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@ General Linear Process
Ye=er+1e—1 + Yoo+ -

st Y292 < oo
e MA(q):

Y =€ — 01601 —Orer 2 —--- — Hpet—q

with {e;} the stochastic component and E(X;) =0
e AR(p):

Ye=¢1Yi1+PYe o+ -+ dpYipte




Autoregressive Moving Average Models

Autoregressive Model (AR(p)

A p-th order autoregressive process, {Y;:}, satisfy the equation:
Ye=01Yic1+ 2o+ pYipt+ e

where Y; is stationary, e; is a Gaussian white noise with mean zero
and variance 02. The mean of Y; is zero. If the mean p of Y; is
not zero, replace Y; by Y: — u, we have:

Yi—p=¢1(Yeer — p) + d2(Yio — 1) + dp(Yep — 1) + &

or
Yi=a+¢1Ye1+ P22+ dpYipt+er

where v = p(1 — 1 — -+ — ¢p)




Autoregressive Moving Average Models

Apply Lag-operator (also called backshift order) to write AR(p):

Ye=¢1Ye 1+ PYe o+ PpYep + &
Yi—1Yic1 — @Yo —dpYip = e
(1 — 1Lt — ¢ol? — - — $plP)Y: = &
or more concisely:
d)(L) Yt = €t

¢(L) is called autoregressive characteristic polynomial (or operator)



Autoregressive Moving Average Models

Express AR(1) as a General Linear Process

Ye = oYici+e Y1 =0Yi o+ e
Yo = &(dYi2t+e—1)+e= Yi=e+ der_1+ #*Yi_o

Repeat the substitution kK — 1 times, we get
_ 2 k—1 k
Ye=e+der1+¢“er o+ -+ 0 erki1+ P Yik
or let k = 0o, Y; = Zf'ioa“)jet,j. Note that
2

k—1
lim E | Ye—) dej| = lim *E(Y2,)=0
j=0

k— 00




Autoregressive Moving Average Models

i=0

W = Cov(Yern, Yo) = E | [ D Verrn (Z&eu)
Jj=0

= E[(et+k+"'+¢ket—|—¢)t+1et_1+"')(et+¢et—l+"')]
x® g 2 .k
SEOWETE) W

j=0 j=0

Thus

pk:%:gbkfor k=1,2,3,---
o



Autoregressive Moving Average Models

AR(1) ¢ =+.9
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Figure: Simulated AR(1) models: ¢ = 0.9(top); ¢

—0.9 (bottom)



Autoregressive Moving Average Models

Explosive AR Models and Causality

@ AR(1): Y; = ¢Y:—1 + e with |¢| > 1, explosive process

@ because the values of the time series quickly become large in
magnitude.

@ |pf = o0 as j — oo, Zjl-;_ol gbjet_j will not converge (in mean
square) as k — 0o

@ Sotoget Y; = Zf.io ¢/ e;—j will not work directly

@ However, ....




Autoregressive Moving Average Models

We can modify that argument to obtain a stationary model!!!
Yit1 = ¢Ye + ery1, then

Yi = ¢ (Yerr—er1) = ¢ (¢ Yoo — ¢ Ter) — ¢ ey
k=1
= ¢_kYt+k i~ Z o7 eprj
j=1

by iterating forward k steps.



Autoregressive Moving Average Models

Because |¢|~! < 1, it suggests that the future dependent AR(1)
model

oo
Yi=— E ety
=1

is stationary.
Useless because it requires us to know the future to be able to
predict the future.

When a process does not depend on the future, such as AR(1) with
|¢| < 1, we will say the process is causal.




