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Recap
Model specification – how to choose appropriate values for
p, d , and q for a given series
ACF, sample ACF

The sampling properties of sample ACF
The standard error to the estimation of ρk through rk can be
obtained for both MA and AR models

Partial ACF, sample PACF
It is developed to decide the order of an AR model since the
autocorrelation of an AR does not have cut-off.
For an AR(p), its PACF cuts off exactly at k > p.
For an MA(q), its ACF cuts off exactly at k > q.
For an ARMA(p, q), both ACF and PACF do not cut off.



Recap
Extended ACF (EACF)

For mixed ARMA model
The idea is to ‘filter out’ the autoregression to obtain a pure
MA process, and enjoys the cutoff property of its ACF
The AR coefficients may be estimated by a sequence of
regressions.



Nonstationarity

many series exhibit nonstationarity that can be explained by
integrated ARMA models.
The nonstationarity will frequently be apparent in the time
series plot of the series.
The definition of the sample autocorrelation function implicitly
assumes stationarity; for example, we use lagged products of
deviations from the overall mean, and the denominator
assumes a constant variance over time. Thus it is not at all
clear what the sample ACF is estimating for a nonstationary
process
Nevertheless, for nonstationary series, the sample ACF
typically fails to die out rapidly as the lags increase. This is
due to the tendency for nonstationary series to drift slowly,
either up or down, with apparent “trends".



Nonstationarity

Consider the oil price time series:

Figure: Sample ACF for the Difference of the Log Oil Price Time Series.

The sample ACF for the logarithms of these data is displayed.
All values shown are “significantly far from zero", and the only
pattern is perhaps a linear decrease with increasing lag.
The sample PACF (not shown) is also indeterminate.



Nonstationarity

Figure: Sample ACF for the Difference of the Log Oil Price Time Series.

The sample ACF computed on the first differences of the logs
of the oil price series is shown.
Now the pattern emerges much more clearly — after
differencing, a moving average model of order 1 seems
appropriate.
The model for the original oil price series would then be a
nonstationary IMA(1,1) model. (The “significant" ACF at lags
15, 16, and 20 are ignored for now.)



Nonstationarity

If the first difference of a series and its sample ACF do not
appear to support a stationary ARMA model, then we take
another difference and again compute the sample ACF and
PACF to look for characteristics of a stationary ARMA process.
Usually one or at most two differences, perhaps combined with
a logarithm or other transformation, will accomplish this
reduction to stationarity.
Additional properties of the sample ACF computed on
nonstationary data are given in Wichern (1973), Roy (1977),
and Hasza (1980). See also Box, Jenkins, and Reinsel (1994,
p. 218).



Overdifferencing

we know that the difference of any stationary time series is
also stationary.
However, overdifferencing introduces unnecessary correlations
into a series and will complicate the modeling process.



Overdifferencing

suppose our observed series, {Yt}, is in fact a random walk so that
one difference would lead to a very simple white noise model

∇Yt = Yt − Yt−1 = et

However, if we difference once more (that is, overdifference) we
have

∇2Yt = et − et−1

which is an MA(1) model but with θ = 1.



Overdifferencing

If we take two differences in this situation we unnecessarily
have to estimate the unknown value of θ. Specifying an
IMA(2,1) model would not be appropriate here.
The random walk model, which can be thought of as IMA(1,1)
with θ = 0, is the correct model.
Overdifferencing also creates a noninvertible model, which
create serious problems when we attempt to estimate their
parameters.



Overdifferencing

Figure: Sample ACF of Overdifferenced Random Walk

Based on this plot, we would likely specify at least an
IMA(2,1) model for the original series and then estimate the
unnecessary MA parameter.
We also have a significant sample ACF value at lag 7 to think
about and deal with.



Overdifferencing

Figure: Sample ACF of Correctly Differenced Random Walk

To avoid overdifferencing, we recommend looking carefully at each
difference in succession and keeping the principle of parsimony
always in mind — models should be simple, but not too simple →
Occam’s Razor Principle (Entities should not be multiplied
unnecessarily)



The Dickey-Fuller Unit Root Test

While the approximate linear decay of the sample ACF is often
taken as a symptom that the underlying time series is
nonstationary and requires differencing,
It is also useful to quantify the evidence of nonstationarity in
the data-generating mechanism.
The use of the first difference can be too severe a modification
in the sense that the nonstationary model might represent an
overdifferencing of the original process.
This can be done via hypothesis testing.



The Dickey-Fuller Unit Root Test

Consider a casual AR(1) model,

Yt = φYt−1 + et

Through differencing, we have:

∇Yt = φ∇Yt−1 + et − et−1

introduces extraneous correlation and invertibility problems.

