Times Series Analysis (IV) - Models For Stationary Time Series Autoregressive Process (AR)

Jianyong Sun
School of Mathematics and Statistics
Xi'an Jiaotong University

21th Sep., 2017

Recap

- MA $Y_{t}=e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}-\cdots-\theta_{p} e_{t-p}$ with $\left\{e_{t}\right\}$ the stochastic component and $E\left(X_{t}\right)=0$
- General linear process
- variance, autocovariance, autocorrelation
- MA(1) and MA(2)
- MA(p)

Autoregressive Processes

Definition

A p-th order autoregressive process, $\left\{Y_{t}\right\}$, satisfy the equation:

$$
Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} X_{t-2}+\phi_{p} Y_{t-p}+e_{t}
$$

e_{t} is independent of Y_{t-1}, Y_{t-2}, \cdots

Explanation

- Y_{t} is a linear combination of the p most recent past values
- e_{t} is usually called 'innovation'. It explains everything new that cannot be explained by the past values.

Yule (1962) is the first to carry out work on autoregressive processes.

The First-Order Autoregressive Process: AR(1)

Assume the series is stationary and satisfies:

$$
Y_{t}=\phi Y_{t-1}+e_{t}
$$

Also we assume that the process mean has been subtracted out so that the series mean is zero.

The First-Order Autoregressive Process: AR(1)

If we take variances of both side, we obtain:

$$
\gamma_{0}=\phi^{2} \gamma_{0}+\sigma_{e}^{2}
$$

This gives us

$$
\gamma_{0}=\frac{\sigma_{e}^{2}}{1-\phi^{2}}
$$

The immediate implication is that $\phi^{2}<1$, i.e. $|\phi|<1$.

The First-Order Autoregressive Process: AR(1)

Now compute $\operatorname{Cov}\left(Y_{t}, Y_{t-k}\right)$, multiply both sides by Y_{t-k} :

$$
Y_{t} Y_{t-k}=\phi Y_{t-1} Y_{t-k}+e_{t} Y_{t-k}
$$

Take expected values,

$$
\begin{aligned}
E\left(Y_{t} Y_{t-k}\right) & =\phi E\left(Y_{t-1} Y_{t-k}\right)+E\left(e_{t} Y_{t-k}\right) \\
\gamma_{k} & =\phi \gamma_{k-1}+E\left(e_{t} Y_{t-k}\right)
\end{aligned}
$$

Note that we assume e_{t} is independent of previous variables Y_{t-k}, so

$$
\gamma_{k}=\phi \gamma_{k-1} \text { for } k=1,2,3, \cdots
$$

The First-Order Autoregressive Process: AR(1)

$$
\begin{aligned}
\gamma_{1} & =\phi \gamma_{0}=\frac{\phi \sigma_{e}^{2}}{1-\phi^{2}} \\
\gamma_{2} & =\phi \gamma_{1}=\frac{\phi^{2} \sigma_{e}^{2}}{1-\phi^{2}} \\
& \vdots \\
\gamma_{k} & =\frac{\phi^{k} \sigma_{e}^{2}}{1-\phi^{2}}
\end{aligned}
$$

Thus

$$
\rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\phi^{k} \text { for } k=1,2,3, \cdots
$$

The First-Order Autoregressive Process: AR(1)

Observations

- $|\phi|<1$, the magnitude of the ACF decrease exponentially as the number of lags k
- If $0<\phi<1$, all ACF are positive, while if $-1<\phi<0$, we have successive positive and negative ACF with their magnitudes exponentially decreased.

The First-Order Autoregressive Process: AR(1)

Figure: ACF for several $\operatorname{AR}(1)$ Models.

The First-Order Autoregressive Process: AR(1)

Figure: a sample of $\operatorname{AR}(1)$ with $\phi=0.9$.

Observations

- It infrequently crosses its theoretical mean of zero.
- There is a lot of inertia in the series: it remains on the same side of the mean for extended periods.
- The illusion of trends is due to the strong autocorrelation of neighboring values of the series.

