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@ MA Y, =e —biet_1 — brer—p — - — Oper_p with {e;} the
stochastic component and E(X;) =0

General linear process

@ variance, autocovariance, autocorrelation

e MA(1) and MA(2)

o MA(p)




Autoregressive Processes

Definition

A p-th order autoregressive process, { Y:}, satisfy the equation:
Ye = @1Yio1+ P2 Xeo+ PpYip + &

e; is independent of Y;i_1, Yi_o,---

Explanation

@ Y; is a linear combination of the p most recent past values

@ e; is usually called ‘innovation’. It explains everything new
that cannot be explained by the past values.

Yule (1962) is the first to carry out work on autoregressive
processes.



The First-Order Autoregressive Process: AR(1)

Assume the series is stationary and satisfies:
Yi=0Yr1+ e

Also we assume that the process mean has been subtracted out so
that the series mean is zero.



The First-Order Autoregressive Process: AR(1)

If we take variances of both side, we obtain:

Yo = ¢*70 + 02

This gives us
&

N=1=p

The immediate implication is that ¢? < 1, i.e. |¢| < 1.



The First-Order Autoregressive Process: AR(1)

Now compute Cov(Y:, Yi—k), multiply both sides by Y;_:
YiYViek =Y 1Ykt e Yk
Take expected values,

E(Y:Yi—k) = OE(Yee1Yik)+ E(etYi k)
Yo = vk-—1+ E(erYi«)
Note that we assume e; is independent of previous variables Y;_y,

SO
Vi v Torkk =1, 23" -



The First-Order Autoregressive Process: AR(1)
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The First-Order Autoregressive Process: AR(1)

@ |¢| < 1, the magnitude of the ACF decrease exponentially as
the number of lags k

e If 0 < ¢ <1, all ACF are positive, while if —1 < ¢ < 0, we

have successive positive and negative ACF with their
magnitudes exponentially decreased.




The First-Order Autoregressive Process:
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Figure: ACF for several AR(1) Models.



The First-Order Autoregressive Process: AR(1)

Time

Figure: a sample of AR(1) with ¢ = 0.9.

@ It infrequently crosses its theoretical mean of zero.

@ There is a lot of inertia in the series: it remains on the same
side of the mean for extended periods.

@ The illusion of trends is due to the strong autocorrelation of
neighboring values of the series.




The First-Order Autoregressive Process: AR(1)
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Figure: a. Plot of Y; versus Y;_; for AR(1) series with ¢ = 0.9; b. Plot
of Y; versus Y;_, for AR(1) series with ¢ = 0.9; c.Plot of Y; versus Y;_3
for AR(1) series with ¢ = 0.9



General Linear Process Version of the AR(1) Model

Express AR(1) as a General Linear Process

Yi = ¢Yiate
Yi-1 = ¢Yio2te
Yi = ¢(¢Yi2te1)+e
= e+ o1+ ¢2 Yi2

Repeat the substitution kK — 1 times, we get

Yi = e+ der1+ PPer o+ -+ ¢kilet—k+1 + ¢k Yik (1)




General Linear Process Version of the AR(1) Model

Assume |¢| < 1 and let k — oo, we obtain
Y: = e+ per—1 + ¢2et—2 + ¢3et—3 + -
Recall: General Linear Process

Yy = et Wiesmi=Woed o+ -~ -

with W; = ¢l



Stationarity of an AR(1) Process

Subject to e; be independent of Y;_1, Y; 2,--- and that ag > 0,
AR(1) is stationary if and only if |¢| < 1.

Stationarity Condition

The requirement |¢| < 1 is called the stationarity condition for the
AR(1) process defined as

Y =0Yi_1+ et
with

o2

¢2

e = Cov(Yy, Yeok) =

1—
Pk = Corr(Yt, Yt—k) = ¢k




Stationarity of an AR(1) Process

Three Ways to derive the ACF
@ General Linear form: Y; = e; + per_1 + ¢?er_o+ d3ep 3+ - - -
@ Recursive form: Y; = ¢Y; 1 + e
e Eq. (1):
Yi=e+de1+ ¢?er o+ 4+ 0 lep i + K Vik

Multiply Y:_x on both sides of Eq. 1, and take expected values

E(Y:Yi—k) = E(Yi—ker+ oYiker—1+---+ ¢k YiokYik)
= P E(Yi_iYiek) = ¢*Var(Yy) = oy



The Second-Order Autoregressive Process

Consider an autoregressive process of order 2:
Yi=¢1Yi1+ P2V o+ er
where we assume that e; is independent of Y; 1, Y;_»2,---. Note

e SRk BRI W »
= (1-¢1l' — gl?)Y;



The Second-Order Autoregressive Process

To discuss stationarity, consider the AR characteristic
polynomial:

P(x) =1 — g1x — ¢ox°

and the corresponding AR characteristic equation:

1— ¢1x — ox?> =0



Stationarity of the AR(2) Process

@ It may be shown that, subject to the condition that e; is
independent of Y;_1, Y:_5,---, a stationary solution to the
AR(2) exists if and only if the roots of the AR characteristic
equation exceed 1 in absolute value (modulus).

