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Recap
General Linear Process

Yt = et + ψ1et−1 + ψ2et−2 + · · ·

s.t.
∑∞

i=1 ψ
2
i <∞

MA(q):

Yt = et − θ1et−1 − θ2et−2 − · · · − θpet−q

with {et} the stochastic component and E (Xt) = 0
AR(p):

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et



Autoregressive Moving Average Models

Autoregressive Model (AR(p)

A p-th order autoregressive process, {Yt}, satisfy the equation:

Yt = φ1Yt−1 + φ2Yt−2 + φpYt−p + et

where Yt is stationary, et is a Gaussian white noise with mean zero
and variance σ2

e . The mean of Yt is zero. If the mean µ of Yt is
not zero, replace Yt by Yt − µ, we have:

Yt − µ = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + φp(Yt−p − µ) + et

or
Yt = α + φ1Yt−1 + φ2Yt−2 + φpYt−p + et

where α = µ(1− φ1 − · · · − φp)



Autoregressive Moving Average Models

Apply Lag-operator (also called backshift order) to write AR(p):

Yt = φ1Yt−1 + φ2Yt−2 + φpYt−p + et

Yt − φ1Yt−1 − φ2Yt−2 − φpYt−p = et

(1− φ1L
1 − φ2L

2 − · · · − φpLp)Yt = et

or more concisely:
φ(L)Yt = et

φ(L) is called autoregressive characteristic polynomial (or operator)



Autoregressive Moving Average Models

Express AR(1) as a General Linear Process

Yt = φYt−1 + et ; Yt−1 = φYt−2 + et−1

Yt = φ(φYt−2 + et−1) + et ⇒ Yt = et + φet−1 + φ2Yt−2

Repeat the substitution k − 1 times, we get

Yt = et + φet−1 + φ2et−2 + · · ·+ φk−1et−k+1 + φkYt−k

or let k →∞, Yt =
∑∞

j=0 φ
jet−j . Note that

lim
k→∞

E

Yt −
k−1∑
j=0

φjet−j

2

= lim
k→∞

φ2kE (Y 2
t−k) = 0



Autoregressive Moving Average Models

γk = Cov(Yt+k ,Yt) = E

 ∞∑
j=0

φjet+k−j

( ∞∑
i=0

φket−i

)
= E [(et+k + · · ·+ φket + φt+1et−1 + · · · )(et + φet−1 + · · · )]

= σ2
e

∞∑
j=0

φk+jφj = σ2
eφ

k
∞∑
j=0

φ2j =
σ2
eφ

k

1− φ2

Thus
ρk =

γk
γ0

= φk for k = 1, 2, 3, · · ·



Autoregressive Moving Average Models

Figure: Simulated AR(1) models: φ = 0.9(top); φ = −0.9 (bottom)



Autoregressive Moving Average Models

Explosive AR Models and Causality
AR(1): Yt = φYt−1 + et with |φ| > 1, explosive process
because the values of the time series quickly become large in
magnitude.
|φ|j →∞ as j →∞,

∑k−1
j=0 φ

jet−j will not converge (in mean
square) as k →∞
So to get Yt =

∑∞
j=0 φ

jet−j will not work directly
However, ....



Autoregressive Moving Average Models

We can modify that argument to obtain a stationary model!!!
Yt+1 = φYt + et+1, then

Yt = φ−1(Yt+1 − et+1) = φ−1(φ−1Yt+2 − φ−1et+2)− φ−1et+1
...

= φ−kYt+k −
k−1∑
j=1

φ−jet+j

by iterating forward k steps.



Autoregressive Moving Average Models

Because |φ|−1 < 1, it suggests that the future dependent AR(1)
model

Yt = −
∞∑
j=1

φ−jet+j

is stationary.
Useless because it requires us to know the future to be able to
predict the future.

Causality
When a process does not depend on the future, such as AR(1) with
|φ| < 1, we will say the process is causal.



Every Explosion Has a Cause

With a explosive model, such as Yt = φYt−1 + et with |φ| > 1, we
have its non-causal stationary counterpart:

Yt = −
∞∑
j=1

φ−jet+j

with E (Yt) = 0 and

γk = Cov(Yt+k ,Yt) = Cov

− ∞∑
j=1

φ−jet+k+j ,−
∞∑
i=1

φ−iet+i


= σ2

eφ
−2φ−k/(1− φ−2)



Every Explosion Has a Cause

Consider the causal process

Xt = φ−1Xt−1 + vt

where vt v N (0, σ2
eφ
−2)

It is stochastically equal to the Yt = φYt−1 + et process. Note that

ρxk =
(
σ2
eφ
−2) φ−k

1− φ−2



Moving Average Model

Definition
The moving average model of order q, or MA(q) model, is defined
to be

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q
where there are q lags in the moving average. Although it is not
necessary yet, we assume that et is a Gaussian white noise series
with mean zero and variance σ2

e , unless otherwise stated.



