
Recap
AR(p) and MA(q)
ARMA(p, q)

The Ψ-weights of an ARMA Model : φ(z)ψ(z) = θ(z)

The ACF of an ARMA
Partial ACF: order of dependence of ARMA or AR.

Table: Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off



To estimate the partial ACF, Yule-Walker equation
For a given lag k , it can be shown that the φkk satisfy the
Yule-Walker equations:

ρj = φk1ρj−1 + φk2ρj−2 + · · ·+ φkkρj−k for j = 1, 2, · · · , k

Given ρ’s, solve Yule-Walker to obtain φkk .
If the process is AR(p), then φpp = φp.
Given r ’, solve Yule-Walker to obtain φ̂kk .



Levinson (1947) and Durbin (1960) gave an efficient method for
obtaining the solutions to the Yule-Walker equation for either
theoretical or sample partial autocorrelations. It is shown that the
equations can be solved recursively as follows:

φkk =
ρk −

∑k−1
j=1 φk−1,jρk−j

1−
∑k−1

j=1 φk−1,jρj

where
φk,j = φk−1,j − φk,kφk−1,k−j

Replace ρ’s with r ’s, obtain sample PACF.



Observations
any time series without a constant mean over time is
non-stationary.
Consider the following model:

Yt = µt + Xt

where µt is a nonconstant mean function and Xt is a
zero-mean, stationary series
Such model is reasonable only if there are good reasons for
believing that the deterministic trend is appropriate ‘forever’.
Just because a segment of the time series looks like it is
increasing (or decreasing) approximately linearly, do we believe
that the linearity is intrinsic to the process and will persist in
the future?



Frequently in applications, particularly in business and
economics, we cannot legitimately assume a deterministic
trend.
Recall the random walk time series, it appears s strong upward
trend, but it has a constant, zero-mean, and contains no
deterministic trend at all.



Figure: The monthly price of a barrel of crude oil from January 1986
through January 2006

The series displays considerable variation, especially since
2001, and a stationary model does not seem to be reasonable.
We will discover in later classes that no deterministic trend
model works well for this series,
but one of the nonstationary models that have been described
as containing stochastic trends does seem reasonable.



Stationarity Through Differencing

Consider again the AR(1) model:

Yt = φYt−1 + et

We have seen that assuming et is a true ‘innovation’ (that is, et is
uncorrelated with Yt−1,Yt−2, · · · ), we must have |φ| < 1.



Stationarity Through Differencing

Consider |φ| ≥ 1:
Yt = 3Yt−1 + et

Iterating into the past we have:

Yt = et + 3et−1 + 32et−2 + · · ·+ 3t−1e1 + 3tY0

The influence of the distant past values of Yt and et does not die
out, rather the weights applied to Y0 and e1 grow exponentially
large.



Stationarity Through Differencing

(a) Simulation of the Explosive AR(1) model: Yt =
3Yt−1 + et

(b) An Explosive AR(1) Series



Stationarity Through Differencing

The explosive behaviour of such a model is reflected in the model’s
variance and covariance functions.

Var(Yt) =
1
8

(9t − 1)σ2
e

Cov(Yt ,Yt−k) =
3k

8
(9t−k − 1)σ2

e

Notice that

Corr(Yt ,Yt−k) = 3k
√

9t−k − 1
9t − 1

≈ 1

for large t and moderate k



Stationarity Through Differencing

The same general exponential growth or explosive behaviour will
occur for any |φ| > 1. If φ = 1, the AR(1) model equation is

Yt = Yt−1 + et

This the relationship satisfied by the random walk. Alternatively,
we can write this as

∇Yt = et

where ∇Yt = Yt − Yt−1 is the first difference of Yt .



Stationarity Through Differencing

The random walk is easily extended to a more general model whose
first difference is some stationary process, not just white noise.
Several somewhat different sets of assumptions can lead to models
whose first difference is a stationary process.



Stationarity Through Differencing

Suppose
Yt = Mt + Xt

where Mt is a series that is changing only slowly over time. Here
Mt could be either deterministic or stochastic. If we assume that
Mt is approximately constant over every two consecutive time
points, we might estimate (predict) Mt at t by choosing β0 so that

1∑
j=0

(Yt−j − β0,t)
2

is minimized.



Stationarity Through Differencing

This clearly leads to

M̂t =
1
2

(Yt + Yt−1)

and the ‘detrended’ series at time t is then

Yt − M̂t = Yt −
1
2

(Yt + Yt−1) =
1
2

(Yt − Yt−1) =
1
2
∇Yt



Stationarity Through Differencing

A second set of assumptions might be that Mt is stochastic and
changes slowly over time governed by a random walk model.
Suppose, for example, that

Yt = Mt + et with Mt = Mt−1 + εt

where et and εt are independent white noise series. Then

∇Yt = ∇Mt +∇et
= εt + et − et−1

which would have the autocorrelation function of MA(1) series with

ρ1 = − 1
2 + (σ2

ε /σ
2
e )

In either of these situtations, we see ∇Yt is a stationary process.