@ We sometimes say that the roots should lie outside the unit
circle in the complex plane.

@ The statement is applicable to the p-th order case without
change.



Stationarity of the AR(2) Process

For AR(2), it has stationary solutions if and only if
¢1+@2 < 1,¢2*Q’1 <1 and ‘¢2| 1

Proof
ikyfoirass |

Roots for a order-2 polynomial is

—2¢2
c 205 265 —¢1+4/¢1 + 42
noo= =
—¢1— [T+ 4d2  —p1 — (/@2 +4ga | —d1 + (/92 + 4o
_ -Vt
2

Similarly, we have

c $1+ 1/ P2 + 42

2= 2




Stationarity of the AR(2) Process

I. Real Roots: |G| < 1 for i =1,2 if and only if

) d1— /B2 +4d2 P14 (/3 + 42 .
—1< < <
2 2

Consider the first inequality, —2 < ¢1 — 1/¢2 + 4¢2 if and only if
\/ 92 +4¢2 < ¢1+2 — ¢2 < ¢1 + 1. Similarly, the inequality

B1+ /9% +4p2 < 2 leads to ¢ + 1 < 1

Il. Complex Roots: Now d)% + 4¢ < 0. Here G; and Gy will be complex
conjugates, |G1| = |Gz| < 1 if and only if |G1]? < 1.
|G1|? = [¢2 + (—¢2 — 4¢2)]/4 = —¢2, so that ¢ > —1. This together with the
inequality 2 + 4¢2 < O defines the part of the stationarity region for complex
roots.




Stationarity of the AR(2) Process
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Figure: Stationary Parameter Region for AR(2) Process.



The Autocorrelation Function for the AR(2) Process

To derive the ACF for AR(2), consider the recursive formulation of
AR(2): Y = ¢1Yi—1+ ¢2Ye—2 + e, multiply both sides by Y;_x
and take expectations. Assuming stationarity, zero-mean and e; is
independent of Y;_ 1, Y: o, -+, we get

E[Y:Yeok]) = Elo1Ye—1Yei] + E[p2Ye—2Yi—i| + E[Yi—ket]

Vi ¢1'Yk—1 i ¢27k—2 for k= 1727 37 r B

Hence
Pk = P1pk—1 + P2pk—2 for k=1,2,3,---

Yule-Walker equations



The Autocorrelation Function for the AR(2) Process

Note pg = 1 and p_x = pk, we get

$1 :¢2(1—¢2)+¢%
1_¢27p2 1_¢2 ’

It is desirable to have an explicit formula for py.
If the roots are distinct, i.e. Gi # Gy, it can be shown that

p1 =

- GhE - Ge
(GL— G)(1+ Gi1G)




The Autocorrelation Function for the AR(2) Process

If the roots are complex, then z; = Z, are complex conjugate pair,
then ¢ = ¢ and

pk = az F+az "
If write ¢; and z; in polar coordinates, e.g. z; = \zlle"e where 0 is
tne angle whose tangent is the ratio of the imaginary and real part
of z;; the range 6 is [—m, 7]. Using the fact that
e™ + e~ = 2cos(a), then the solution has the form

px = alz1| ¥ cos(k + b)

Therefore:

R sin(®)
where R = \/—¢» and © and ® are defined by
cos(©) = ¢1/(2v—¢2) and tan(®) = [(1 — ¢2)/(1 + ¢2)]



The Autocorrelation Function for the AR(2) Process

If the roots are equal, we have
1+ ¢ o1\ "
=41 k)| —=
i < 1, )<2>

@ the ACF can assume a wide variety of shapes.

Observations:

@ the magnitude of p, dies out exponentially fast as the lag k
increases

@ In the case of complex roots, py displays a damped sine wave
behavior with damping factor R,0 < R < 1, frequency © and
phase ©.



The Autocorrelation Function for the AR(2) Process
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Figure: ACF for several AR(2) Models.



The Autocorrelation Function for the AR(2) Process
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Figure: Time Plot of an AR(2) Series with ¢; = 1.5 and ¢, = —0.75.