Moving Average Model

Definition
The moving average operator is

θ(L) = 1− θ1L1 − θ2L2 − · · · − θqLq

Unlike the autoregressive process, the moving average process is
stationary for any values of the parameters θ1, · · · , θq.



Moving Average Model

Consider the MA(1) model Yt = et − θet−1. Then E (Yt) = 0 and

γ0 = (1 + θ2)σ2
e

γ1 = −θσ2
e

γk = 0 for k > 1

ρ1 =
−θ

1 + θ2



Moving Average Model

Non-uniqueness of MA Models and Invertibility:

For an MA(1) model, ρk is the same for θ and 1
θ

The pair σ2
e = 1 and θ = 5 yield the same autocovariance

function as the pair σ2
e = 25 and θ = 1/5

Thus the MA(1) processes

Yt = et +
1
5
et−1, et v N (0, 25)

Xt = vt + 5vt−1, vt v N (0, 1)

are the same because of normality.
We can only observe the time series Yt and Xt , so we cannot
distinguish between the models.



Moving Average Model

To discover which model is the invertible model, consider MA(1):
Yt = et − θet−1, or

et = Yt + θet−1

Iterating k times, we have:

et =
k−1∑
j=0

θjYt−j + θket−k

If |θ| < 1, we have:

et =
∞∑
j=0

θjYt−j

Given the two models, which one will you choose?



Moving Average Model

et =
∞∑
j=0

θjYt−j

or
et = Yt + θYt−1 + θ2Yt−2 + · · ·

or
Yt = (−θYt−1 − θ2Yt−2 − · · · ) + et

That is, MA(1) is AR(∞) if and only if |θ| < 1.



Moving Average Model

An MA(1) can be written as

Yt = θ(L)et

with θ(L) = 1− θL.
The inversion of θ(L) exists if and only if |θ| < 1
Let θ(z) = 1− θz , if |θ| < 1, 1

1−θz =
∑∞

j=0 θ
jz j



Moving Average Model

For an MA(q), we define the MA characteristic polynomial:

θ(z) = 1− θ1z − θ2z2 − · · · θqzq

and the corresponding MA characteristic equation:

1− θ1z − θ2z2 − · · · θqzq = 0

It can be shown that MA(q) model is invertible if and only if the
roots of the MA characteristic equation exceed 1 in modulus.
Consider the two MA(1)s

Yt = et +
1
5
et−1

Xt = vt + 5vt−1

Their respective roots are -5 and -0.2.



Autoregressive Moving Average Models

Definition
A time series {Yt} is ARMA(p, q) if it is stationary and

Yt = φ1Yt−1 + · · ·+ φpYt−p + et − θ1et−1 − · · · − θqet−q

with φp, θq 6= 0 and σ2
e > 0. The parameters p and q are called the

autoregressive and moving average orders, respectively. If Yt has a
nonzero mean µ, we can set α = µ(1− φ1 − · · · − φp), and write
the model as

Yt = α + φ1Yt−1 + · · ·+ φpYt−p + et − θ1et−1 − · · · − θqet−q



Autoregressive Moving Average Models

ARMA(p, q) can be written in a lag-operator form:

Yt − φ1Yt−1 − · · · − φpYt−p = et − θ1et−1 − · · · − θqet−q
(1− φ1L

1 − φ2L
2 − · · · − φpLp)Yt = (1− θ1L− θ2L2 − · · · θqLq)et

φ(L)Yt = θ(L)et

We need to discuss the causality, stationarity and invertibility of
the process



ARMA Parameter Redundancy

Consider a white noise process Yt = et . Equivalently, we write this
as .5Yt−1 = .5et−1 by shifting back one unit of time. Now
subtract, we have:

Yt − 0.5Yt−1 = et − 0.5et−1

This looks like ARMA(1,1) model. Here we have hidden the fact
that Yt is white noise because of parameter redundancy or
over-parameterization.



