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Recap
Examples of time series
Concept: time series and stochastic process
Mean, autocovariance and autocorrelation
Example stochastic processes (random walk, moving average
and white noise
Stationarity



Deterministic Trends and Stochastic Trends

Figure: Time Series Plot of a Random Walk



Deterministic Trends and Stochastic Trends

Figure: Average Monthly Temperatures, Dubuque, Iowa



Formula
Let {Yt} be stationary with autocovariance function γk . Let
Ȳ = 1
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∑n
t=1 Yt . We have:
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Estimation of a Constant Mean

Consider a simple model with constant mean:

Yt = µ+ Xt

where E (Xt) = 0 for all t.



Estimation of a Constant Mean

To investigate the precision of Ȳ = 1
n

∑n
t=1 Yt over the observed

time series Y1,Y2, · · · ,Yn, we assume {Xt} is a stationary time
series with autocorrelation function (ACF) ρk , then

Var(Ȳ ) =
γ0

n

[
1 + 2
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k=1

(
1− k

n

)
ρk

]

If {Xt} is white noise, ρk = 0 for k > 0, then Var(Ȳ ) = γ0
n

If {Xt} is a moving average et − 0.5et−1, then ρ1 = −0.4 and
ρk = 0 for k > 1, we have Var(Ȳ ) = γ0

n

[
1− 0.8n−1

n

]
≈ 0.2γ0

n

If ρk > 0 for all k > 1, Var(Ȳ ) will be larger than γ0/n.



Estimation of a Constant Mean

For stationary processes that
∑∞

k=0 |ρk | <∞,

Var(Ȳ ) ≈ γ0

n

[ ∞∑
k=−∞

ρk

]

for large n.

Example

Suppose that ρk = φ|k| for all k , |φ| < 1. Then we have:

Var(Ȳ ) ≈ (1 + φ)γ0

(1− φ)n



Estimation of a Constant Mean

For a nonstationary process but with a constant mean, like White
Noise, the precision of the sample mean

Var(Ȳ ) = Var
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variance increases alongside the increase of n



Regression Methods: Estimating non-constant mean trend

Linear and Quadratic Trends in Time
Consider the deterministic time trend

µt = β0 + β1t,Yt = µt + Xt ,Xt v WN(µe , σ
2
e )

Estimating β0 and β1

Classical least squares (or regression) method: to choose an
estimates of β1 and β0 that minimize:

Q(β0, β1) =
n∑

t=1

[Yt − (β0 + β1t)]2



Regression Methods: Estimating non-constant mean trend

Denote the solutions by β̂0 and β̂1, we find

β̂1 =

∑n
t=1(Yt − Ȳ )(t − t̄)∑n

t=1(t − t̄)2

β̂0 = Ȳ − β̂1t̄

where t̄ = (n + 1)/2 is the average of 1, 2, · · · , n.



Regression Methods: Estimating non-constant mean trend

Figure: Random Walk with Linear Time Trend

Question
Why fitting a line to the data is not appropriate?



Cyclical or Seasonal Trends

Again assume Yt = µt + Xt with E (Xt) = 0 for all t
For monthly seasonal data, assume µt consists of 12 constant
parameters w.r.t. each month.

µt =


β1 for t = 1, 13, 25, · · · ,
β2 for t = 2, 14, 26, · · · ,
...
β12 for t = 12, 24, 36, · · · ,

→seasonal mean model



Cyclical or Seasonal Trends

Figure: Results for Seasonal Means Model with an Intercept



Cyclical or Seasonal Trends

Seasonal mean model does not account for the shape of the
seasonal trend.

Cosine Trends
Consider the cosine curve with equation

µt = β cos(2πft + Φ)

where β(> 0) – amplitude, f – frequency, Φ – phase.
Note that β cos(2πft + Φ) = β1 cos(2πft) + β2 sin(2πft) where

β =
√
β2

1 + β2
2 , Φ = atan(−β2/β1). Therefore,

µt = β0 + β1 cos(2πft) + β2 sin(2πft)



Cyclical or Seasonal Trends

Figure: Cosine Trend for the Temperature Series.



Reliability and Efficiency of Regression Estimates

So far, we assume Yt = µt + Xt , µt is deterministic trend, {Xt}
zero-mean stationary stochastic process, with autocovariance and
autocorrelation γk and ρk .
ordinary regression estimation methods – least squares – is used.



