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Examples of time series

@ Concept: time series and stochastic process
@ Mean, autocovariance and autocorrelation
°

Example stochastic processes (random walk, moving average
and white noise

Stationarity




Deterministic Trends and Stochastic Trends

Random Walk
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Figure: Time Series Plot of a Random Walk



Deterministic Trends and Stochastic Trends
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Figure: Average Monthly Temperatures, Dubuque, lowa



Formula

Let {Y:} be stationary with autocovariance function . Let
= 150 | Yi. We have:
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Estimation of a Constant Mean

Consider a simple model with constant mean:
Yi=p+ X

where E(X;:) = 0 for all t.



Estimation of a Constant Mean

To investigate the precision of Y = %Ele Y; over the observed
time series Y1, Y2, -+, Y,, we assume {X;} is a stationary time
series with autocorrelation function (ACF) py, then

1+2Z<1—>pk

Var(Y)

o If {X;} is white noise, px = 0 for k > 0, then Var(Y) = 2

n
o If {X:} is a moving average e; — 0.5e;1, then p; = —0.4 and
pk =0 for k > 1, we have Var(Y):l"[ —0.821] ~ 0.2

o If py >0 forall k> 1, Var(Y) will be larger than ~vo/n.



Estimation of a Constant Mean

For stationary processes that Y 2 o |pk| < o0,
’}/ o0
v 0
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for large n.

Suppose that px = ¢l for all k, |¢| < 1. Then we have:
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Estimation of a Constant Mean

For a nonstationary process but with a constant mean, like White
Noise, the precision of the sample mean
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variance increases alongside the increase of n



Regression Methods: Estimating non-constant mean trend

Linear and Quadratic Trends in Time

Consider the deterministic time trend

:ut = BO +Blt7 Yt - Mt +Xt7Xt N WN(,U*(%O—?)

Estimating 5y and (5,

Classical least squares (or regression) method: to choose an
estimates of 31 and [y that minimize:

n
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Regression Methods: Estimating non-constant mean trend

Denote the solutions by Sy and 51, we find
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where t = (n+ 1)/2 is the average of 1,2,--- , n.




Regression Methods: Estimating non-constant mean trend

Time

Figure: Random Walk with Linear Time Trend

Why fitting a line to the data is not appropriate?




Cyclical or Seasonal Trends

o Again assume Y: = pr + X¢ with E(X;) =0 for all ¢

@ For monthly seasonal data, assume ji; consists of 12 constant
parameters w.r.t. each month.

B, for t=1,13,25,---,
B, for t=2,14,26,---

Mt
'812 fOI’ t:12724a36)"'7

—seasonal mean model



Cyclical or Seasonal Trends

Estimate  Std. Error

Intercept 16.608 0.987
February 4.042 1.396
March 15.867 1.396
April 29.917 1.396
May 41.483 1.396
June 50.892 1.396
July 55.108 1.396
August 52.725 1.396
September 44.417 1.396
October 34.367 1.396
November 20.042 1.396
December 7.033 1.396

Figure: Results for Seasonal Means Model with an Intercept



Cyclical or Seasonal Trends

Seasonal mean model does not account for the shape of the
seasonal trend.

Cosine Trends

Consider the cosine curve with equation
pe = Bcos(2nft + @)

where 5(> 0) — amplitude, f — frequency, ® — phase.
Note that [ cos(2nft + ®) = ;1 cos(27ft) + B2 sin(27ft) where

B=/B%+ B3, &= atan(—p2/p1). Therefore,

wur = Po + P1cos(2nft) + PBasin(2rft)




Cyclical or Seasonal Trends
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Figure: Cosine Trend for the Temperature Series.



Reliability and Efficiency of Regression Estimates

So far, we assume Y: = p¢ + Xe, p¢ is deterministic trend, {X;}
zero-mean stationary stochastic process, with autocovariance and
autocorrelation v, and p.

ordinary regression estimation methods — least squares — is used.



Reliability and Efficiency of Regression Estimates

Seasonal Means

If we have N years data,

1 N—-1
B = N Y12
i=0
" N—-1 k
A 0
Var(ﬂj) = N 1+2 (1 — N> Puk]
k=1

>




Reliability and Efficiency of Regression Estimates

For puy = fo + 1 cos(2nft) + B2 sin(2rft), if f = &' where m is an
integer satisfying 1 < m < n/2, then we have:

n n
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Their variances are:
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Var(f1) = 2%

Similarly for Var(f1) if we replace the cosines by sines.