The First-Order Autoregressive Process: AR(1)

Figure: a. Plot of Y_{t} versus Y_{t-1} for $\operatorname{AR}(1)$ series with $\phi=0.9$; b. Plot of Y_{t} versus Y_{t-2} for $\operatorname{AR}(1)$ series with $\phi=0.9$; c. Plot of Y_{t} versus Y_{t-3} for $\operatorname{AR}(1)$ series with $\phi=0.9$

General Linear Process Version of the AR(1) Model

Express AR(1) as a General Linear Process

$$
\begin{aligned}
Y_{t} & =\phi Y_{t-1}+e_{t} \\
Y_{t-1} & =\phi Y_{t-2}+e_{t-1} \\
Y_{t} & =\phi\left(\phi Y_{t-2}+e_{t-1}\right)+e_{t} \\
& =e_{t}+\phi e_{t-1}+\phi^{2} Y_{t-2}
\end{aligned}
$$

Repeat the substitution $k-1$ times, we get

$$
\begin{equation*}
Y_{t}=e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\cdots+\phi^{k-1} e_{t-k+1}+\phi^{k} Y_{t-k} \tag{1}
\end{equation*}
$$

General Linear Process Version of the AR(1) Model

Assume $|\phi|<1$ and let $k \rightarrow \infty$, we obtain

$$
Y_{t}=e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\phi^{3} e_{t-3}+\cdots
$$

Recall: General Linear Process

$$
Y_{t}=e_{t}+\Psi_{1} e_{t-1}+\Psi_{2} e_{t-2}+\cdots
$$

with $\Psi_{j}=\phi^{j}$

Stationarity of an AR(1) Process

Subject to e_{t} be independent of Y_{t-1}, Y_{t-2}, \cdots and that $\sigma_{e}^{2}>0$, $\operatorname{AR}(1)$ is stationary if and only if $|\phi|<1$.

Stationarity Condition

The requirement $|\phi|<1$ is called the stationarity condition for the $\mathrm{AR}(1)$ process defined as

$$
Y_{t}=\phi Y_{t-1}+e_{t}
$$

with

$$
\begin{aligned}
\gamma_{k} & =\operatorname{Cov}\left(Y_{t}, Y_{t-k}\right)=\frac{\phi^{k} \sigma_{e}^{2}}{1-\phi^{2}} \\
\rho_{k} & =\operatorname{Corr}\left(Y_{t}, Y_{t-k}\right)=\phi^{k}
\end{aligned}
$$

Stationarity of an AR(1) Process

Three Ways to derive the ACF

- General Linear form: $Y_{t}=e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\phi^{3} e_{t-3}+\cdots$
- Recursive form: $Y_{t}=\phi Y_{t-1}+e_{t}$
- Eq. (1):

$$
Y_{t}=e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\cdots+\phi^{k-1} e_{t-k+1}+\phi^{k} Y_{t-k}
$$

Multiply Y_{t-k} on both sides of Eq. 1, and take expected values

$$
\begin{aligned}
E\left(Y_{t} Y_{t-k}\right) & =E\left(Y_{t-k} e_{t}+\phi Y_{t-k} e_{t-1}+\cdots+\phi^{k} Y_{t-k} Y_{t-k}\right) \\
& =\phi^{k} E\left(Y_{t-k} Y_{t-k}\right)=\phi^{k} \operatorname{Var}\left(Y_{t}\right)=\phi^{k} \gamma_{0}
\end{aligned}
$$

The Second-Order Autoregressive Process

Consider an autoregressive process of order 2:

$$
Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t}
$$

where we assume that e_{t} is independent of Y_{t-1}, Y_{t-2}, \cdots. Note

$$
\begin{aligned}
e_{t} & =Y_{t}-\phi_{1} Y_{t-1}-\phi_{2} Y_{t-2} \\
& =\left(1-\phi_{1} L^{1}-\phi_{2} L^{2}\right) Y_{t}
\end{aligned}
$$