Stationarity Through Differencing

See the oil price time series again.

Figure: The difference Series of the Logs of the Oil Price Time series

This series is more like a stationary process than the original
one.
There are outliers that should be considered.



Stationary Second-difference Models

Again assume Yt = Mt + Xt , but now assume that Mt is linear in
time over three consecutive time points. We can now estimate
(predict) Mt at the middle time point t by choosing β0,t and β1,t
to minimize

1∑
j=−1

(Yt−j − (β0,t + jβ1,t))2

The solution yields

M̂t =
1
3

(Yt+1 + Yt + Yt−1)



Stationary Second-difference Models

Thus the detrended series is

Yt − M̂t = Yt −
1
3

(Yt+1 + Yt + Yt−1)

=

(
−1
3

)
(Yt+1 − 2Yt + Yt−1)

=

(
−1
3

)
∇(∇Yt+1)

=

(
−1
3

)
∇2Yt+1

a constant multiple of the centered second difference of Yt .
Notice that we have differenced twice, but both differences at lag 1.



Stationary Second-difference Models

Alternatively, we might assume that

Yt = Mt + et where Mt = Mt−1 + Wt and Wt = Wt−1 + εt

where et and εt independent white noise time series. Here the
stochastic trend Mt is such that its rate of change, ∇Mt , is
changing slowly over time. Then

∇Yt = ∇Mt +∇et = Wt +∇et

and

∇2Yt = ∇Wt +∇2et

= εt + (et − et−1)− (et−1 − et−2)

= εt + et − 2et−1 + et−2

which has the autocorrelation function of an MA(2) process.



Stationary Second-difference Models

The important point is that the second difference of the
non-stationary process Yt is stationary.



ARIMA Models

Definition
A time series {Yt} is said to follow an integrated autoregressive
moving average model if the dth difference Wt = ∇dYt is a
stationary ARMA process. If {Wt} follows an ARMA(p, q) model,
we say that {Yt} is an ARIMA(p, d , q) process.

For practical purposes, we can usually take d = 1 or at most 2.



ARIMA Models

Consider than an ARIMA(p, 1, q) process. With Wt = Yt − Yt−1,
we have

Wt = φ1Wt−1 + · · ·+ φpWt−p + et − θ1et−1 − · · · − θqet−q

or in terms of the observed series

Yt − Yt−1 = φ1(Yt−1 − Yt−2) + φ2(Yt−2 − Yt−3) + · · ·
φp(Yt−p − Yt−p−1) + et − θ1et−1 − · · · − θqet−q



ARIMA Models

which we may rewrite as

Yt = (1 + φ1)Yt−1 + (φ2 − φ1)Yt−2 + · · ·
+(φp − φp−1)Yt−p − φpYt−p−1 + et − θ1et−1 − · · · − θqθt−q

We call this the difference equation form of the model.



ARIMA Models

Notice that it appears to be an ARMA(p + 1, q) process. However,
the characteristic polynomial satisfies

1−(1+φ1)x−(φ2−φ1)x2−(φ3−φ2)x3−· · ·−(φp−φp−1)xp+φpx
p+1

= (1− φ1x − φ2x
2 − · · · − φpxp)(1− x)

This factorization clearly shows the root at x = 1, which implies
nonstationarity.
The remaining roots, however, are the roots of the characteristic
polynomial of the stationary process ∇Yt .



ARIMA Models

Explicit representations of the observed series in terms of
either Wt or the white noise series underlying Wt are more
difficult than in the stationary case.
Since nonstationary processes are not in statistical equilibrium,
we cannot assume that they go infinitely into the past or that
they start at t = −∞.
However, we can and shall assume that they start at some
time point t = −m, say, where −m is earlier than time t = 1,
at which point we first observed the series.



ARIMA Models

For convenience, we take Yt = 0 for t < −m. The difference
equation Yt − Yt−1 = Wt can be solved by summing both sides
from t = −m to t = t to get the representation

Yt =
t∑

j=−m

Wj

for the ARIMA(p, 1, q) process.



ARIMA Models

The ARIMA(p, 2, q) process can be dealt with similarly by summing
twice to get the representations

Yt =
t∑

j=−m

j∑
i=−m

Wi

=
t+m∑
j=0

(j + 1)Wt−j

These representations have limited use but can be used to
investigate the covariance properties of ARIMA models and also to
express Yt in terms of the white noise series {et}



ARIMA Models

If the process contains no autoregressive terms, we call it an
integrated moving average and abbreviate the name to
IMA(d , q).
If no moving average terms are present, we denote the model
as ARI(p, d).



