Times Series Analysis (III) – Models For Stationary Time Series Moving Average Process (MA)

> Jianyong Sun School of Mathematics and Statistics Xi'an Jiaotong University

> > 19th Sep., 2017

Recap

- Trends Stochastic and deterministic trends $Y_t = \mu_t + X_t$ with $\{X_t\}$ the stochastic component and $E(X_t) = 0$
 - constant mean: μ_t = μ. With different {X_t}, estimate, and assess its precision or Var(μ)
 - linear trend, seasonal means model and cosine trend model
 - residue analysis: to analyze how well our assumption on {X_t}: stationarity, normality, independence
 - Sample ACF, QQ-plot on residue.

General Linear Processes

Definition

A general linear process, $\{Y_t\}$, is one that can be represented as a weighted linear combination of present and past white noise terms as:

$$Y_t = e_t + \Psi_1 e_{t-1} + \Psi_2 e_{t-2} + \cdots$$

such that

$$\sum_{i=1}^{\infty} \Psi_i^2 < \infty$$

and $\{e_t\}$ is a sequence of i.i.d. zero-mean, random variables.

One important nontrivial example:

$$Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdot$$

Here we let $\Psi_j = \phi^j$ for $j \leq 0$ and $|\phi| < 1$

General Linear Processes

$$E(Y_t) = E\left(\sum_{k=0}^{\infty} \phi^k e_{t-k}\right) = 0$$

$$Var(Y_t) = Var\left(\sum_{k=0}^{\infty} \phi^k e_{t-k}\right)$$

$$= \sum_{k=0}^{\infty} \phi^{2k} Var(e_{t-k}) = \sigma_e^2 \sum_{k=0}^{\infty} \phi^{2k}$$

$$= \frac{\sigma_e^2}{1 - \phi^2}$$

General Linear Processes

$$Cov(Y_t, Y_{t-1}) = Cov\left(\sum_{k=0}^{\infty} \phi^k e_{t-k}, \sum_{k=0}^{\infty} \phi^k e_{t-k-1}\right)$$
$$= \sum_{k=1}^{\infty} Cov(\phi^k e_{t-k}, \phi^{k-1} e_{t-k})$$
$$= \sum_{k=1}^{\infty} \phi^{2k-1} \sigma_e^2 = \phi \sigma_e^2 \sum_{k=0}^{\infty} \phi^{2k} = \frac{\phi \sigma_e^2}{1-\phi^2}$$

Thus

$$Corr(Y_t, Y_{t-1}) = Cov(Y_t, Y_{t-1}) / \sqrt{Var(Y_t)Var(Y_{t-1})}$$
$$= \left[\frac{\phi \sigma_e^2}{1 - \phi^2}\right] / \left[\frac{\sigma_e^2}{1 - \phi^2}\right] = \phi$$

Similarly, we can find

$$Cov(Y_t, Y_{t-k}) = \frac{\phi^k \sigma_e^2}{1 - \phi^2}$$

Thus

$$Corr(Y_t, Y_{t-k}) = \phi^k$$

Observations

• General linear process is stationary since

•
$$E(Y_t) = 0$$
 and $\gamma_k = Cov(Y_t, Y_{t-k}) = \sigma_e^2 \sum_{i=0}^{\infty} \Psi_i \Psi_{i+k}, k \ge 0$

Moving Average Processes of order q - MA(q)

Assume a finite number of $\Psi\space$ are nonzero, we have the so-called moving average process

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \cdots - \theta_q e_{t-q}$$

Accordingly,

$$Y_{t+1} = e_{t+1} - \theta_1 e_t - \theta_2 e_{t-1} - \cdots - \theta_q e_{t-q+1}$$

First considered by Slutsky (1972) and Wold (1938).

Lag-Operator

Example

$$LX_t = X_{t-1}$$
$$L^i X_t = X_{t-i}$$

$$L^2 X_t = LL X_t$$
$$= L X_{t-1} = X_t$$

-2

Difference Operator

$$\Delta X_t = X_t - X_{t-1}$$

$$\Delta^i X_t = (1-L)^i X_t$$

Example

$$\Delta^{2}X_{t} = (1-L)^{2}X_{t}$$

$$= (1-2L+L^{2})X_{t}$$

$$= \underbrace{(X_{t}-X_{t-1})}_{\Delta X_{t}} - \underbrace{(X_{t-1}-X_{t-2})}_{\Delta \Delta X_{t-1}}$$

MA(q) process thus has the form

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q}$$

= $(1 - \theta_1 L^1 - \dots - \theta_q L^q) e_t$
= $\theta(L) e_t$

The model

$$Y_t = e_t - \theta e_{t-1}$$

and

$$E(Y_t) = 0$$
 and $Var(Y_t) = (1 + \theta^2)\sigma_e^2$

and

$$Cov(Y_t, Y_{t-1}) = Cov(e_t - \theta e_{t-1}, e_{t-1} - \theta e_{t-2}) = Cov(-\theta e_{t-1}, e_{t-1}) = -\theta \sigma_e^2 Cov(Y_t, Y_{t-2}) = Cov(e_t - \theta e_{t-1}, e_{t-2} - \theta e_{t-3}) = 0$$