The Second-Order Autoregressive Process

To discuss stationarity, consider the AR characteristic polynomial:

$$
\phi(x)=1-\phi_{1} x-\phi_{2} x^{2}
$$

and the corresponding $A R$ characteristic equation:

$$
1-\phi_{1} x-\phi_{2} x^{2}=0
$$

Stationarity of the AR(2) Process

- It may be shown that, subject to the condition that e_{t} is independent of Y_{t-1}, Y_{t-2}, \cdots, a stationary solution to the $A R(2)$ exists if and only if the roots of the AR characteristic equation exceed 1 in absolute value (modulus).
- We sometimes say that the roots should lie outside the unit circle in the complex plane.
- The statement is applicable to the p-th order case without change.

Stationarity of the AR(2) Process

For $\operatorname{AR}(2)$, it has stationary solutions if and only if
$\phi_{1}+\phi_{2}<1, \phi_{2}-\phi_{1}<1$ and $\left|\phi_{2}\right|<1$

Proof

Roots for a order-2 polynomial is $\frac{\phi_{\mathbf{1}} \pm \sqrt{\phi_{\mathbf{1}}^{\mathbf{2}}+4 \phi_{\mathbf{2}}}}{-2 \phi_{\mathbf{2}}}$, let

$$
\begin{aligned}
G_{1} & =\frac{2 \phi_{2}}{-\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}=\frac{2 \phi_{2}}{-\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}\left[\frac{-\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{-\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}\right] \\
& =\frac{\phi_{1}-\sqrt{\phi^{2}+4 \phi_{2}}}{2}
\end{aligned}
$$

Similarly, we have

$$
G_{2}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}
$$

Stationarity of the AR(2) Process

Proof Cont.

I. Real Roots: $\left|G_{i}\right|<1$ for $i=1,2$ if and only if

$$
-1<\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}<\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}<1
$$

Consider the first inequality, $-2<\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}$ if and only if
$\sqrt{\phi_{1}^{2}+4 \phi_{2}}<\phi_{1}+2 \rightarrow \phi_{2}<\phi_{1}+1$. Similarly, the inequality
$\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}<2$ leads to $\phi_{2}+\phi_{1}<1$
II. Complex Roots: Now $\phi_{1}^{2}+4 \phi_{2}<0$. Here G_{1} and G_{2} will be complex conjugates, $\left|G_{1}\right|=\left|G_{2}\right|<1$ if and only if $\left|G_{1}\right|^{2}<1$.
$\left|G_{1}\right|^{2}=\left[\phi_{1}^{2}+\left(-\phi_{1}^{2}-4 \phi_{2}\right)\right] / 4=-\phi_{2}$, so that $\phi_{2}>-1$. This together with the inequality $\phi_{1}^{2}+4 \phi_{2}<0$ defines the part of the stationarity region for complex roots.

Stationarity of the AR(2) Process

Figure: Stationary Parameter Region for AR(2) Process.

The Autocorrelation Function for the AR(2) Process

To derive the ACF for $\operatorname{AR}(2)$, consider the recursive formulation of $\operatorname{AR}(2): Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t}$, multiply both sides by Y_{t-k} and take expectations. Assuming stationarity, zero-mean and e_{t} is independent of Y_{t-1}, Y_{t-2}, \cdots, we get

$$
E\left[Y_{t} Y_{t-k}\right]=E\left[\phi_{1} Y_{t-1} Y_{t-k}\right]+E\left[\phi_{2} Y_{t-2} Y_{t-k}\right]+E\left[Y_{t-k} e_{t}\right]
$$

i.e.

$$
\gamma_{k}=\phi_{1} \gamma_{k-1}+\phi_{2} \gamma_{k-2} \text { for } k=1,2,3, \cdots
$$

Hence

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2} \text { for } k=1,2,3, \cdots
$$