The IMA(1,1) Model

The simple IMA(1,1) model satisfactorily represents numerous time
series, especially those arising in economics and business. In
difference equation form, the model is

Yt = Yt−1 + et − θet−1



The IMA(1,1) Model

To write Yt explicitly as a function of present and past noise values,
we use the form

Yt =
t∑

j=−m

Wj

and the fact that Wt = et − θet−1 in this case. After a little
rearrangement, we can write

Yt = et + (1− θ)et−1 + (1− θ)et−2 + · · ·+ (1− θ)e−m − θe−m−1



The IMA(1,1) Model

Notice that in contrast to our stationary ARMA models, the
weights on the white noise terms do not die out as we go into the
past. Since we are assuming that −m < 1 and 0 < t, we may
usefully think of Yt as mostly an equally weighted accumulation of
a large number of white noise values.



The IMA(1,1) Model

We can derive the variances and correlations of IMA(1,1) as follows:

Var(Yt) = [1 + θ2 + (1− θ)2(t + m)]σ2
e

Corr(Yt ,Yt−k) =
1− θ + θ2 + (1− θ)2(t + m − k)

[Var(Yt)Var(Yt−k)]1/2

≈
√

t + m − k

t + m
≈ 1 for large m and moderate k

as t increases, Var(Yt) increases and could be quite large. Also,
the correlation between Yt and Yt−k will be strongly positive for
many lags k = 1, 2, · · · .



The IMA(2,2) Model

Consider

Yt = Mt + et where Mt = Mt−1 + Wt and Wt = Wt−1 + εt

This leads to an IMA(2,2) model. Write it in Difference Equation
form:

∇2Yt = et − θ1et−1 − θ2et−2

or
Yt = 2Yt−1 − Yt−2 + et − θ1et−1 − θ2et−2



The IMA(2,2) Model

The representation

Yt =
t+m∑
j=0

(j + 1)Wt−j

may be used to express Yt in terms of et , et−1, · · · . After some
algebra, we find that

Yt = et +
t+m∑
j=1

Ψjet−j − [(t + m + 1)θ1 + (t + m)θ2]e−m−1

−(t + m + 1)θ2e−m−2

where Ψj = 1 + θ2 + (1− θ1 − θ2)j for j = 1, 2, 3, · · · , t + m. Once
more we see that the Ψ-weights do not die out but form a linear
function of j .



The IMA(2,2) Model

Variances and correlations for Yt can be obtained from the
representation given in previous equation, but the calculations
are tedious.
We shall simply note that the variance of Yt increases rapidly
with t and again Corr(Yt ,Yt−k) is nearly 1 for all moderate k .



The IMA(2,2) Model

Figure: Simulation of an IMA(2,2) Series with θ1 = 1 and θ2 = −0.6.

Notice the smooth change in the process values (and the
unimportance of the zero-mean function).
The increasing variance and the strong, positive neighboring
correlations dominate the appearance of the time series plot.



The IMA(2,2) Model

Figure: First Difference of the Simulated IMA(2,2) Series.

This series is also nonstationary, as it is governed by an
IMA(1,2) model.



The IMA(2,2) Model

Figure: Second Difference of the Simulated IMA(2,2) Series.

These values arise from a stationary MA(2) model with θ1 = 1
and θ2 = −0.6.
The theoretical autocorrelations for this model are
ρ1 = −0.678 and ρ2 = 0.254. These correlation values seem
to be reflected in the appearance of the time series plot.



The ARI(1,1) Model

The ARI(1,1) process will satisfy:

Yt − Yt−1 = φ(Yt−1 − Yt−2) + et

or
Yt = (1 + φ)Yt−1 − φYt−2 + et

where |φ| < 1.
Notice that this looks like a special AR(2) model. However, one of
the roots of the corresponding AR(2) characteristic polynomial is 1,
and this is not allowed in stationary models.



The ARI(1,1) Model

To find the Ψ-weights in this case, we shall use a technique that
will generalize to arbitrary ARIMA models.
It can be shown that the Ψ-weights can be obtained by equating
like powers of x in the identity:

(1− φ1x − φ2x
2 − · · · − φpxp)(1− x)d(1 + Ψ1x + Ψ2x

2 + · · · )
= (1− θ1x − θ2x2 − · · · − θqxq)



The ARI(1,1) Model

In our case, this relationship reduces to

(1− φx)(1− x)(1 + Ψ1x + Ψx
2 + · · · ) = 1

or
[1− (1 + φ)x + φx2](1 + Ψ1x + Ψ2x

2 + · · · ) = 1

Equating like powers of x on both sides, we obtain



The ARI(1,1) Model

−(1 + φ) + Ψ1 = 0
φ− (1 + φ)Ψ1 + Ψ2 = 0

or in general,
Ψk = (1 + φ)Ψk−1 − φΨk−2

with Ψ0 = 1 and Ψ1 = 1 + φ.



The ARI(1,1) Model

This recursion with starting values allows us to compute as many
Ψ-weights as necessary.
It can also be shown that in this case an explicit solution to the
recursion is given as

Ψk =
1− φk+1

1− φ
for k ≥ 1



Questions?


