Times Series Analysis (III) - Models For Stationary Time Series Moving Average Process (MA)

Jianyong Sun
School of Mathematics and Statistics
Xi'an Jiaotong University

19th Sep., 2017

Recap

- Trends - Stochastic and deterministic trends $Y_{t}=\mu_{t}+X_{t}$ with $\left\{X_{t}\right\}$ the stochastic component and $E\left(X_{t}\right)=0$
- constant mean: $\mu_{t}=\mu$. With different $\left\{X_{t}\right\}$, estimate, and assess its precision or $\operatorname{Var}(\mu)$
- linear trend, seasonal means model and cosine trend model
- residue analysis: to analyze how well our assumption on $\left\{X_{t}\right\}$: stationarity, normality, independence
- Sample ACF, QQ-plot on residue.

General Linear Processes

Definition

A general linear process, $\left\{Y_{t}\right\}$, is one that can be represented as a weighted linear combination of present and past white noise terms as:

$$
Y_{t}=e_{t}+\Psi_{1} e_{t-1}+\Psi_{2} e_{t-2}+\cdots
$$

such that

$$
\sum_{i=1}^{\infty} \Psi_{i}^{2}<\infty
$$

and $\left\{e_{t}\right\}$ is a sequence of i.i.d. zero-mean, random variables.

General Linear Processes

One important nontrivial example:

$$
Y_{t}=e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\cdots
$$

Here we let $\Psi_{j}=\phi^{j}$ for $j \leq 0$ and $|\phi|<1$

General Linear Processes

$$
\begin{aligned}
E\left(Y_{t}\right) & =E\left(\sum_{k=0}^{\infty} \phi^{k} e_{t-k}\right)=0 \\
\operatorname{Var}\left(Y_{t}\right) & =\operatorname{Var}\left(\sum_{k=0}^{\infty} \phi^{k} e_{t-k}\right) \\
& =\sum_{k=0}^{\infty} \phi^{2 k} \operatorname{Var}\left(e_{t-k}\right)=\sigma_{e}^{2} \sum_{k=0}^{\infty} \phi^{2 k} \\
& =\frac{\sigma_{e}^{2}}{1-\phi^{2}}
\end{aligned}
$$

General Linear Processes

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{t}, Y_{t-1}\right) & =\operatorname{Cov}\left(\sum_{k=0}^{\infty} \phi^{k} e_{t-k}, \sum_{k=0}^{\infty} \phi^{k} e_{t-k-1}\right) \\
& =\sum_{k=1}^{\infty} \operatorname{Cov}\left(\phi^{k} e_{t-k}, \phi^{k-1} e_{t-k}\right) \\
& =\sum_{k=1}^{\infty} \phi^{2 k-1} \sigma_{e}^{2}=\phi \sigma_{e}^{2} \sum_{k=0}^{\infty} \phi^{2 k}=\frac{\phi \sigma_{e}^{2}}{1-\phi^{2}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\operatorname{Corr}\left(Y_{t}, Y_{t-1}\right) & =\operatorname{Cov}\left(Y_{t}, Y_{t-1}\right) / \sqrt{\operatorname{Var}\left(Y_{t}\right) \operatorname{Var}\left(Y_{t-1}\right)} \\
& =\left[\frac{\phi \sigma_{e}^{2}}{1-\phi^{2}}\right] /\left[\frac{\sigma_{e}^{2}}{1-\phi^{2}}\right]=\phi
\end{aligned}
$$

General Linear Processes

Similarly, we can find

$$
\operatorname{Cov}\left(Y_{t}, Y_{t-k}\right)=\frac{\phi^{k} \sigma_{e}^{2}}{1-\phi^{2}}
$$

Thus

$$
\operatorname{Corr}\left(Y_{t}, Y_{t-k}\right)=\phi^{k}
$$

Observations

- General linear process is stationary since
- $E\left(Y_{t}\right)=0$ and $\gamma_{k}=\operatorname{Cov}\left(Y_{t}, Y_{t-k}\right)=\sigma_{e}^{2} \sum_{i=0}^{\infty} \Psi_{i} \Psi_{i+k}, k \geq 0$