Reliability and Efficiency of Regression Estimates

Seasonal Means
If we have N years data,

β̂j =
1
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If Xt is white noise, Var(β̂j) = γ0
N



Reliability and Efficiency of Regression Estimates

Cosine Trends
For µt = β0 + β1 cos(2πft) + β2 sin(2πft), if f = m

n where m is an
integer satisfying 1 ≤ m ≤ n/2, then we have:
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2
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n

)
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]
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2
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]
Their variances are:
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Similarly for Var(β̂1) if we replace the cosines by sines.



Reliability and Efficiency of Regression Estimates

For this variance,
If {Xt} is WN, we get 2γ0/n

If ρ1 6= 0 and ρk = 0 for k > 1, and m/n = 1/12,

Var(β̂1) = 2
γ0

n

[
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n
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(πt
6

)
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In case n =∞,

Var(β̂1) =
2γ0

n

(
1 + 2ρ1 cos

(π
6

))
=

2γ0

n
(1 + 1.732ρ1)

If ρ1 = −0.4, then 1 + 1.732ρ1 = 0.307, the variance reduced
about 70% when compared with WN.



Reliability and Efficiency of Regression Estimates

If the simple cosine model is adequate, how much do we lose if we
use the seasonal means model?



Model comparison

Model parameters are not comparable. To compare the estimates
of the trend at comparable time points. Consider the two estimates
for the trend in Jan. , i.e. µ1

For seasonal means model,

Var(µ̂1) =
γ0

N
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]

For cosine model,
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)
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Var(µ̂1) = Var(β̂0) + Var(β̂1) cos

(
2π
12

)2

+ Var(β̂2) sin

(
2π
12

)2



Model comparison

If Xt is WN,
for seasonal means model, Var(µ̂1) = γ0/N

for cosine model,
Var(µ̂1) = γ0/n

{
1 + 2

[
cos
(
π
6

)]2
+ +2

[
sin
(
π
6

)]2}
= 3γ0

n

The ratio of the standard deviation is√
3γ0/n

γ0/N
=

√
3N
n

For monthly temperature series, n = 144,N = 12, the ratio is
0.5.



Model comparison

Suppose the stochastic component {Xt} is such that ρ1 6= 0 and
ρk = 0 for k > 1, the variance of the seasonal means model is the
same, while for the cosine model, it becomes

Var(µ̂1) =
γ0

n

{
3 + 2ρ1

[
1 + 2 cos

(π
6

)]}
If ρ1 = −0.4, then we have 0.814γ0/n. The ratio of the standard

deviation is
√

0.814N
n .

Take n = 144 and N = 12, the ratio is 0.26.



Residue Analysis

The unobserved stochastic process {Xt} can be estimated or
predicted by the residual:

X̂t = Yt − µ̂t

and residual standard deviation

s =

√√√√ 1
n − p

N∑
t=1

(Yt − µ̂t)2

where p is the number of parameters estimated, n − p — degrees
of freedom

If the model is reasonably correct, the residues should behave
roughly like the true stochastic component
various assumptions about Xt can be assessed by looking at
the residues.



Residue Analysis

Figure: Residuals versus Time for Temperature Seasonal Means.



Residue Analysis

Figure: Residuals versus Time with Seasonal Plotting Symbols.



Residue Analysis

Figure: Standardized Residuals versus Fitted Values for the Temperature
Seasonal Means Model



Residue Analysis

Normality Test: Histogram, QQ-plot, and Shapiro-Wilk Test
(calculate correlation between residuals and normal quantitles)

(a) (b)

Figure: (a). Histogram of Standardized Residuals from Seasonal Means
Model. (b). QQ-plot: Standardized Residuals of Seasonal Means Model.



Sample Autocorrelation Function

Runs test to examine against independence. runs: the number of
residuals above or below their median

Runs test
Under the null hypothesis, the number of runs in a sequence of N
elements is a random variable whose conditional distribution given
the observation of N+ positive values and N− negative values
(N = N+ + N−) is approximately normal.



Sample Autocorrelation Function

To examine dependence, another important tool: sample
autocorrelation function defined as follows:

rk =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=1
(
Yt − Ȳ

)2
A plot of rk versus lag k is called a correlogram.



Sample Autocorrelation Function

Figure: Sample ACF of Seasonal Means Model.

for k = 1, 2, ..., 21, none of the hypotheses ρk = 0 can be rejected
at the usual significance levels, and it is reasonable to infer that the
stochastic component of the series is white noise.



Sample Autocorrelation Function

Example: standardized residuals from fitting a straight line to the
random walk time series

Figure: Sample ACF of Residuals from Straight Line Model.



Questions?