Therefore, for k > 1, $Cov(Y_t, Y_{t-k}) = 0$ there has no correlation beyond lag 1.

summary

$$E(Y_t) = 0$$

$$\gamma_0 = Var(Y_t) = \sigma_e^2(1+\theta^2)$$

$$\gamma_1 = -\theta\sigma_e^2$$

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{-\theta}{1+\theta^2}$$

$$\gamma_k = \rho_k = 0 \text{ for } k \ge 2.$$

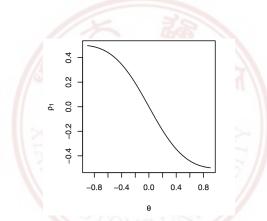


Figure: Lag 1 Autocorrelation of an MA(1) process for Different θ

Invertibility

What if we replace θ by $1/\theta$? Then we have:

$$\rho_1 = ?$$

If we knew that an MA(1) process had $\rho_1 = 0.4$, we still could not tell the precise value of θ .

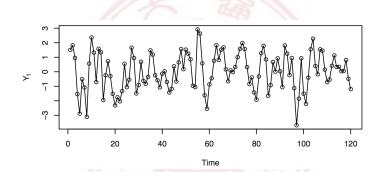


Figure: Time plot of an MA(1) Process with $\theta = -0.9$ ($\rho_1 = \frac{-\theta}{1+\theta^2} = 0.4972$)

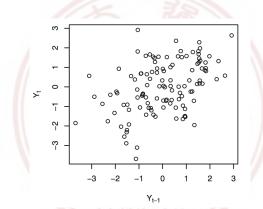


Figure: Plot of Y_t versus Y_{t-1} for MA(1) Series.

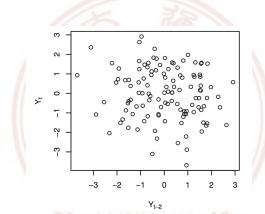


Figure: Plot of Y_t versus Y_{t-2} for MA(1) Series.

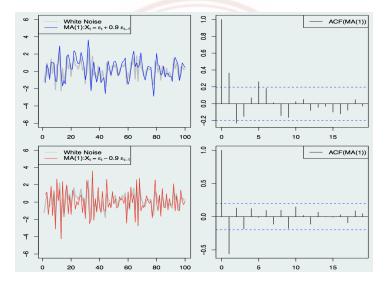


Figure: MA(1) with sample ACF.

Consider a moving average process of order 2:

 $Y_t = \theta(L)e_t$

where $\theta(L) = 1 - \theta_1 L - \theta_2 L^2$

$$\begin{aligned} \gamma_{0} &= Var(Y_{t}) = Var(e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2}) \\ &= (1 + \theta_{1}^{2} + \theta_{2}^{2})\sigma_{e}^{2} \\ \gamma_{1} &= Cov(Y_{t}, Y_{t-1}) \\ &= Cov(e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2}, e_{t-1} - \theta_{1}e_{t-2} - \theta_{2}e_{t-3}) \\ &= Cov(-\theta_{1}e_{t-1}, e_{t-1}) + Cov(-\theta_{1}e_{t-2}, -\theta_{2}e_{t-2}) \\ &= [-\theta_{1} + \theta_{1}\theta_{2}]\sigma_{e}^{2} \\ \gamma_{2} &= Cov(Y_{t}, Y_{t-2}) \\ &= Cov(e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2}, e_{t-2} - \theta_{1}e_{t-3} - \theta_{2}e_{t-4}) \\ &= Cov(-\theta_{2}e_{t-2}, e_{t-2}) \\ &= -\theta_{2}\sigma_{e}^{2} \end{aligned}$$

Thus

$$\rho_1 = \frac{-\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2}$$
$$\rho_2 = \frac{-\theta_2}{1 + \theta_1^2 + \theta_2^2}$$
$$\rho_k = ?$$

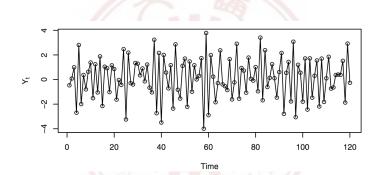


Figure: Time Plot of an MA(2): $Y_t = e_t - e_{t-1} + 0.6e_{t-2}$.

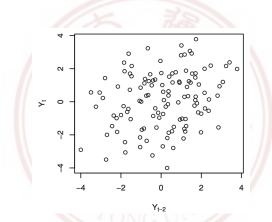


Figure: Plot of Y_t versus Y_{t-2} for MA(2) process.