Yule-Walker equations

The Autocorrelation Function for the AR(2) Process

Note $\rho_{0}=1$ and $\rho_{-k}=\rho_{k}$, we get

$$
\rho_{1}=\frac{\phi_{1}}{1-\phi_{2}}, \rho_{2}=\frac{\phi_{2}\left(1-\phi_{2}\right)+\phi_{1}^{2}}{1-\phi_{2}}, \cdots
$$

It is desirable to have an explicit formula for ρ_{k}.
If the roots are distinct, i.e. $G_{1} \neq G_{2}$, it can be shown that

$$
\rho_{k}=\frac{\left(1-G_{2}^{2}\right) G_{1}^{k+1}-\left(1-G_{1}^{2}\right) G_{2}^{k+1}}{\left(G_{1}-G_{2}\right)\left(1+G_{1} G_{2}\right)}
$$

The Autocorrelation Function for the AR(2) Process

If the roots are complex, then $z_{1}=\bar{z}_{2}$ are complex conjugate pair, then $c_{2}=\bar{c}_{1}$ and

$$
\rho_{k}=c_{1} z_{1}^{-k}+\bar{c}_{1} \bar{z}_{1}^{-k}
$$

If write c_{1} and z_{1} in polar coordinates, e.g. $z_{1}=\left|z_{1}\right| e^{i \theta}$ where θ is tne angle whose tangent is the ratio of the imaginary and real part of z_{1}; the range θ is $[-\pi, \pi]$. Using the fact that $e^{i \alpha}+e^{-i \alpha}=2 \cos (\alpha)$, then the solution has the form

$$
\rho_{k}=a\left|z_{1}\right|^{-k} \cos (k \theta+b)
$$

Therefore:

$$
\rho_{k}=R^{k} \frac{\sin (\Theta k+\Phi)}{\sin (\Phi)}
$$

where $R=\sqrt{-\phi_{2}}$ and Θ and Φ are defined by $\cos (\Theta)=\phi_{1} /\left(2 \sqrt{-\phi_{2}}\right)$ and $\tan (\Phi)=\left[\left(1-\phi_{2}\right) /\left(1+\phi_{2}\right)\right]$

The Autocorrelation Function for the AR(2) Process

If the roots are equal, we have

$$
\rho_{k}=\left(1+\frac{1+\phi_{2}}{1-\phi_{2}} k\right)\left(\frac{\phi_{1}}{2}\right)^{k}
$$

Observations:

- the ACF can assume a wide variety of shapes.
- the magnitude of ρ_{k} dies out exponentially fast as the lag k increases
- In the case of complex roots, ρ_{k} displays a damped sine wave behavior with damping factor $R, 0 \leq R<1$, frequency Θ and phase Φ.

The Autocorrelation Function for the AR(2) Process

Figure: ACF for several AR(2) Models.

The Autocorrelation Function for the AR(2) Process

Figure: Time Plot of an $\operatorname{AR}(2)$ Series with $\phi_{1}=1.5$ and $\phi_{2}=-0.75$.

The Variance for the AR(2) Model

$$
A R(2): Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t}
$$

Taking the variance of both sides:

$$
\gamma_{0}=\left(\phi_{1}^{2}+\phi_{2}^{2}\right) \gamma_{0}+2 \phi_{1} \phi_{2} \gamma_{1}+\sigma_{e}^{2}
$$

Note that

$$
\gamma_{k}=\phi_{1} \gamma_{k-1}+\phi_{2} \gamma_{k-2}
$$

Setting $k=1$, we have $\gamma_{1}=\phi_{1} \gamma_{0}+\phi_{2} \gamma_{1}$. This gives

$$
\begin{aligned}
\gamma_{0} & =\frac{\left(1-\phi_{2}\right) \sigma_{e}^{2}}{\left(1-\phi_{2}\right)\left(1-\phi_{1}^{2}-\phi_{2}^{2}\right)-2 \phi_{2} \phi_{1}^{2}} \\
& =\left(\frac{1-\phi_{2}}{1+\phi_{2}}\right) \frac{\sigma_{e}^{2}}{\left(1-\phi_{2}\right)^{2}-\phi_{1}^{2}}
\end{aligned}
$$

