Times Series Analysis (II) – Trend

Jianyong Sun School of Mathematics and Statistics Xi'an Jiaotong University

Sep., 2017

Recap

- Examples of time series
- Concept: time series and stochastic process
- Mean, autocovariance and autocorrelation
- Example stochastic processes (random walk, moving average and white noise
- Stationarity

Deterministic Trends and Stochastic Trends

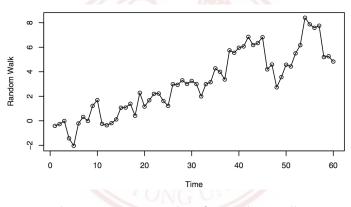


Figure: Time Series Plot of a Random Walk

Deterministic Trends and Stochastic Trends

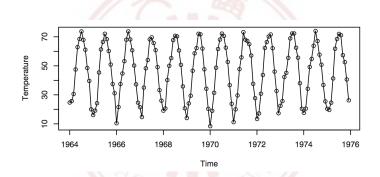


Figure: Average Monthly Temperatures, Dubuque, Iowa

Formula

Let $\{Y_t\}$ be stationary with autocovariance function γ_k . Let $\bar{Y} = \frac{1}{n} \sum_{t=1}^n Y_t$. We have:

$$Var(\bar{Y}) = \frac{\gamma_0}{n} + \frac{2}{n} \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \gamma_k \right) = \frac{1}{n} \sum_{k=-n+1}^{n-1} \left(1 - \frac{|k|}{n} \right) \gamma_k$$

Estimation of a Constant Mean

Consider a simple model with constant mean:

$$Y_t = \mu + X_t$$

where $E(X_t) = 0$ for all t.

To investigate the precision of $\overline{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t$ over the observed time series Y_1, Y_2, \dots, Y_n , we assume $\{X_t\}$ is a stationary time series with autocorrelation function (ACF) ρ_k , then

$$Var(\bar{Y}) = \frac{\gamma_0}{n} \left[1 + 2\sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]$$

- If $\{X_t\}$ is white noise, $\rho_k = 0$ for k > 0, then $Var(\bar{Y}) = \frac{\gamma_0}{n}$
- If $\{X_t\}$ is a moving average $e_t 0.5e_{t-1}$, then $\rho_1 = -0.4$ and $\rho_k = 0$ for k > 1, we have $Var(\bar{Y}) = \frac{\gamma_0}{n} \left[1 0.8\frac{n-1}{n}\right] \approx 0.2\frac{\gamma_0}{n}$
- If $\rho_k > 0$ for all k > 1, $Var(\bar{Y})$ will be larger than γ_0/n .

Estimation of a Constant Mean

For stationary processes that $\sum_{k=0}^{\infty} |\rho_k| < \infty$,

$$Var(\bar{Y}) pprox rac{\gamma_0}{n} \left[\sum_{k=-\infty}^{\infty} \rho_k
ight]$$

for large n.

Example

Suppose that $\rho_k = \phi^{|k|}$ for all k, $|\phi| < 1$. Then we have:

$$Var(ar{Y})pprox rac{(1+\phi)\gamma_0}{(1-\phi)n}$$

For a nonstationary process but with a constant mean, like White Noise, the precision of the sample mean

$$Var(\bar{Y}) = Var\left(\frac{1}{n}\sum_{i}Y_{i}\right)$$
$$= \frac{1}{n^{2}}Var\left[\sum_{i=1}^{n}\sum_{j=1}^{i}e_{j}\right]$$
$$= \frac{1}{n^{2}}Var(e_{1}+2e_{2}+\dots+ne_{n})$$
$$= \frac{\sigma_{e}^{2}}{n^{2}}\sum_{k=1}^{n}k^{2} = \sigma_{e}^{2}(2n+1)\frac{n+1}{6n}$$

variance increases alongside the increase of n

Regression Methods: Estimating non-constant mean trend

Linear and Quadratic Trends in Time

Consider the deterministic time trend

$$\mu_t = \beta_0 + \beta_1 t, Y_t = \mu_t + X_t, X_t \backsim WN(\mu_e, \sigma_e^2)$$

