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Recap
ARMA(p, q):

φ(L)Yt = θ(L)et

Every Explosive has a Cause.
MA(q) is AR(∞) and AR(p) is MA(∞)
Parameter Redundancy
Casualty, Stationarity and Invertibility.

Causality: a process is stationary but does not depend on
future
roots of φ(z) = 0 lie outside the unit circle.
Invertibility: Model uniqueness
roots of θ(z) = 0 lie outside the unit circle.



The Ψ-weights for an ARMA model

For a casual ARMA model φ(L)Yt = θ(L)et where the zeros of
φ(z) are outside the unit circle, recall that Yt =

∑∞
j=0 ψjet−j .

To get the Ψ−weights, we must match the coefficients in
φ(z)ψ(z) = θ(z):

(1−φ1z−φ2z
2−· · · )(ψ0+ψ1z+ψ2z

2+· · · ) = (1−θ1z−θ2z2−· · · )

we have:

ψ0 = 1
ψ1 − φ1ψ0 = −θ1

ψ2 − φ1ψ1 − φ2ψ0 = −θ2
...

where we would take φj = 0 for j > p and θj = 0 for j > q.



The Ψ-weights for an ARMA model

Generally, we have:

ψj −
p∑

k=1

φkψj−k = 0 for j ≥ max(p, q + 1) (1)

with initial conditions

ψj −
j∑

k=1

φkψj−k = −θj , 0 ≤ j ≤ max(p, q + 1) (2)



The Ψ-weights for an ARMA model

Consider the model

Yt = 0.9Yt−1 + 0.5et−1 + et

Because max(p, q + 1) = 2, using Eq.(2), we have

ψ0 = 1, ψ1 = 0.9 + 0.5 = 1.4

By Eq.(1), for j = 2, 3, · · · ,, the Ψ-weights satisfy

ψj − 0.9ψj−1 = 0

So the general solution is ψj = c0.9j . Use the initial condition
ψ1 = 1.4, so 1.4 = 0.9c and c = 1.4/0.9, therefore
ψj = 1.4(0.9)j−1 for j ≥ 1.



Autocorrelation and Partial Autocorrelation

Consider MA(q) process: Yt = θ(L)et where
θ(L) = 1 + θ1L + θ2L

2 + · · ·+ θqL
q. It can shown that

E (Yt) = 0

γk = Cov(Yt+k ,Yt) = Cov

 q∑
j=0

θjet+k−j ,

q∑
i=0

θiet−i


=

{
σ2
e

∑q−k
j=0 θjθj+k 0 ≤ k ≤ q

0 k > q.

ρk =


∑q−k

j=0 θjθj+k

1+θ21+···+θ2q
1 ≤ k ≤ q

0 k > q.



Autocorrelation and Partial Autocorrelation

For a causal ARMA(p, q) model, φ(L)Yt = θ(L)et , where the zeros
of φ(z) are outside the unit circle, write:

Yt =
∞∑
j=0

ψjet−j

It follow immediately that

E (Yt) = 0

γk = cov(Yt+k ,Yt) = σ2
e

∞∑
j=0

ψjψj+k , k ≥ 0

Again Eqs.(1) and (2) can be used to solve for the Ψ-weights.



Autocorrelation and Partial Autocorrelation

It is also possible to obtain a homogeneous difference equation in
terms of γk .

γk = Cov(Yt+k ,Yt) = Cov

 p∑
j=1

φjYt+k−j +

q∑
j=0

θjet+k−j ,Yt


=

p∑
j=1

φjγk−j + σ2
e

q∑
j=k

θjψj−k , k ≥ 0

where we need the fact for k ≥ 0

Cov(et+k−j ,Yt) = Cov

(
et+k−j ,

∞∑
k=0

ψket−k

)
= ψj−kσ

2
e (1)



Autocorrelation and Partial Autocorrelation

From Eq.(3), we can write a general homogeneous equation for the
ACF of a causal ARMA process

γk − φ1γk−1 − · · · − φpγk−p = 0, k ≥ max(p, q + 1)

with initial conditions:

γk −
p∑

j=1

φjγk−j = σ2
e

q∑
j=k

θjψj−k , 0 ≤ k < max(p, q + 1)

Dividing the equations by γ0 will allow us to solve for the ACF.