The ψ-weights of $A R(2)$

To represent $\operatorname{AR}(2)$ in the general linear form

$$
Y_{t}=e_{t}+\psi_{1} e_{t-1}+\psi_{2} e_{t-2}+\cdots
$$

we could resort to the lag-operator. Note that

$$
\begin{aligned}
Y_{t} & =\left(\psi_{0}+\psi_{1} L^{1}+\psi_{2} L^{2}+\cdots\right) e_{t} \\
Y_{t}\left(1-\phi_{1} L^{1}-\phi_{2} L^{2}\right) & =e_{t} \Rightarrow \\
Y_{t} & =\left(1-\phi_{1} L^{1}-\phi_{2} L^{2}\right)^{-1} e_{t}
\end{aligned}
$$

This indicates

$$
\left(\psi_{0}+\psi_{1} L^{1}+\psi_{2} L^{2}+\cdots\right)\left(1-\phi_{1} L^{1}-\phi_{2} L^{2}\right)=1
$$

The ψ-weights of $A R(2)$
Expand, we obtain:

$$
\begin{aligned}
\Psi_{0} & =1 \\
\Psi_{1}-\phi_{1} \Psi_{0} & =0 \\
\Psi_{j}-\phi_{1} \Psi_{j-1}-\phi_{2} \Psi_{j-2} & =0 \text { for } j=2,3, \cdots
\end{aligned}
$$

Using results from difference equation, we have: for $G_{1} \neq G_{2}$

$$
\psi_{j}=\frac{G_{1}^{j+1}-G_{2}^{j+1}}{G_{1}-G_{2}}
$$

If the roots are complex, we may obtain the results

$$
\Psi_{j}=R^{j}\left\{\frac{\sin [(j+1) \Theta]}{\sin (\Theta)}\right\}
$$

with damping factor R and frequency Θ. If roots are the same,

$$
\Psi_{j}=(1+j) \phi_{1}^{j}
$$

The General AR(p) Process

Consider the p-th order AR process

$$
Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\cdots+\phi_{p} Y_{t-p}+e_{t}
$$

with AR characteristic polynomial:

$$
\phi(x)=1-\phi_{1} x-\phi_{2} x^{2}-\cdots-\phi_{p} x^{p}
$$

and corresponding AR characteristic equation:

$$
1-\phi_{1} x-\phi_{2} x^{2}-\cdots-\phi_{p} x^{p}=0
$$

In notation of lag-operator, we have:

$$
\phi(L) Y_{t}=e_{t}
$$

The General AR(p) Process

If we can do inversion on $\phi(L)$, we obtain

$$
Y_{t}=\phi(L)^{-1} e_{t}
$$

Note that this inversion will produce an infinite sum on e_{t-i}, i.e.

$$
Y_{t}:=\sum_{i=0}^{\infty} c_{i} e_{t-i} \rightarrow \mathrm{MA}(\infty) \text { process }
$$

Now the question is: can we do the inversion?

The General AR(p) Process

Let's compute the moments of Y_{t} using the infinite sum:

$$
\begin{aligned}
& E\left(Y_{t}\right)=\phi(L)^{-1} E\left[e_{t}\right]=0 \Rightarrow \phi(L) \neq 0 \\
& \operatorname{Var}\left(Y_{t}\right)=\phi(L)^{-2} \operatorname{Var}\left(e_{t}\right) \Rightarrow \phi(L)^{-2}>0
\end{aligned}
$$

Using the fundamental theorem of algebra, $\phi(z)$ can be factored as

$$
\phi(z)=\left(1-r_{1}^{-1} z\right)\left(1-r_{2}^{-1} z\right) \cdots\left(1-r_{p}^{-1} z\right)
$$

where r_{1}, \cdots, r_{p} are the p roots of $\phi(z)$.