ARMA Parameter Redundancy

We can write the parameter redundant model in lag-operator form
as

(1− 0.5L)Yt = (1− 0.5L)et (1)

It is clear to see that Yt = et which is the original model.

Note
The consideration of parameter redundancy will be crucial
when we discuss estimation for general ARMA models.
As in the example, we might fit an ARMA(1,1) model to white
noise data and find the parameters are significant
If we are unaware of parameter redundancy, we might claim
the data are correlated.



ARMA Parameter Redundancy

Problems:
parameter redundant models
stationary AR models that depend on the future, and
MA models that are not unique.



AR and MA polynomials

Definition
The AR and MA polynomials are defined as

φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp, φp 6= 0

and
θ(z) = 1− θ1z − θ2z2 − · · · θqq , θq 6= 0

respectively, where z is complex number.



ARMA Causality

To address the problem of future-dependent models, we need to
introduce the concept of Causality.

Definition
An ARMA(p, q) model is said to be causal, if the time series Yt

can be written as a one-sided linear process

Yt =
∞∑
j=0

ψjet−j = ψ(L)et

where φ(L) =
∑

j ψjL
j and

∑∞
j=0 |ψj | <∞. Without loss of

generality, we set ψ0 = 1



ARMA Causality

To address the problem of future-dependent models, we need to
introduce the concept of Causality.

Property
An ARMA(p, q) model is causal if and only if φ(z) 6= 0 for |z | ≤ 1.
The coefficients of the linear process can be determined by solving

ψ(z) =
∞∑
j=0

ψjz
j =

θ(z)

φ(z)
, |z | ≤ 1

or an ARMA process is casual only when the roots of φ(z) lie
outside the unit circle.



Model Uniqueness

Invertibility
An ARMA(p, q) model is said to be inveritble, if the time series
{Yt} can be written as:

π(L)Yt =
∞∑
j=0

πjYt−j = et

where π(L) =
∑∞

j=0 πjL
j and

∑
j |πj | <∞, we set π0 = 1.



Model Uniqueness

An ARMA(p, q) model is invertible if and only if θ(z) 6= 0 for
|z | ≤ 1. The coefficients πj of π(L) given in previous slide can be
determined by solving

π(z) =
∞∑
j=0

πjz
j =

φ(z)

θ(z)
, |z| ≤ 1

or we see that an ARMA process is invertible only when the roots
of θ(z) lies outside the unit circle.



Example: Parameter Redundancy, Causality and Invertibility

Consider the process

Yt = 0.4Yt−1 + 0.45Yt−2 + et + et−1 + 0.25et−2

or in lag-operator form,

(1− 0.4L− 0.45L2)Yt = (1 + L + 0.25L2)et

This appears to be an ARMA(2,2) process.



Example: Parameter Redundancy, Causality and Invertibility

The associated polynomials have:

φ(z) = 1− 0.4z − 0.45z2 = (1 + 0.5z)(1− 0.9z)

θ(z) = 1 + z + 0.25z2 = (1 + 0.5z)2

a common factor that can be canceled. Then polynomial becomes

φ(z) = 1− 0.9z ; θ(z) = 1 + 0.5z

So the model is an ARMA(1,1) model:

(1− 0.9L)Yt = (1 + 0.5L)et

or
Yt = 0.9Yt−1 + 0.5et−1 + et



Example: Parameter Redundancy, Causality and Invertibility

The model can be written as a linear process, we can obtain the
ψ−weights using:

φ(z)ψ(z) = θ(z)

or
(1− 0.9z)(ψ0 + ψ1z + ψ2z

2 + · · · ) = 1 + 0.5z

Matching coefficients, we get

ψ0 = 1, ψ1 = 1.4

and ψj = 0.9ψj−1 for j > 1. Thus ψj = 1.4(0.9)j−1 for j ≥ 1. So
we have:

Yt = et + 1.4
∞∑
j=1

.9j−1et−j

Similarly, the invertible representation is

Yt = 1.4
∞∑
j=1

(−0.5)j−1Yt−j + et



Conditional Expectation

If X and Y have joint PDF f (x , y), and we denote the marginal
pdf of X by f (x), then the conditional pdf of Y given X = x is
given by

f (y |x) =
f (x , y)

f (x)

For a given value of x , the conditional pdf has all of the usual
properties of a pdf.