Moving Average Processes of order q - MA(q)

Assume a finite number of Ψ 's are nonzero, we have the so-called moving average process

$$
Y_{t}=e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}-\cdots-\theta_{q} e_{t-q}
$$

Accordingly,

$$
Y_{t+1}=e_{t+1}-\theta_{1} e_{t}-\theta_{2} e_{t-1}-\cdots-\theta_{q} e_{t-q+1}
$$

First considered by Slutsky (1972) and Wold (1938).

Lag-Operator

$$
\begin{aligned}
L X_{t} & =X_{t-1} \\
L^{i} X_{t} & =X_{t-i}
\end{aligned}
$$

Example

$$
\begin{aligned}
L^{2} X_{t} & =L L X_{t} \\
& =L X_{t-1}=X_{t-2}
\end{aligned}
$$

Example

$$
\begin{aligned}
\Delta^{2} X_{t} & =(1-L)^{2} X_{t} \\
& =\underbrace{\left(1-2 L+L^{2}\right) X_{t}}_{\Delta \Delta X_{t}} \\
& =\underbrace{\left(X_{t}-X_{t-1}\right)}_{\Delta X_{t}}-\underbrace{\left(X_{t-1}-X_{t-2}\right)}_{\Delta X_{t-1}}
\end{aligned}
$$

$\mathrm{MA}(q)$ process thus has the form

$$
\begin{aligned}
Y_{t} & =e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}-\cdots-\theta_{q} e_{t-q} \\
& =\left(1-\theta_{1} L^{1}-\cdots-\theta_{q} L^{q}\right) e_{t} \\
& =\theta(L) e_{t}
\end{aligned}
$$

The First-Order MA

The model

$$
Y_{t}=e_{t}-\theta e_{t-1}
$$

and

$$
E\left(Y_{t}\right)=0 \text { and } \operatorname{Var}\left(Y_{t}\right)=\left(1+\theta^{2}\right) \sigma_{e}^{2}
$$

and

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{t}, Y_{t-1}\right) & =\operatorname{Cov}\left(e_{t}-\theta e_{t-1}, e_{t-1}-\theta e_{t-2}\right) \\
& =\operatorname{Cov}\left(-\theta e_{t-1}, e_{t-1}\right)=-\theta \sigma_{e}^{2} \\
\operatorname{Cov}\left(Y_{t}, Y_{t-2}\right) & =\operatorname{Cov}\left(e_{t}-\theta e_{t-1}, e_{t-2}-\theta e_{t-3}\right)=0
\end{aligned}
$$

Therefore, for $k>1, \operatorname{Cov}\left(Y_{t}, Y_{t-k}\right)=0$ there has no correlation beyond lag 1.

The First-Order MA

summary

$$
\begin{aligned}
E\left(Y_{t}\right) & =0 \\
\gamma_{0} & =\operatorname{Var}\left(Y_{t}\right)=\sigma_{e}^{2}\left(1+\theta^{2}\right) \\
\gamma_{1} & =-\theta \sigma_{e}^{2} \\
\rho_{1} & =\frac{\gamma_{1}}{\gamma_{0}}=\frac{-\theta}{1+\theta^{2}} \\
\gamma_{k} & =\rho_{k}=0 \text { for } k \geq 2
\end{aligned}
$$

The First-Order MA

Figure: Lag 1 Autocorrelation of an MA(1) process for Different θ

The First-Order MA

Invertibility

What if we replace θ by $1 / \theta$? Then we have:

$$
\rho_{1}=?
$$

If we knew that an $M A(1)$ process had $\rho_{1}=0.4$, we still could not tell the precise value of θ.

The First-Order MA

Figure: Time plot of an MA(1) Process with $\theta=-0.9$

$$
\left(\rho_{1}=\frac{-\theta}{1+\theta^{2}}=0.4972\right)
$$

The First-Order MA

Figure: Plot of Y_{t} versus Y_{t-1} for MA(1) Series.