Example: The ACF of an ARMA(1,1)

Consider the ARMA(1,1) process Yt = φYt−1 + θet−1 + et where
|φ| < 1. Based the homogeneous equation, we have:

γk − φγk−1 = 0, k = 2, 3, · · ·

So we get the general solution

γk = cφk , k = 1, 2, · · ·

To obtain the initial conditions, we can use previous equation:

γ0 = φγ1 + σ2
e [1 + θφ+ θ2]

and
γ1 = φγ0 + σ2

eθ



Example: The ACF of an ARMA(1,1)

Solving for γ0 and γ1, we obtain:

γ0 = σ2
e

1 + 2θφ+ θ2

1− φ2

γ1 = σ2
e

(1 + θφ)(φ+ θ)

1− φ2

To solve for c , note that γ1 = cφ, or c = γ1/φ. Hence the specific
solution for k ≥ 1 is

γk = σ2
e

(1 + θφ)(φ+ θ)

1 + 2θφ+ θ2 φk−1, k ≥ 1

Finally, dividing through by γ0 yields the ACF:

ρk =
(1 + θφ)(φ+ θ)

1 + 2θφ+ θ2 φk−1, k ≥ 1



Example: The ACF of an ARMA(1,1)

Observations
The general pattern of ρk is not different from that of an
AR(1) given as follows:

ρk = φk , k ≥ 0

It is unlikely that we will be able to tell the difference between
ARMA(1,1) and AR(1) based solely on an ACF estimated from
a sample.



The Partial Autocorrelation Function (PACF)

For an MA(q) model, the ACF will be zero for lags greater
than q.
The ACF provides a considerable amount of information about
the order of the dependence for MA.
If the process is ARMA or AR, the ACF alone tells us little
about the orders of dependence.
We need a function that behave like the ACF of MA models,
→ Partial ACF



The Partial Autocorrelation Function (PACF)

To motivate, consider a causal AR(1) model, Yt = φYt−1 + et , then

γ2 = Cov(Yt ,Yt−2) = Cov(φYt−1 + et ,Yt−2)

= cov(φ2Yt−2 + φet−1 + et ,Yt−2) = φ2γ0

This result follows from causality because Yt−2 involves
{et−2, et−3, · · · } which all are uncorrelated with et and et−1
The correlation between Yt and Yt−2 is not zero, as it would
be for an MA(1), because Yt is dependent on Yt−2 through
Yt−1
Suppose we break this chain of dependence by removing (or
partial out) the effect Yt−1, i.e. to consider the correlation
between

Yt − φYt−1 and Yt−2 − φYt−1

because it is the correlation between Yt and Yt−2 with the
linear dependence of each on Yt−1 removed.



The Partial Autocorrelation Function (PACF)

In this way, we have broken the dependence chain between Yt and
Yt−2. In fact

Cov(Yt − φYt−1,Yt−2 − φYt−1) = Cov(et ,Yt−2 − φYt−1) = 0

Here the tool is partial autocorrelation, which is the correlation
between Ys and Yt with the linear effect of everything ‘in the
middle’ removed.



The Partial Autocorrelation Function (PACF)

To formally define the PACF for mean-zero stationary time series,
let Ŷt+k for k ≥ 2, denote the regression of Yt+k on
{Yt+k−1,Yt+k−2, · · · ,Yt−1}, that is:

Ŷt+k = β1Yt+k−1 + β2Yt+k−2 + · · ·+ βk−1Yt+1

No intercept is needed since Yt is zero-mean. In addition, let Ŷt

denotes the regression of Yt on {Yt+1,Yt+2, · · · ,Yt+k−1}, then

Ŷt = β1Yt+1 + β2Yt+2 + · · ·+ βk−1Yt+k−1

Because of stationarity, the coefficients β1, · · · , βk−1 are the same.