That is, while Yt is a casual AR(1) process, working with the
differenced process Yt will be problematic because it is a
noninvertible ARMA(1,1).



The Dickey-Fuller Unit Root Test

A unit root test provides a way to test whether previous equation is
a random walk (the null case) as opposed to a causal process (the
alternative). That is, it provides a procedure for testing

H0 : φ = 1 versus H1 : |φ| < 1.

An obvious test statistic would be to choose (φ̂− 1), appropriately
normalized, in the hope to develop an asymptotically normal test
statistic, where φ̂ is one of the optimal estimators.



The Dickey-Fuller Unit Root Test

To examine the behaviour of (φ̂− 1) under the null hypothesis that
φ = 1, or more precisely that the model is a random walk,
Yt =

∑t
j=1 et , or Yt = Yt−1 + et with Y0 = 0, consider the least

square estimator of φ.

Note that µY = 0, the least square estimator can be written as
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where we have written Yt = Yt−1 + et in the numerator.



The Dickey-Fuller Unit Root Test

Recall that Yt = 0, and in the least square setting, we are regressing
Yt on Yt−1 for t = 1, 2, · · · , n. Hence under H0, we have that
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The Dickey-Fuller Unit Root Test

Because Yn =
∑n

t=1 et , we have that Yn ∼ N (0, nσ2
e ), so that

1
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e
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1 (i.e. the chi-squared distribution with one degree of
freedom.
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The Dickey-Fuller Unit Root Test

Consider the denominator 1
n

∑n
t=1 Y

2
t−1. According to the

functional central limit theorem, we know that
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where W (t) is standard Brownian motion which statisfies
(i) W (0) = 0
(ii) {W (t2)−W (t1), · · · ,W (tn)−W (tn−1)} are independent
(iii) W (t + ∆(t))−W (t) ∼ N (0,∆t) for ∆t > 0



The Dickey-Fuller Unit Root Test

We thus obtain

n(φ̂− 1) =
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The test statistic n(φ̂− 1) is known as the root or Dickey-Fuller
(DF) statistic.

Because the distribution of the test statistic does not have a closed
form, quantiles of the distribution must be computed by numerical
approximation or by simulation



The Dickey-Fuller Unit Root Test

Toward a more general model, we note that the DF test was
established by noting that if Yt = φYt−1 + Xt , then
∇Yt = (φ− 1)Yt−1 + et = γYt−1 + et . One could test H0 : γ = 0
by regressing ∇Yt on Yt−1.

A Wald statistic and its limiting distribution can be derived
(previous derivation is based on Brownian motion is due to Philips
(1987).



The Dickey-Fuller Unit Root Test

The test can then be extended to accommodate AR(k) model as
follows. Consider the model Yt =

∑p−1
j=1 φjYt−j + et .

Subtract Yt−1 from the model, we obtain

Yt − Yt−1 = γYt−1 +
k−1∑
j=1

ψj∇Yt−j + et

where γ =
∑k

j=1 φj − 1 and ψj = −
∑k

j=i φj for j = 2, · · · , p.

For a quick check, when p = 2, note that
Yt = (φ1 + φ2)Yt−1 − φ2(Yt−1 − Yt−2) + et .



The Dickey-Fuller Unit Root Test

To test the hypothesis that the process has a unit root at 1 (i.e.,
the AR polynomial φ(z) = 0 when z = 1), we can test H0 : γ = 0
by estimating γ in the regression of ∇Yt on
∇Yt−1,∇Yt−2,∇Yt−p+1, and forming a Wald test based on

tγ = γ̂/se(γ).

where se is the standard error of the regression. This leads to the
so-called augmented Dickey-Fuller test (ADF).



The Dickey-Fuller Unit Root Test

The augmented Dickey-Fuller (ADF) test statistic is the
t-statistic of the estimated coefficient of λ from the method of
least squares regression.
However, the ADF test statistic is not approximately
t-distributed under the null hypothesis; instead, it has a
certain non-standard large-sample distribution under the null
hypothesis of a unit root.
Fortunately, percentage points of this limit (null) distribution
have been tabulated; see Fuller (1996)



The Dickey-Fuller Unit Root Test

In practice, even after first differencing, the process may not
be a finite-order AR process, but it may be closely
approximated by some AR process with the AR order
increasing with the sample size.
Said and Dickey (1984) showed that with the AR order
increasing with the sample size, the ADF test has the same
large-sample null distribution as the case where the first
difference of the time series is a finite-order AR process.
Often, the approximating AR order can be first estimated
based on some information criteria (for example, AIC or BIC)
before carrying out the ADF test.