Conditional Expectation

The conditional expectation of Y given X = x is defined as

E (Y |X = x) =

∫ ∞
−∞

yf (y |x)dy

As an expected value, or mean, the conditional expectation of Y
given X = x has all of the usual properties. For examples:

E (aY + bZ + c |X = x) = aE (Y |X = x) + bE (Z |X = x) + c

and
E (h(Y )|X = x) =

∫ ∞
−∞

h(y)f (y |x)dy

In addition, several new peroperties arise:

E (h(X )|X = x ] = h(x)

That is, given X = x , the random variable h(X ) can be treated like
a constant h(x).



Conditional Expectation

More generally,

E [h(X ,Y )|X = x) = E (h(x ,Y )|X = x)

If we set E (Y |X = x) = g(x), then g(X ) is a random variable and
we can consider E (g(X )). It can be shown that

E [g(X )] = E (Y )

which is often written as

E [E (Y |X )] = E (Y )

If Y and X are independent, then

E (Y |X ) = E (Y )



Conditional Expectation

In the Gaussian case, conditional expectation has an explicit form.
Suppose y ∈ Rm and x ∈ Rn, and(

y
x

)
v N

[(
µy
µx

)
,

(
Σyy Σyx

Σxy Σxx

)]
Then y |x is also normal with

µy |x = µy + ΣyxΣ−1
xx (x − µx)

Σy |x = Σyy − ΣyxΣ−1
xx Σxy



Minimum Mean Square Error Prediction

Suppose Y is a random variable with mean µY and variance σ2
Y . If

our object is to predict Y using only a constant c , what is the best
choice for c?

Mean square error of prediction
A common criterion is to choose c to minimize the mean square
error of prediction, that is, to minimize

g(c) = E [(Y − c)2]

g(c) is quadratic in c , so we get

c = E (Y ) = µ.

and the minimum value of g(c) is just σ2
Y .



Minimum Mean Square Error Prediction

Now consider the situation where a second random variable X is
available and we wish to use the observed value X to help predict
Y . Let ρ = Corr(X ,Y ).
We first suppose that only linear functions a + bX can be used for
the prediction. The mean square error is then given by:

g(a, b) = E (Y − a− bX )2

Expand it, we have:

g(a, b) = E (Y 2) + a2 +b2E (X 2)−2aE (Y ) +2abE (X )−2bE (XY )



Minimum Mean Square Error Prediction

To obtain a, b, take derivatives and zeroing, we get

∂g(a, b)

∂a
= 2a− 2E (Y ) + 2bE (X ) = 0

∂g(a, b)

∂b
= 2bE (X 2) + 2aE (X )− 2E (XY ) = 0

or

a + E (x)b = E (Y )

E (X )a + E (X 2)b = E (XY )



Minimum Mean Square Error Prediction

Solve the equations, we obtain:

b =
E (XY )− E (X )E (Y )

E (X 2)− E (X )2 =
Cov(X ,Y )

Var(X )
= ρ

σY
σX

a = E (Y )− bE (X ) = µY − ρ
σY
σX

µX

If we let Ŷ , then we can write

Ŷ =

[
µY − ρ

σY
σX

µX

]
+ ρ

σY
σX

X

or [
Ŷ − µY
σY

]
= ρ

[
X − µX
σX

]



Minimum Mean Square Error Prediction

Observations
we see

min g(a, b) = σ2
Y (1− ρ2)

which provides that −1 ≤ ρ ≤ 1 since g(a, b) ≥ 0.
The minimum mean square error obtained when we use a
linear function of X to predict Y is reduced by a factor of
1− ρ2 compared with that obtained by ignoring X and simply
using the constant µY for our prediction



Minimum Mean Square Error Prediction

Consider the more general problem of predicting Y with an arbitrary
function of X . The criterion is again to minimize the mean square
error of prediction, that is to choose a function h(X ), that minimize

E [Y − h(X )]2 = E (E{[Y − h(X )]2|X})

Thus,
h(x) = E (Y |X = x)

Since the choice of h(x) minimizes the inner expectation, it must
also provide the overall minimum. Thus

h(X ) = E (Y |X )

is the best predictor of Y of all functions of X .



Minimum Mean Square Error Prediction

If X and Y have a bivariate normal distribution, it is well-known
that

E (Y |X ) = µY + ρ
σY
σX

(X − µX )

In this case, the linear predictor is the best of all functions.
More generally, if Y is to be predicted by a function of
X1,X2, · · · ,Xn, then it can be argued that the minimum square
error predictor is given by

E (Y |X1,Y2, · · · ,Xn)



Questions?