Regression in the Population Sense
Note that the term regression here refers to regression in the
population sense. That is Ŷt+k is the linear combination of
{Yt+k−1,Yt+k−2, · · · ,Yt−1} that minimizes the mean squared
error, i.e. E (Yt+k −

∑k−1
j=1 αjYt+j)

2



The Partial Autocorrelation Function (PACF)

Definition
The partial autocorrelation function (PACF) of a stationary
process Yt , denoted φkk , for k = 1, 2, · · · , is

φ11 = corr(Yt+1,Yt) = ρ1

and
φkk = corr(Yt+k − Ŷt+k ,Yt − Ŷt), k ≥ 2

where

Ŷt+k = β1Yt+k−1 + β2Yt+k−2 + · · ·+ βk−1Yt+1

Note both Yt+k − Ŷt+k and Yt − Ŷt are uncorrelated with
{Yt+1, · · · ,Yt+k−1}



The Partial Autocorrelation Function (PACF)

Definition
If Yt is a normally distributed time series, we can let

φkk = Corr(Yt ,Yt−k |Yt−1,Yt−2, · · · ,Yt−k+1)

That is, φkk is the correlation in the bivariate distribution of Yt and
Yt−k conditional on Yt−1,Yt−2, · · · ,Yt−k+1.
For normally distributed series, the two definitions coincide. By
convention φ11 = 1.



Example

Recall from previous class, that in minimum mean square error
sense, the best linear predictor of Yt based on Yt−1 alone is just
ρ1Yt−1. Thus, for any stationary process,

Cov(Yt−ρ1Yt−1,Yt−2−ρ1Yt−1) = γ0(ρ2−ρ2
1−ρ2

1+ρ2
1) = γ0(ρ2−ρ2

1)

Since

Var(Yt−ρ1Yt−1) = Var(Yt−2−ρ1Yt−1) = γ0(1+ρ2
1−2ρ2

1) = γ0(1−ρ2
1)

Then, the lag-2 partial ACF can be expressed as

φ22 =
ρ2 − ρ2

1
1− ρ2

1



The PACF of an AR(1)

Consider an AR(1) process given by

Yt = φYt−1 + et

with |φ| < 1. By definition φ11 = ρ1 = 1. To calculate φ22,
consider the regression of Yt+2 on Yt+1, say Ŷt+1 = βYt+1. We
choose β to minimize

E (Yt+2 − Ŷt+2)2 = E (Yt+2 − βYt+1) = γ0 − 2βγ1 + β2γ0

Taking derivatives w.r.t. β and zeroing it, we have

β = γ1/γ0 = φ



The PACF of an AR(1)

Next consider the regression of Yt on Yt+1, say Ŷt = βYt+1, we
choose β to minimize

E (Yt − Ŷt)
2 = E (Yt − βYt+1) = γ0 − 2βγ1 + β2γ0

This is the same equation as before, so β = φ. Hence

φ22 = Corr(Yt+2 − Ŷt+2,Yt − Ŷt)

= Corr(Yt+2 − βYt+1,Yt − βYt+1)

= Corr(et+2,Yt − φYt+1) = 0

by causality. Thus φ22 = 0



The PACF of an AR(p)

The model implies that Yt+k =
∑p

j=1 φjYt+k−j + et+k where the
roots of φ(z) are outside the unit circle. When k > p, the
regression of Yt+k on {Yt+1, · · · ,Yt+k−1}, is

Ŷt+k =

p∑
j=1

φjYt+k−j

(we will prove it later). Thus when k > p,

φkk = Corr(Yt+k − Ŷt+k ,Yt − Ŷt) = Corr(et+k ,Yt − Ŷt) = 0

because by causality, Yt − Ŷt depends only on
{et+k−1, et+k−2, · · · }



The PACF of an AR(p)

When k ≤ p, φpp is not zero, and φ11, · · · , φp−1,p−1 are not
necessary zero.
We will prove later that, φpp = φp.