Every Explosion Has a Cause

With a explosive model, such as Y; = ¢Y;_1 + e with [¢| > 1, we
have its non-causal stationary counterpart:

Yy = — Z¢_jet+j
j=1
with E(Y:) =0 and

o0 o0
W = Cov(Yepk, o) = Cov [ = d7Verysrjy— Y ¢ 'ery
=1 i=1

022 K /(1-¢7?)



Every Explosion Has a Cause

Consider the causal process
Xe=¢ X1 + vt

where v, v~ NV(0,02¢72)
It is stochastically equal to the Y; = ¢Y;_1 + e; process. Note that

¢fk

Pk = (0297%) 12



Moving Average Model

Definition

The moving average model of order g, or MA(g) model, is defined
to be
Yi =e —Orer 1 —bOrer 20—+ — eqet—q

where there are g lags in the moving average. Although it is not
necessary yet, we assume that e; is a Gaussian white noise series

with mean zero and variance 02, unless otherwise stated.




Moving Average Model

Definition
The moving average operator is

O(L) =1—01L1 — L% —--- —0,L9

Unlike the autoregressive process, the moving average process is
stationary for any values of the parameters 61, - - ,6,.



Moving Average Model

Consider the MA(1) model

Y0
71
Yk

P1

Yt = e —0er—1. Then E(Y;) =0 and

= (1+6%)0;
= —fo2
= Ofor k>1
—0
1+062



Moving Average Model

Non-uniqueness of MA Models and Invertibility:

e For an MA(1) model, pj is the same for 6 and 3

@ The pair 02 =1 and 6 = 5 yield the same autocovariance
function as the pair 02 =25 and § = 1/5

@ Thus the MA(1) processes

1
Yt = sl get_l, (S ./\[(07 25)
Xt = Wl 5Vt_1, Vi ./\/-(07 ]_)

are the same because of normality.

@ We can only observe the time series Y; and X;, so we cannot
distinguish between the models.



Moving Average Model

To discover which model is the invertible model, consider MA(1):
Y: = e — Oer_q, or
e = Yt s Het_l

Iterating k times, we have:

k—1
e = Z gjyt—j & 9ket—k
j=0

If [0] <1, we have:

> -
e = ZQ’Yt_J
j=0

Given the two models, which one will you choose?



Moving Average Model

e L
€ = Zejyt—_[
j=0
or
& =Ye +0Ye1 +6°Yi o+ --

or
= -0V —6Y;s — )+ e

That is, MA(1) is AR(co) if and only if |0] < 1.



Moving Average Model

@ An MA(1) can be written as
Yt = G(L)et

with (L) =1 — 6L.
@ The inversion of A(L) exists if and only if || < 1
o Let0(z) =1—0z,if |0 <1, - = doreo )



Moving Average Model

For an MA(q), we define the MA characteristic polynomial:
0(z) =1— 01z — 022 — - -- 027
and the corresponding MA characteristic equation:
1—912—9222—---9qzq20

It can be shown that MA(q) model is invertible if and only if the
roots of the MA characteristic equation exceed 1 in modulus.
Consider the two MA(1)s

1
Yt =/ et + get_l
Xe = vi+bvig

Their respective roots are -5 and -0.2.



Autoregressive Moving Average Models

Definition
A time series {Y;} is ARMA(p, q) if it is stationary and

Ye=¢1Yi1+ - -+ dpYipte —Ore01 — - —0get_q

with ¢p, 04 # 0 and 02 > 0. The parameters p and q are called the
autoregressive and moving average orders, respectively. If Y; has a
nonzero mean p, we can set o = (1 — ¢y — -+ — ¢p), and write
the model as

Yi=o+P1Yea 4+ -+ opYepte—b1801— - —0ge_g




Autoregressive Moving Average Models

ARMA(p, q) can be written in a lag-operator form:
Ye —¢1Ye1— - — ﬁbpyt—p = e —bhep 13— — 9qet—q
(1—prlt —gol® — - —pplP)Yy = (1 —601L — 0202 —---0,L)e;
(L)Y = 6(L)e:

We need to discuss the causality, stationarity and invertibility of
the process



ARMA Parameter Redundancy

Consider a white noise process Y; = e;. Equivalently, we write this
as .5Y;:_1 = .5e;_1 by shifting back one unit of time. Now
subtract, we have:

Yt - O.5Yt71 = €t — 0.561571

This looks like ARMA(1,1) model. Here we have hidden the fact
that Y; is white noise because of parameter redundancy or
over-parameterization.