The Dickey-Fuller Unit Root Test

In some cases, the process may be trend nonstationary in the
sense that it has a deterministic trend (for example, some
linear trend) but otherwise is stationary.
A unit-root test may be conducted with the aim of discerning
difference stationarity from trend stationarity.
This can be done by carrying out the ADF test with the
detrended data.
Equivalently, this can be implemented by regressing the first
difference on the covariates defining the trend, the lag 1 of the
original data, and the past lags of the first difference of the
original data.
The t-statistic based on the coefficient estimate of the lag 1 of
the original data furnishes the ADF test statistic, which has
another nonstandard large-sample null distribution



The Dickey-Fuller Unit Root Test

Illustrate how the ADF test do with the simulated random walk:
First, we consider testing the null hypothesis of unit root
versus the alternative hypothesis that the time series is
stationary with unknown mean.
Hence, the regression defined by
Yt − Yt−1 = γYt−1 +

∑k−1
j=1 ψj∇Yt−j + et is augmented with

an intercept to allow for the possibly nonzero mean under the
alternative hypothesis.

Determine p, according to the AIC with the first difference of
the data, k is found to be 8, in which case the ADF test
statistic becomes -0.601, with the p-value being greater than
0.1.
On the other hand, setting k = 0 (the true order) leads to the
ADF statistic -1.738, with p-value still greater than 0.1.
Thus there is strong evidence supporting the unit-root
hypothesis.



The Dickey-Fuller Unit Root Test

Second, recall that the simulated random walk appears to have
a linear trend.
Hence, linear trend plus stationary error forms another
reasonable alternative to the null hypothesis of unit root
(difference nonstationarity).

For this test, we include both an intercept term and the
covariate time in the regression.
With k = 8, the ADF test statistic equals -2.289 with p-value
greater than 0.1 → do not reject the null hypothesis
Setting k = 0, the ADF test statistic becomes -3.49 with
p-value equal to 0.0501.
There is weak evidence that the process is linear-trend
nonstationary; that is, the process equals linear time trend plus
stationary error, contrary to the truth that the process is a
random walk, being difference nonstationary!

This example shows that with a small sample size, it may be hard
to differentiate between trend nonstationarity and difference
nonstationarity.



The Dickey-Fuller Unit Root Test

For a ADF test, there are three steps:
Test for a unit root on

∇Yt = γYt−1 +

p∑
j=1

ψjYt−j + et

Test for a unit root with drift (non-zero mean)

∇Yt = α0 + γYt−1 +

p∑
j=1

ψjYt−j + et

Test for a unit root with drift and deterministic time trend:

∇Yt = α0 + α1t + γYt−1 +

p∑
j=1

ψjYt−j + et



The Dickey-Fuller Unit Root Test

Each version of the test has its own critical value which
depends on the size of the sample
In each case, the null hypothesis is that there is a unit root,
γ = 0.
The tests have low statistical power in that they often cannot
distinguish between true unit-root processes (γ = 0) and near
unit-root processes ( γ is close to zero). This is called the
“near observation equivalence" problem.



Other Specification Methods

A number of other approaches to model specification have been
proposed since Box and Jenkins’s seminal work.

One of the most studied is Akaike’s (1973) Information
Criterion (AIC). This criterion says to select the model that
minimizes

AIC = −2 log(maximum likelihood) + 2k

where k = p + q + 1 if the model contains an intercept or constant
term and k = p + q otherwise.

The addition of the term 2k serves as a “penalty function" to help
ensure selection of parsimonious models and to avoid choosing
models with too many parameters.



Other Specification Methods

By adding another nonstochastic penalty term to the AIC, resulting
in the corrected AIC, denoted by AICc and defined by the formula

AICc = AIC +
2(k + 1)(k + 2)

n − k − 2

Here n is the (effective) sample size and again k is the total number
of parameters as above excluding the noise variance.

Hurvich and Tsai (1989) suggest that for cases with k/n greater
than 10%, the AICc outperforms many other model selection
criteria, including both the AIC and BIC.



Other Specification Methods

Another approach to determining the ARMA orders is to select a
model that minimizes the Schwarz Bayesian Information
Criterion (BIC) defined as

BIC = −2 log(maximum likelihood) + k log(n)

If the true process follows an ARMA(p, q) model, then it is known
that the orders specified by minimizing the BIC are consistent; that
is, they approach the true orders as the sample size increases.