The First-Order MA

Figure: Plot of Y_{t} versus Y_{t-2} for MA(1) Series.

The First-Order MA

Figure: MA(1) with sample ACF.

The Second-Order MA Process

Consider a moving average process of order 2:

$$
Y_{t}=\theta(L) e_{t}
$$

where $\theta(L)=1-\theta_{1} L-\theta_{2} L^{2}$

The Second-Order MA Process

$$
\begin{aligned}
\gamma_{0} & =\operatorname{Var}\left(Y_{t}\right)=\operatorname{Var}\left(e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}\right) \\
& =\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \sigma_{e}^{2} \\
\gamma_{1} & =\operatorname{Cov}\left(Y_{t}, Y_{t-1}\right) \\
& =\operatorname{Cov}\left(e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}, e_{t-1}-\theta_{1} e_{t-2}-\theta_{2} e_{t-3}\right) \\
& =\operatorname{Cov}\left(-\theta_{1} e_{t-1}, e_{t-1}\right)+\operatorname{Cov}\left(-\theta_{1} e_{t-2},-\theta_{2} e_{t-2}\right) \\
& =\left[-\theta_{1}+\theta_{1} \theta_{2}\right] \sigma_{e}^{2} \\
\gamma_{2} & =\operatorname{Cov}\left(Y_{t}, Y_{t-2}\right) \\
& =\operatorname{Cov}\left(e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}, e_{t-2}-\theta_{1} e_{t-3}-\theta_{2} e_{t-4}\right) \\
& =\operatorname{Cov}\left(-\theta_{2} e_{t-2}, e_{t-2}\right) \\
& =-\theta_{2} \sigma_{e}^{2}
\end{aligned}
$$

The Second-Order MA Process

Thus

$$
\begin{aligned}
\rho_{1} & =\frac{-\theta_{1}+\theta_{1} \theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} \\
\rho_{2} & =\frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} \\
\rho_{k} & =?
\end{aligned}
$$

The Second-Order MA Process

Figure: Time Plot of an MA(2): $Y_{t}=e_{t}-e_{t-1}+0.6 e_{t-2}$.

The Second-Order MA Process

Figure: Plot of Y_{t} versus Y_{t-2} for $\mathrm{MA}(2)$ process.

The Second-Order MA Process

Figure: Plot of Y_{t} versus Y_{t-3} for $\mathrm{MA}(2)$ process.

The Second-Order MA Process

Figure: MA(2) process with sample ACF.

General MA(q) Process

For a general $\mathrm{MA}(q)$ process

$$
Y_{t}=\theta(L) e_{t}
$$

where $\theta(L)=1-\theta_{1} L-\theta_{2} L^{2}-\cdots-\theta_{q} L^{q}$, we have:

$$
\gamma_{0}=\left(1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}\right) \sigma_{e}^{2}
$$

and

$$
\rho_{k}=\left\{\begin{array}{cc}
\frac{-\theta_{k}+\theta_{1} \theta_{k+1}+\theta_{2} \theta_{k+1}+\cdots+\theta_{q-k} \theta_{q}}{1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}} & \text { for } k=1,2, \cdots, q \\
0 & \text { for } k>q
\end{array}\right.
$$

Questions?

Difference Equations

A Brief Introduction to Difference Equations, referred to Mickens (1990).

Suppose that we have a sequence of numbers u_{0}, u_{1}, \cdots, such that

$$
u_{n}-\alpha u_{n-1}=0, \alpha \neq 0, n=1,2, \cdots
$$

This equation represents a homogeneous difference equation of order 1.