Estimating β_0 and β_1

Classical least squares (or regression) method: to choose an estimates of β_1 and β_0 that minimize:

$$Q(\beta_0, \beta_1) = \sum_{t=1}^{n} [Y_t - (\beta_0 + \beta_1 t)]^2$$

Regression Methods: Estimating non-constant mean trend

Denote the solutions by $\hat{\beta}_0$ and $\hat{\beta}_1$, we find

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n (Y_t - \bar{Y})(t - \bar{t})}{\sum_{t=1}^n (t - \bar{t})^2}$$
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{t}$$

where $\overline{t} = (n+1)/2$ is the average of $1, 2, \cdots, n$.

Regression Methods: Estimating non-constant mean trend

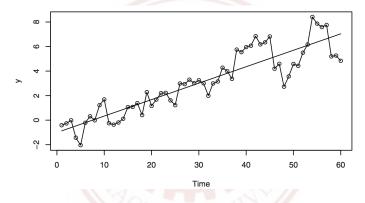


Figure: Random Walk with Linear Time Trend

Question

Why fitting a line to the data is not appropriate?

- Again assume $Y_t = \mu_t + X_t$ with $E(X_t) = 0$ for all t
- For monthly seasonal data, assume μ_t consists of 12 constant parameters w.r.t. each month.

$$\mu_t = \begin{cases} \beta_1 & \text{for } t = 1, 13, 25, \cdots, \\ \beta_2 & \text{for } t = 2, 14, 26, \cdots, \\ \vdots \\ \beta_{12} & \text{for } t = 12, 24, 36, \cdots, \end{cases}$$

 \rightarrow seasonal mean model

Cyclical or Seasonal Trends

	Estimate	Std. Error 📐
Intercept	16.608	0.987
February	4.042	1.396
March	15.867	1.396
April	29.917	1.396
Мау	41.483	1.396
June	50.892	1.396
July	55.108	1.396
August	52.725	1.396
September	44.417	1.396
October	34.367	1.396
November	20.042	1.396
December	7.033	1.396

Figure: Results for Seasonal Means Model with an Intercept

Seasonal mean model does not account for the shape of the seasonal trend.

Cosine Trends

Consider the cosine curve with equation

$$\mu_t = \beta \cos(2\pi f t + \Phi)$$

where $\beta(>0)$ – amplitude, f – frequency, Φ – phase. Note that $\beta \cos(2\pi ft + \Phi) = \beta_1 \cos(2\pi ft) + \beta_2 \sin(2\pi ft)$ where $\beta = \sqrt{\beta_1^2 + \beta_2^2}, \ \Phi = atan(-\beta_2/\beta_1)$. Therefore, $\mu_t = \beta_0 + \beta_1 \cos(2\pi ft) + \beta_2 \sin(2\pi ft)$

Cyclical or Seasonal Trends

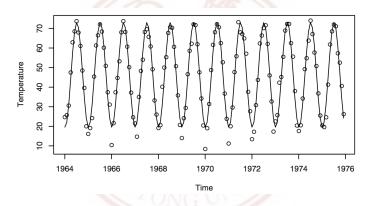


Figure: Cosine Trend for the Temperature Series.

So far, we assume $Y_t = \mu_t + X_t$, μ_t is deterministic trend, $\{X_t\}$ zero-mean stationary stochastic process, with autocovariance and autocorrelation γ_k and ρ_k .

ordinary regression estimation methods - least squares - is used.

Seasonal Means

If we have N years data,

$$\hat{\beta}_{j} = \frac{1}{N} \sum_{i=0}^{N-1} Y_{j+12i}$$

$$Var(\hat{\beta}_{j}) = \frac{\gamma_{0}}{N} \left[1 + 2 \sum_{k=1}^{N-1} \left(1 - \frac{k}{N} \right) \rho_{12k} \right]$$