Reliability and Efficiency of Regression Estimates

For this variance,
o If {X;}is WN, we get 2vo/n
o If py#0and px =0 for k >1,and m/n=1/12,

n—1
7\ _ Sl L] Tt mt+1
Var(p1) = 27 [1 T E cos (€> cos < 5 )

t=1

In case n = o0,

Var(f1) = 230 (1 + 2p1 cos (6>)

2
70(1 +1.732p1)

If pp = —0.4, then 1+ 1.732p; = 0.307, the variance reduced
about 70% when compared with WN.



Reliability and Efficiency of Regression Estimates

If the simple cosine model is adequate, how much do we lose if we
use the seasonal means model?



Model comparison

Model parameters are not comparable. To compare the estimates
of the trend at comparable time points. Consider the two estimates
for the trend in Jan. , i.e. 1

@ For seasonal means model,

Var (i1

N—1
+2 (1 y ) ple]
k=1
@ For cosine model,

fr = 50+51C05<i2>+525m <i72r>

2 2
Var(jiy) = Var(fo) + Var(B1) cos <i72r> + Var(f,) sin <i72r>



Model comparison

If X; is WN,
o for seasonal means model, Var(s1) = vo/N
@ for cosine model,
Var(i11) = vo/n {1 + 2 [cos (%)]2 + +2 [sin (%)]2} =3%

@ The ratio of the standard deviation is

[3v/n _ [3N
Yo/N _\/7

@ For monthly temperature series, n = 144, N = 12, the ratio is
0.5.




Model comparison

Suppose the stochastic component {X;} is such that p; # 0 and
pk = 0 for k > 1, the variance of the seasonal means model is the
same, while for the cosine model, it becomes

Var(ii1) = ’LO {3+2p1 [1+2cos (6)}}

If p1 = —0.4, then we have 0.814~g/n. The ratio of the standard

deviation is %.

Take n = 144 and N = 12, the ratio is 0.26.



Residue Analysis

The unobserved stochastic process {X:} can be estimated or
predicted by the residual:

)?t:Yt_[Zt

and residual standard deviation

N

S : Z(Yt — fi¢)?

T

where p is the number of parameters estimated, n — p — degrees
of freedom
o If the model is reasonably correct, the residues should behave
roughly like the true stochastic component
@ various assumptions about X; can be assessed by looking at
the residues.



Residue Analysis

Standardized Residuals
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Figure: Residuals versus Time for Temperature Seasonal Means.



Residue Analysis

Standardized Residuals
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Figure: Residuals versus Time with Seasonal Plotting Symbols.



Residue Analysis
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Figure: Standardized Residuals versus Fitted Values for the Temperature
Caacanal Meane Madel



Residue Analysis

Normality Test: Histogram, QQ-plot, and Shapiro-Wilk Test
(calculate correlation between residuals and normal quantitles)
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Figure: (a). Histogram of Standardized Residuals from Seasonal Means
Model. (b). QQ-plot: Standardized Residuals of Seasonal Means Model.



Sample Autocorrelation Function

Runs test to examine against independence. runs: the number of
residuals above or below their median

Under the null hypothesis, the number of runs in a sequence of N
elements is a random variable whose conditional distribution given
the observation of N positive values and N_ negative values

(N = N4 + N_) is approximately normal.




Sample Autocorrelation Function

To examine dependence, another important tool: sample
autocorrelation function defined as follows:

i (Ye= Y)Yk = V)
S (Ye - Y)?

A plot of ry versus lag k is called a correlogram.

3




Sample Autocorrelation Function
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Figure: Sample ACF of Seasonal Means Model.

for k =1,2,...,21, none of the hypotheses px = 0 can be rejected
at the usual significance levels, and it is reasonable to infer that the
stochastic component of the series is white noise.



Sample Autocorrelation Function

Example: standardized residuals from fitting a straight line to the
random walk time series
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Figure: Sample ACF of Residuals from Straight Line Model.



Questions?