The Variance for the AR(2) Model

AR(2): Yi=1Ye 1+ d2Ye 2+ e
Taking the variance of both sides:
Yo = (¢7 + ¢3)V0 + 2¢1271 + 0%

Note that
Yk = P1Vk—1 + P2Vk—2

Setting k = 1, we have v1 = @170 + ¢2y1. This gives

(1— ¢2)o2
(1= ¢2)(1 — ¢ — ¢3) — 262973

B C—@) o2
T \1+da) (1—)2—¢2

Y =




The V-weights of AR(2)

To represent AR(2) in the general linear form
Yi=ett Y11+ et 2+
we could resort to the lag-operator. Note that

Ye = (tho+ 1t +al? 4 e
Yi(l— 1Lt — ol?) = e =
Yi = (1—¢il' — $oL?) 7 e,

This indicates

(o + 1Lt +1hpl® + - )(1 — g1 Lt — $pL%) = 1



The V-weights of AR(2)

Expand, we obtain:
Vo = 1
Vi —Vp = 0
V-1V 1 —pVj 5 = O0for j=2,3,--.
Using results from difference equation, we have: for G; # G
yi G{H R Gé‘+1
G — G
If the roots are complex, we may obtain the results

with damping factor R and frequency ©. If roots are the same,

V= (1+)¢)



The General AR(p) Process

Consider the p-th order AR process
Yi=01Yie1+dYeo+ -+ 0pYipte:
with AR characteristic polynomial:
B(x) =1 d1x — dox® — -+ — GpxP
and corresponding AR characteristic equation:
1—1x — gox® — - = pxP =0
In notation of lag-operator, we have:

P(L)Ye=e:



The General AR(p) Process

If we can do inversion on ¢(L), we obtain

Note that this inversion will produce an infinite sum on e;_;, i.e.

oo
Yiii= Z cier—i — MA(o0) process
i=0

Now the question is: can we do the inversion?



The General AR(p) Process

Let's compute the moments of Y; using the infinite sum:
E(Ye)=¢(L) 'E[e] =0 = ¢(L) #0
Var(Y:) = ¢(L) 2 Var(e:) = ¢(L)™>>0

Using the fundamental theorem of algebra, ¢(z) can be factored as
$z2)=(1-rt2)(1-r'2)- (11, '2)

where r1,- -, rp are the p roots of ¢(z).
@ To guarantee ¢(L) > 0, we need to ask |r;| > 1 for all
1< i< p. Thatis, all p roots of the AR characteristic
equation lie outside the unit circle.

@ Note the fact that
- 1
-1t
i=1 1-¢

in case |¢| < 1.



The General AR(p) Process

Theorem

The linear AR(p) process is strictly stationary if and only if |r;| > 1
for all i, where |r;| is the modulus of the complex number r;

Are these AR processes stationary?

Yt = 0.7Yt_]_ —0.1 Yt_2 + et
Yt = 15 Yt—l + Yt_2 + é¢




The General AR(p) Process

The following two inequalities are necessary for stationarity. That
is, for the roots to be greater than 1 in modulus, it is necessary but
not sufficient that both

L+t < 1
o B



The General AR(p) Process

Assuming stationarity and zero means, multiply Y;_y, take
expectations, and divide by ~g, we obtain

Pk = Q1pk—1+ P2pk—2+ ++ + Pppk—p for k>1

Putting k =1,2,--- and p and using po = 1 and p_x = pk, we get
the general Yule-Walker equations:

p1 = 1+ ¢op1+ P3p2+ -+ Pppp-1
P2 ¢1p1+ G2 + P3p1+ -+ Pppp2

Pp = ¢1pp—1 + d)2/0p—2 + ¢3pp_3 I ¢p

Solving these linear equations, we can obtain numerical values for
P1,P2, ", Pp given ¢17 T 7¢p'



The General AR(p) Process

Noting that
E(erYs) = E(er(1Yeo1+¢2Yeo+ - +6pYepter) = E(e7) = 07
We may multiply Y; by Y;, take expectations, and find

Yo = ¢171 + Paya + - - + PpYp + 02

Using px = Yk/70, we have

2
e

1= ¢1p1 —dopr— - — Dppp

g

70



The General AR(p) Process

@ Explicit solutions for py are essentially impossible in this
generality

@ But we know that pj will be a linear combination of
exponentially decaying terms (in case of real roots) and
damped sine wave terms (in case of complex roots)

@ Assuming stationarity, the process can be expressed in the
general linear process, but the W-coefficient are complicated
functions of the parameters ¢1,--- , ¢,



Questions?