ARMA Parameter Redundancy

We can write the parameter redundant model in lag-operator form
as

(1-05L)Y; = (1-05L)e (1)

It is clear to see that Y; = e; which is the original model.

@ The consideration of parameter redundancy will be crucial
when we discuss estimation for general ARMA models.

@ As in the example, we might fit an ARMA(1,1) model to white
noise data and find the parameters are significant

@ If we are unaware of parameter redundancy, we might claim
the data are correlated.




ARMA Parameter Redundancy

Problems:
@ parameter redundant models
@ stationary AR models that depend on the future, and

@ MA models that are not unique.



AR and MA polynomials

Definition

The AR and MA polynomials are defined as

$(2) =1~ 12 — $22° — -+ = §p2zP, §p # 0

and
0(z) =1— 61z — 022" — - 09,04 #0

respectively, where z is complex number.




ARMA Causality

To address the problem of future-dependent models, we need to
introduce the concept of Causality.

Definition
An ARMA(p, g) model is said to be causal, if the time series Y;
can be written as a one-sided linear process

Y = Z¢jet—j = ¢(L)et
j=0

where ¢(L) = >, Y;l/ and > 20 |1l < co. Without loss of
generality, we set 1 = 1




ARMA Causality

To address the problem of future-dependent models, we need to
introduce the concept of Causality.

Property

An ARMA(p, g) model is causal if and only if ¢(z) # 0 for |z| < 1.
The coefficients of the linear process can be determined by solving

z) = 3 -zj:@ z
WD) =3 e = gy e < 1

or an ARMA process is casual only when the roots of ¢(z) lie
outside the unit circle.




Model Uniqueness

Invertibility

An ARMA(p, g) model is said to be inveritble, if the time series
{Y:} can be written as:

L)Yt ZWJ Yt—J = €t

where 7(L) = > %, m;L/ and > 1mj| < oo, we set mg = 1.




Model Uniqueness

An ARMA(p, g) model is invertible if and only if 6(z) # 0 for
|z| < 1. The coefficients 7; of m(L) given in previous slide can be
determined by solving

§ J —
Tz =

or we see that an ARMA process is invertible only when the roots
of 6(z) lies outside the unit circle.

’Z‘<1



Example: Parameter Redundancy, Causality and Invertibility

Consider the process
Y: =0.4Y: 14+ 0.45Y;: >+ e + 61+ 0.25¢;_»
or in lag-operator form,
(1%4,0.4L T OMSLAYe =T+ £+ 0.25.%)e,

This appears to be an ARMA(2,2) process.



Example: Parameter Redundancy, Causality and Invertibility

The associated polynomials have:

$(z) =1— 0.4z —0.452> = (1+0.5z)(1—0.92)
0(z) = 1M z $0.2522 g= (1% 0.52)2

a common factor that can be canceled. Then polynomial becomes
#(z) =1-0.92;0(z) =1+ 0.5z
So the model is an ARMA(1,1) model:
(1-09L)Y; =(1+0.5L)e;

or
Yt = O.gytfl + 0.5et71 + et



Example: Parameter Redundancy, Causality and Invertibility

The model can be written as a linear process, we can obtain the
1y—weights using:
P(2)¥(z) = 6(2)
or
(1 —0.92)(ho + Y1z + ppz° +---) =1+ 0.5z

Matching coefficients, we get

o =191 =14
and 1/JJ' = 0.91#1'_1 fOI’j > 1. Thus 1/JJ' = 1.4(0.9)1.71 forj >1. So
we have:
o0
Yi=e+14) 9 le;
j=1
Similarly, the invertible representation is

oo
Ye=14) (-05)7'Y, j+e

=1



Conditional Expectation

If X and Y have joint PDF f(x,y), and we denote the marginal
pdf of X by f(x), then the conditional pdf of Y given X = x is

given by
f(x.y)

f(x)
For a given value of x, the conditional pdf has all of the usual
properties of a pdf.

fylx) =



Conditional Expectation

The conditional expectation of Y given X = x is defined as

o0

awx—n—/ Y (y|x)dy

—0o0

As an expected value, or mean, the conditional expectation of Y
given X = x has all of the usual properties. For examples:

E(aY + bZ+c|X =x)=aE(Y|X =x)+ bE(Z|IX =x)+c

and
o

ﬂmnwzw:/ h(y)F(y|x)dy

—00

In addition, several new peroperties arise:
E(h(X)|X = x] = h(x)

That is, given X = x, the random variable h(X) can be treated like
a constant h(x).