Difference Equations

To solve this equation $u_{n}-\alpha u_{n-1}=0$, we write:

$$
\begin{aligned}
u_{1} & =\alpha u_{0} \\
u_{2} & =\alpha u_{1}=\alpha^{2} u_{0} \\
& \vdots \\
u_{n} & =\alpha u_{n-1}=\alpha^{n} u_{0}
\end{aligned}
$$

Given an initial condition $u_{0}=c$, we may solve $u_{n}=\alpha^{n} c$. We may write the difference equation as $(1-\alpha L) u_{n}$ where L is the lag operator. Let the polynomial associated with it as

$$
\alpha(z)=1-\alpha z
$$

Suppose its root is z_{0}, we know the solution to the difference equation with initial condition $u_{0}=c$, is:

$$
u_{n}=\alpha^{n} c=\left(z_{0}^{-1}\right)^{n} c .
$$

Difference Equations

Now suppose that the sequence satisfies

$$
u_{n}-\alpha_{1} u_{n-1}-\alpha_{2} u_{n-2}=0, \alpha_{2} \neq 0, n=2,3, \cdots
$$

Its corresponding polynomial is

$$
\alpha(z)=1-\alpha_{1} z-\alpha_{2} z^{2}
$$

Two roots z_{1} and z_{2}, that is $\alpha\left(z_{1}\right)=\alpha\left(z_{2}\right)=0$.

Difference Equations

The first case: suppose that $z_{1} \neq z_{2}$. The general solution to the order-2 difference equation is:

$$
u_{n}=c_{1} z_{1}^{-n}+c_{2} z_{2}^{-n}
$$

where c_{1} and c_{2} depend on initial conditions.
The claim that a solution can be verified by direct substitution.

$$
\begin{aligned}
& \left(c_{1} z_{1}^{-n}+c_{2} z_{2}^{-n}\right)-\alpha_{1}\left(c_{1} z_{1}^{-(n-1)}+c_{2} z_{2}^{-(n-1)}\right)-\alpha_{2}\left(c_{1} z_{1}^{-(n-2)}+c_{2} z_{2}^{-(n-2)}\right) \\
& \quad=c_{1} z_{1}^{-n}\left(1-\alpha_{1} z_{1}-\alpha_{2} z_{1}^{2}\right)+c_{2} z_{2}^{-n}\left(1-\alpha_{2} z_{1}-\alpha_{2} z_{2}^{2}\right)=0
\end{aligned}
$$

Given two initial conditions u_{0} and u_{1}, we may solve for c_{1} and c_{2} :

$$
u_{0}=c_{1}+c_{2} \text { and } u_{1}=c_{1} z_{1}^{-1}+c_{2} z_{2}^{-1}
$$

Difference Equations

The second case: suppose that $z_{1}=z_{2}\left(=z_{0}\right)$. A general solution is:

$$
u_{n}=z_{0}^{-n}\left(c_{1}+c_{2} n\right)
$$

This can be verified by direct substitution:

$$
\begin{array}{r}
z_{0}^{-n}\left(c_{1}+c_{2} n\right)-\alpha_{1} z_{0}^{-(n-1)}\left[c_{1}+c_{2}(n-1)\right]-\alpha_{2} z_{0}^{-(n-2)}\left[c_{1}+c_{2}(n-2)\right] \\
=z_{0}^{-n}\left(c_{1}+c_{2} n\right)\left(1-\alpha_{1} z_{0}-\alpha_{2} z_{0}^{2}\right)+c_{2} z_{0}^{-n+1}\left(\alpha_{1}+2 \alpha_{2} z_{0}\right) \\
=c_{2}^{-n+1}\left(\alpha_{1}+2 \alpha_{2} z_{0}\right)=0
\end{array}
$$

To show that $\alpha_{1}+2 \alpha_{2} z_{0}$, write $1-\alpha_{1} z-\alpha_{2} z^{2}=\left(1-z_{0}^{-1} z\right)^{2}$. Take derivatives w.r.t. z :

$$
\left(\alpha_{1}+2 \alpha_{2} z\right)=2 z_{0}^{-1}(1-z)^{-1} z
$$

Given two initial conditions u_{0} and u_{1}, we can solve for c_{1} and c_{2} :

$$
u_{0}=c_{1}, u_{1}=\left(c_{1}+c_{2}\right) z_{0}^{-1}
$$