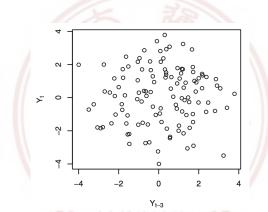


Figure: Plot of Y_t versus Y_{t-3} for MA(2) process.

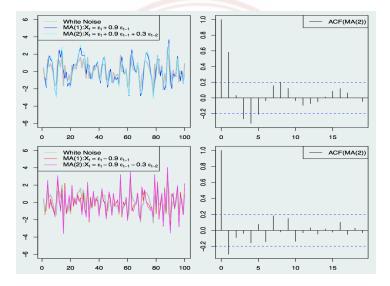


Figure: MA(2) process with sample ACF.

For a general MA(q) process

 $Y_t = \theta(L)e_t$

where $\theta(L) = 1 - \theta_1 L - \theta_2 L^2 - \dots - \theta_q L^q$, we have:

$$\gamma_0 = (1 + \theta_1^2 + \dots + \theta_q^2)\sigma_e^2$$

and

$$\rho_k = \begin{cases} \frac{-\theta_k + \theta_1 \theta_{k+1} + \theta_2 \theta_{k+1} + \dots + \theta_{q-k} \theta_q}{1 + \theta_1^2 + \dots + \theta_q^2} & \text{for } k = 1, 2, \cdots, q \\ 0 & \text{for } k > q \end{cases}$$

A Brief Introduction to Difference Equations, referred to Mickens (1990).

Suppose that we have a sequence of numbers u_0, u_1, \cdots , such that

$$u_n - \alpha u_{n-1} = 0, \alpha \neq 0, n = 1, 2, \cdots$$

This equation represents a homogeneous difference equation of order 1.

To solve this equation $u_n - \alpha u_{n-1} = 0$, we write:

$$u_1 = \alpha u_0$$

$$u_2 = \alpha u_1 = \alpha^2 u_0$$

$$u_n = \alpha u_{n-1} = \alpha^n u_0$$

Given an initial condition $u_0 = c$, we may solve $u_n = \alpha^n c$. We may write the difference equation as $(1 - \alpha L)u_n$ where L is the lag operator. Let the polynomial associated with it as

$$\alpha(z)=1-\alpha z$$

Suppose its root is z_0 , we know the solution to the difference equation with initial condition $u_0 = c$, is:

$$u_n = \alpha^n c = (z_0^{-1})^n c.$$

Now suppose that the sequence satisfies

$$u_n - \alpha_1 u_{n-1} - \alpha_2 u_{n-2} = 0, \alpha_2 \neq 0, n = 2, 3, \cdots$$

Its corresponding polynomial is

$$\alpha(z) = 1 - \alpha_1 z - \alpha_2 z^2$$

Two roots z_1 and z_2 , that is $\alpha(z_1) = \alpha(z_2) = 0$.

The first case: suppose that $z_1 \neq z_2$. The general solution to the order-2 difference equation is:

$$u_n = c_1 z_1^{-n} + c_2 z_2^{-n}$$

where c_1 and c_2 depend on initial conditions. The claim that a solution can be verified by direct substitution.

$$(c_1z_1^{-n}+c_2z_2^{-n})-\alpha_1(c_1z_1^{-(n-1)}+c_2z_2^{-(n-1)})-\alpha_2(c_1z_1^{-(n-2)}+c_2z_2^{-(n-2)})$$

= $c_1z_1^{-n}(1-\alpha_1z_1-\alpha_2z_1^2)+c_2z_2^{-n}(1-\alpha_2z_1-\alpha_2z_2^2)=0$

Given two initial conditions u_0 and u_1 , we may solve for c_1 and c_2 :

$$u_0 = c_1 + c_2$$
 and $u_1 = c_1 z_1^{-1} + c_2 z_2^{-1}$

Difference Equations

The second case: suppose that $z_1 = z_2 (= z_0)$. A general solution is:

$$u_n = z_0^{-n}(c_1 + c_2 n)$$

This can be verified by direct substitution:

$$z_0^{-n}(c_1+c_2n) - \alpha_1 z_0^{-(n-1)}[c_1+c_2(n-1)] - \alpha_2 z_0^{-(n-2)}[c_1+c_2(n-2)]$$

= $z_0^{-n}(c_1+c_2n)(1-\alpha_1 z_0-\alpha_2 z_0^2) + c_2 z_0^{-n+1}(\alpha_1+2\alpha_2 z_0)$
= $c_2^{-n+1}(\alpha_1+2\alpha_2 z_0) = 0$

To show that $\alpha_1 + 2\alpha_2 z_0$, write $1 - \alpha_1 z - \alpha_2 z^2 = (1 - z_0^{-1} z)^2$. Take derivatives w.r.t. z:

$$(\alpha_1 + 2\alpha_2 z) = 2z_0^{-1}(1-z)^{-1}z$$

Given two initial conditions u_0 and u_1 , we can solve for c_1 and c_2 :

$$u_0 = c_1, u_1 = (c_1 + c_2)z_0^{-1}$$