However, if the true process is not a finite-order ARMA process,
then minimizing AIC among an increasingly large class of ARMA
models enjoys the appealing property that it will lead to an optimal
ARMA model that is closest to the true process among the class of
models under study



Other Specification Methods

Regardless of whether we use the AIC or BIC, the methods
require carrying out maximum likelihood estimation.
However, maximum likelihood estimation for an ARMA model
is prone to numerical problems due to multimodality of the
likelihood function and the problem of overfitting when the AR
and MA orders exceed the true orders.
Hannan and Rissanen (1982)’s method

first fitting a high-order AR process with the order determined
by minimizing the AIC.
then uses the residuals from the first step as proxies for the
unobservable error terms.
an ARMA(k , j) model can be approximately estimated by
regressing the time series on its own lags 1 to k together with
the lags 1 to j of the residuals from the high order
autoregression;
the BIC of this autoregressive model is an estimate of the BIC
obtained with maximum likelihood estimation.



Specification of Some Actual Time Series

The Los Angeles Annual Rainfall Series

The rainfall amounts were not normally distributed.



Specification of Some Actual Time Series

Figure: QQ Normal Plot of the Logarithms of LA Annual Rainfall.

Figure: Sample ACF of the Logarithms of LA Annual Rainfall.



Specification of Some Actual Time Series

The Chemical Process Color Property Series

Figure: Time Series plot of Color Property from a Chemical Process.



Specification of Some Actual Time Series

Figure: Sample ACF for the Color Property Series.

The sample ACF plotted might suggest an MA(1) model, as
only the lag 1 autocorrelation is significantly different from
zero.
However, the damped sine wave appearance encourages us to
look further at the sample partial autocorrelation.



Specification of Some Actual Time Series

Figure: Sample PACF for the Color Property Series.

It is clear that an AR(1) model is worthy of first consideration. As
always, our specified models are tentative and subject to
modification during the model diagnostics stage of model building.



Specification of Some Actual Time Series

The Annual Abundance of Canadian Hare Series

It has been suggested in the literature that a transformation might
be used to produce a good model for these data



Specification of Some Actual Time Series

Figure: Box-cox power transformation results for hare abundance.

The plot shows the log-likelihood as a function of the power
parameter λ. The maximum occurs at λ = 0.4, but a square root
transformation with λ = 0.5 is well within the confidence interval
for λ.



Specification of Some Actual Time Series

Figure: Sample ACF for Square Root of Hare Abundance.

The fairly strong lag 1 autocorrelation dominates but, again, there
is a strong indication of damped oscillatory behavior.



Specification of Some Actual Time Series

Figure: Sample partial ACF for Square Root of Hare Abundance.

It gives strong evidence to support an AR(2) or possibly an AR(3)
model for these data.



Specification of Some Actual Time Series

The Oil Price Series

Figure: The Oil Price Series.

Figure: The First Difference of log Oil Price Series.



Specification of Some Actual Time Series

It is argued graphically that the difference of the logarithms
could be considered stationary.
Software implementation of the Augmented Dickey-Fuller
unit-root test applied to the logs of the original prices leads to
a test statistic of -1.1119 and a p-value of 0.9189.
With stationarity as the alternative hypothesis, this provides
strong evidence of nonstationarity and the appropriateness of
taking a difference of the logs.
For this test, the software chose a value of k = 6 based on
large-sample theory.



Specification of Some Actual Time Series

Figure: Extended ACF for Difference of Logarithms of Oil Price Series.

This figure shows the summary EACF table for the differences of
the logarithms of the oil price data.

This table suggests an ARMA model with p = 0 and q = 1.



Specification of Some Actual Time Series

Figure: Sample ACF of Difference of Logged Oil Prices.

Figure: Sample PACF of Difference of Logged Oil Prices.



Specification of Some Actual Time Series

The sample ACF figure suggests that we specify an MA(1)
model for the difference of the log oil prices,
The sample PACF says to consider an AR(2) model (ignoring
some significant spikes at lags 15, 16, and 20).
We will want to look at all of these models further when we
estimate parameters and perform diagnostic tests
We will see later that to obtain a suitable model for the oil
price series, the outliers in the series will need to be dealt with.



Summary

we considered the problem of specifying reasonable but simple
models for observed times series.
we investigated tools for choosing the orders (p, d , and q) for
ARIMA(p, d , q) models.
Three tools, the sample autocorrelation function, the sample
partial autocorrelation function, and the sample extended
autocorrelation function, were introduced and studied to help
with this difficult task.
The Dickey-Fuller unit-root test was also introduced to help
distinguish between stationary and nonstation-ary series.
These ideas were all illustrated with both simulated and actual
time series.



Questions?