If X_t is white noise, $Var(\hat{\beta}_j) = \frac{\gamma_0}{N}$

Cosine Trends

For $\mu_t = \beta_0 + \beta_1 \cos(2\pi ft) + \beta_2 \sin(2\pi ft)$, if $f = \frac{m}{n}$ where *m* is an integer satisfying $1 \le m \le n/2$, then we have:

$$\hat{\beta}_1 = \frac{2}{n} \sum_{t=1}^n \left[\cos\left(\frac{2\pi mt}{n}\right) Y_t \right], \hat{\beta}_2 = \frac{2}{n} \sum_{t=1}^n \left[\sin\left(\frac{2\pi mt}{n}\right) Y_t \right]$$

Their variances are:

$$Var(\hat{\beta}_1) = 2\frac{\gamma_0}{n} \left[1 + \frac{4}{n} \sum_{s=2}^n \sum_{t=1}^{s-1} \cos\left(\frac{2\pi mt}{n}\right) \cos\left(\frac{2\pi ms}{n}\right) \rho_{s-t} \right]$$

Similarly for $Var(\hat{\beta}_1)$ if we replace the cosines by sines.

For this variance,

- If $\{X_t\}$ is WN, we get $2\gamma_0/n$
- If $\rho_1 \neq 0$ and $\rho_k = 0$ for k > 1, and m/n = 1/12,

$$Var(\hat{\beta}_1) = 2\frac{\gamma_0}{n} \left[1 + \frac{4\rho_1}{n} \sum_{t=1}^{n-1} \cos\left(\frac{\pi t}{6}\right) \cos\left(\frac{\pi t+1}{6}\right) \right]$$

In case $n = \infty$,

$$Var(\hat{\beta}_1) = \frac{2\gamma_0}{n} \left(1 + 2\rho_1 \cos\left(\frac{\pi}{6}\right) \right)$$
$$= \frac{2\gamma_0}{n} (1 + 1.732\rho_1)$$

If $\rho_1 = -0.4$, then $1 + 1.732\rho_1 = 0.307$, the variance reduced about 70% when compared with WN.

If the simple cosine model is adequate, how much do we lose if we use the seasonal means model?

Model parameters are not comparable. To compare the estimates of the trend at comparable time points. Consider the two estimates for the trend in Jan. , i.e. μ_1

• For seasonal means model,

$$Var(\hat{\mu_1}) = \frac{\gamma_0}{N} \left[1 + 2 \sum_{k=1}^{N-1} \left(1 - \frac{k}{N} \right) \rho_{12k} \right]$$

• For cosine model,

$$\hat{\mu_1} = \hat{\beta}_0 + \hat{\beta}_1 \cos\left(\frac{2\pi}{12}\right) + \hat{\beta}_2 \sin\left(\frac{2\pi}{12}\right)$$
$$\forall ar(\hat{\mu}_1) = Var(\hat{\beta}_0) + Var(\hat{\beta}_1) \cos\left(\frac{2\pi}{12}\right)^2 + Var(\hat{\beta}_2) \sin\left(\frac{2\pi}{12}\right)^2$$

Model comparison

If X_t is WN,

- for seasonal means model, $Var(\hat{\mu_1}) = \gamma_0/N$
- for cosine model,

$$Var(\hat{\mu_1}) = \gamma_0/n \left\{ 1 + 2 \left[\cos\left(\frac{\pi}{6}\right) \right]^2 + 2 \left[\sin\left(\frac{\pi}{6}\right) \right]^2 \right\} = 3 \frac{\gamma_0}{n}$$

• The ratio of the standard deviation is

$$\sqrt{\frac{3\gamma_0/n}{\gamma_0/N}} = \sqrt{\frac{3N}{n}}$$

• For monthly temperature series, n = 144, N = 12, the ratio is 0.5.