- To guarantee $\phi(L)>0$, we need to ask $\left|r_{i}\right|>1$ for all $1 \leq i \leq p$. That is, all p roots of the AR characteristic equation lie outside the unit circle.
- Note the fact that

$$
\sum_{i=1}^{\infty} \phi^{i}=\frac{1}{1-\phi}
$$

in case $|\phi|<1$.

The General AR(p) Process

Theorem

The linear $\operatorname{AR}(p)$ process is strictly stationary if and only if $\left|r_{i}\right|>1$ for all i, where $\left|r_{i}\right|$ is the modulus of the complex number r_{i}

Example

Are these AR processes stationary?

$$
\begin{aligned}
Y_{t} & =0.7 Y_{t-1}-0.1 Y_{t-2}+e_{t} \\
Y_{t} & =1.5 Y_{t-1}+Y_{t-2}+e_{t}
\end{aligned}
$$

The General AR(p) Process

The following two inequalities are necessary for stationarity. That is, for the roots to be greater than 1 in modulus, it is necessary but not sufficient that both

$$
\begin{aligned}
\phi_{1}+\phi_{2}+\cdots \phi_{p} & <1 \\
\left|\phi_{p}\right| & <1 .
\end{aligned}
$$

The General AR(p) Process

Assuming stationarity and zero means, multiply Y_{t-k}, take expectations, and divide by γ_{0}, we obtain

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}+\cdots+\phi_{p} \rho_{k-p} \text { for } k \geq 1
$$

Putting $k=1,2, \cdots$ and p and using $\rho_{0}=1$ and $\rho_{-k}=\rho_{k}$, we get the general Yule-Walker equations:

$$
\begin{aligned}
\rho_{1} & =\phi_{1}+\phi_{2} \rho_{1}+\phi_{3} \rho_{2}+\cdots+\phi_{p} \rho_{p-1} \\
\rho_{2} & =\phi_{1} \rho_{1}+\phi_{2}+\phi_{3} \rho_{1}+\cdots+\phi_{p} \rho_{p-2} \\
& \vdots \\
\rho_{p} & =\phi_{1} \rho_{p-1}+\phi_{2} \rho_{p-2}+\phi_{3} \rho_{p-3}+\cdots+\phi_{p}
\end{aligned}
$$

Solving these linear equations, we can obtain numerical values for $\rho_{1}, \rho_{2}, \cdots, \rho_{p}$ given $\phi_{1}, \cdots, \phi_{p}$.

The General AR(p) Process

Noting that
$E\left(e_{t} Y_{t}\right)=E\left(e_{t}\left(\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\cdots+\phi_{p} Y_{t-p}+e_{t}\right)=E\left(e_{t}^{2}\right)=\sigma_{e}^{2}\right.$
We may multiply Y_{t} by Y_{t}, take expectations, and find

$$
\gamma_{0}=\phi_{1} \gamma_{1}+\phi_{2} \gamma_{2}+\cdots+\phi_{p} \gamma_{p}+\sigma_{e}^{2}
$$

Using $\rho_{k}=\gamma_{k} / \gamma_{0}$, we have

$$
\gamma_{0}=\frac{\sigma_{e}^{2}}{1-\phi_{1} \rho_{1}-\phi_{2} \rho_{2}-\cdots-\phi_{p} \rho_{p}}
$$

The General AR(p) Process

- Explicit solutions for ρ_{k} are essentially impossible in this generality
- But we know that ρ_{k} will be a linear combination of exponentially decaying terms (in case of real roots) and damped sine wave terms (in case of complex roots)
- Assuming stationarity, the process can be expressed in the general linear process, but the ψ-coefficient are complicated functions of the parameters $\phi_{1}, \cdots, \phi_{p}$

Questions?

