi :yi=−1(w?)T xi + mini :yi=1(w?)T xi
2
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Summary

For the problem

min f (x)
subject to hi (x) ≤ 0, i = 1, 2, · · · ,m

`j(x) = 0, j = 1, 2, · · · , r

The KKT conditions are

• 0 ∈ ∂f (x) +
∑m

i=1 ui∂hi (x) +
∑r

j=1 vj∂`j(x) (stationarity)

• ui · hi (x) = 0 for all i (complementary slackness)
• hi (x) ≤ 0, `j(x) = 0for all i , j (primal feasibility)
• ui ≥ 0for all i (dual feasibility)
These are necessary for optimality (of a primal-dual pair x? and u?, v?

under strong duality, and always sufficient
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Summary

Two key uses of duality

For x primal feasible, and u, v dual feasible

f (x)− g(u, v)

is called the duality gap between x and u, v , since

f (x)− f (x?) ≤ f (x)− g(u, v)

a zero duality gap implies optimality. Also, the duality gap can be
used as a stopping criterion in algorithms

Under strong duality, given dual optimal u?, v?, any primal solution
minimizes L(x , u?, v?) over all x (i.e. it satisfies stationarity
condition). This can be used to characterize or compute primal
solutions.
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Summary

An important consequence of stationarity: under strong duality, given a
dual solution u?, v?, any primal solution x? solves

min
x

f (x) +
m∑
i=1

u?i hi (x) +
r∑

j=1

v?i `j(x)

Often, solutions of this unconstrained problem can be expressed explicitly,
giving an explicit characterization of primal solutions from dual solutions.

Furthermore, suppose the solution of this problem is unique; then it must
be the primal solution x?

This can be very helpful when the dual is easier to solve than the primal.
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Questions?
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