The PACF of an AR(p)

Figure: The ACF and PACF of an AR(2) model with φ1 = 1.5 and
φ2 = −0.75.



The PACF of an Invertible MA(q)

For an invertible MA(q), we can write

Yt =
∞∑
j=1

πjYt−j + et

From this result, it should be apparent that the PACF will never cut
off, as in the case of an AR(p).



The PACF of an Invertible MA(q)

For an MA(1), Yt = et − θet−1, with |θ| < 1, calculations similar
to previous example, we have

φ22 =
−θ2

1 + θ2 + θ4

In general, we show that

φkk =
(−θk)(1− θ2)

1− θ2(k+1)

Please refer to page 19.



The PACF of an Invertible MA(q)

The partial correlation of an MA(1) model never equals zero,
but essentially decay to zero exponentially fast as the lag
increases
it is like the autocorrelation function of the AR(1) process



Partial ACF for Stationary Process

A general method for finding the partial ACF for any stationary
process with ACF ρk (see Anderson 1971)
For a given lag k , it can be shown that the φkk satisfy the
Yule-Walker equations:

ρj = φk1ρj−1 + φk2ρj−2 + · · ·+ φkkρj−k for j = 1, 2, · · · , k

More explicitly, we can write these k linear equations as:

φk1 + ρ1φk2 + ρ2φk3 + · · ·+ ρk−1φkk = ρ1

ρ1φk1 + φk2 + ρ1φk3 + · · ·+ ρk−2φkk = ρ2
...

ρk−1φk1 + ρk−2φk2 + ρk−3φk3 + · · ·+ φkk = ρk



Partial ACF for Stationary Process

The solutions to this linear equation system yield φkk for any
stationary process.
If the process is AR(p), then since for k = p are just the
Yule-Walker equations, which the AR(p) model is known to
satisfy, we must have φpp = φp

We have already seen φkk = 0 for k > p.



Partial ACF for Stationary Process

Observations
The PACF for MA models behaves much like the ACF for AR
models
The PACF for AR models behaves much like the ACF for MA
models.
Because an invertible ARMA model has an infinite AR
representation, the PACF will not cut off.

Table: Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off



The Sample Partial ACF

For an observed time series, we need to be able to estimate
the partial ACF.
According to the Yule-Walker equation, we can estimate ρk ’s
with sample autocorrelation, then solve it to obtain φkk
It is called the sample partial autocorrelation function
(sample ACF) , denoted it by φ̂kk .



The Sample Partial ACF

Levinson (1947) and Durbin (1960) gave an efficient method for
obtaining the solutions to the Yule-Walker equation for either
theoretical or sample partial autocorrelations. It is shown that the
equations can be solved recursively as follows:

φkk =
ρk −

∑k−1
j=1 φk−1,jρk−j

1−
∑k−1

j=1 φk−1,jρj

where
φk,j = φk−1,j − φk,kφk−1,k−j



The Sample Partial ACF

Example: using φ11 = ρ1 to get started, we have:

φ22 =
ρ2 − φ11ρ1

1− φ11ρ1
=
ρ2 − ρ2

1
1− ρ2

1

with φ21 = φ11 − φ22φ11, then

φ33 =
ρ3 − φ21ρ2 − φ22ρ1

1− φ21ρ1 − φ22ρ2



The Sample Partial ACF

we can calculate numerically as many values for φkk as desired.
these recursive equations give us theoretical partial ACF
by replacing ρ’s with r ’s, we obtained the estimated or
sampled partial ACF.



The Sample Partial ACF

To assess the possible magnitude of the sample ACF, Quenoulle
(1949) proved that

Hypothesis Test
Under the hypothesis that an AR(p) model is correct, the sample
partial ACF at lags greater than p are approximately normally
distributed with zero means and variances 1/n. Thus for k > p,
±2/
√
n can be used as critical limits on φ̂kk to test the null

hypothesis that an AR(p) model is correct.



Questions?