Suppose the stochastic component $\{X_t\}$ is such that $\rho_1 \neq 0$ and $\rho_k = 0$ for k > 1, the variance of the seasonal means model is the same, while for the cosine model, it becomes

$$Var(\hat{\mu_1}) = \frac{\gamma_0}{n} \left\{ 3 + 2\rho_1 \left[1 + 2\cos\left(\frac{\pi}{6}\right) \right] \right\}$$

If $\rho_1 = -0.4$, then we have $0.814\gamma_0/n$. The ratio of the standard deviation is $\sqrt{\frac{0.814N}{n}}$. Take n = 144 and N = 12, the ratio is 0.26. The unobserved stochastic process $\{X_t\}$ can be estimated or predicted by the **residual**:

$$\hat{X}_t = Y_t - \hat{\mu_t}$$

and residual standard deviation

$$s = \sqrt{\frac{1}{n-p}\sum_{t=1}^{N}(Y_t - \hat{\mu}_t)^2}$$

where p is the number of parameters estimated, n - p — degrees of freedom

- If the model is reasonably correct, the residues should behave roughly like the true stochastic component
- various assumptions about X_t can be assessed by looking at the residues.

Residue Analysis

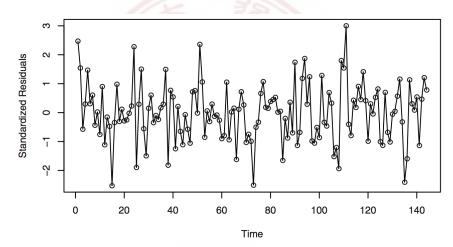


Figure: Residuals versus Time for Temperature Seasonal Means.

Residue Analysis

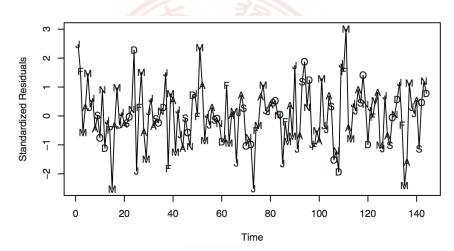
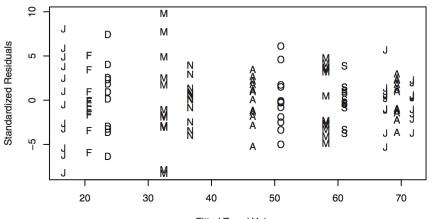


Figure: Residuals versus Time with Seasonal Plotting Symbols.

Residue Analysis



Fitted Trend Values

Figure: Standardized Residuals versus Fitted Values for the Temperature Seasonal Means Model

Normality Test: Histogram, QQ-plot, and Shapiro-Wilk Test (calculate correlation between residuals and normal quantitles)

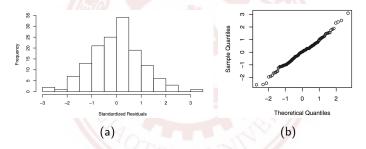


Figure: (a). Histogram of Standardized Residuals from Seasonal Means Model. (b). QQ-plot: Standardized Residuals of Seasonal Means Model.

Runs test to examine against independence. runs: the number of residuals above or below their **median**

Runs test

Under the null hypothesis, the number of runs in a sequence of N elements is a random variable whose conditional distribution given the observation of N_+ positive values and N_- negative values $(N = N_+ + N_-)$ is approximately normal.

Sample Autocorrelation Function

To examine **dependence**, another important tool: **sample autocorrelation function** defined as follows:

$$r_{k} = \frac{\sum_{t=k+1}^{n} (Y_{t} - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{n} (Y_{t} - \bar{Y})^{2}}$$

A plot of r_k versus lag k is called a correlogram.

Sample Autocorrelation Function

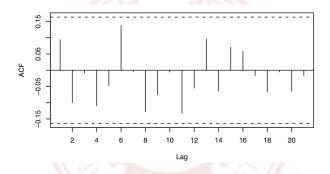


Figure: Sample ACF of Seasonal Means Model.

for k = 1, 2, ..., 21, none of the hypotheses $\rho_k = 0$ can be rejected at the usual significance levels, and it is reasonable to infer that the stochastic component of the series is white noise. Example: standardized residuals from fitting a straight line to the random walk time series

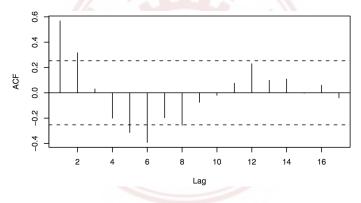


Figure: Sample ACF of Residuals from Straight Line Model.