Conditional Expectation

More generally,
E[h(X, Y)|IX = x) = E(h(x, Y)|X = x)

If we set E(Y|X = x) = g(x), then g(X) is a random variable and
we can consider E(g(X)). It can be shown that

Elg(X)] = E(Y)
which is often written as
E[E(Y[X)] = E(Y)
If Y and X are independent, then

E(Y|X) = E(Y)



Conditional Expectation

In the Gaussian case, conditional expectation has an explicit form.
Suppose y € R™ and x € R”, and

Y\ Hy Yy Ly
(2)-[0) (= =)
Then y|x is also normal with

fye = iyt Ty (X = pix)

Zylx = zyy—zyxz;xlzxy



Minimum Mean Square Error Prediction

Suppose Y is a random variable with mean py and variance a%,. If

our object is to predict Y using only a constant ¢, what is the best
choice for ¢?

Mean square error of prediction

A common criterion is to choose ¢ to minimize the mean square
error of prediction, that is, to minimize

g(c) = E[(Y — )?]

g(c) is quadratic in ¢, so we get

¢ —EFXY=1.

and the minimum value of g(c) is just o%.



Minimum Mean Square Error Prediction

Now consider the situation where a second random variable X is
available and we wish to use the observed value X to help predict
Y. Let p = Corr(X,Y).

We first suppose that only linear functions a + bX can be used for
the prediction. The mean square error is then given by:

g(a,b) = E(Y — a— bX)?
Expand it, we have:

g(a, b) = E(Y?)+a% + b*E(X?) —2aE(Y) 4 2abE(X) — 2bE(XY)



Minimum Mean Square Error Prediction

To obtain a, b, take derivatives and zeroing, we get

f’g(;; 5} 22— 2E(Y) + 2bE(X) = 0
‘9g((;;b) = 2bE(X?)+2aE(X) —2E(XY) =0

or

gl bl F(Y.)
E(X)a+ E(X?)b = E(XY)



Minimum Mean Square Error Prediction

Solve the equations, we obtain:

, _ ECXY)—EXE(Y) _ Cov(X.Y) _ oy
E(X?) — E(X)? Var(X)  "ox

oy
a = E(Y)-bE(X)=py —p—pux
ox

If we let Y, then we can write
oy oy
Y5 [uv i pux] P4
ox ox
or

ox

oo



Minimum Mean Square Error Prediction

@ we see
ming(a,b) = o3 (1 — )
which provides that —1 < p < 1 since g(a, b) > 0.
@ The minimum mean square error obtained when we use a
linear function of X to predict Y is reduced by a factor of

1 — p? compared with that obtained by ignoring X and simply
using the constant uy for our prediction




Minimum Mean Square Error Prediction

Consider the more general problem of predicting Y with an arbitrary
function of X. The criterion is again to minimize the mean square
error of prediction, that is to choose a function h(X), that minimize

E[Y — h(X)]* = E(E{[Y — h(X)I’|X})

Thus,
b(x ) =SeEEwé — x)

Since the choice of h(x) minimizes the inner expectation, it must
also provide the overall minimum. Thus

h(X) = E(Y|X)

is the best predictor of Y of all functions of X.



Minimum Mean Square Error Prediction

If X and Y have a bivariate normal distribution, it is well-known
that
oy
E(Y|X) =y +Pa(x — px)

In this case, the linear predictor is the best of all functions.
More generally, if Y is to be predicted by a function of

X1, Xo, -+, Xy, then it can be argued that the minimum square
error predictor is given by

E(Y‘Xb Y27"' aXn)



Questions?



