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One of the primary objectives of building a model for a time
series is to be able to forecast the values for that series at
future times.
Of equal importance is the assessment of the precision of those
forecasts
We shall consider the calculation of forecasts and their
properties for both deterministic trend models and ARIMA
models.
Forecasts for models that combine deterministic trends with
ARIMA stochastic components are considered also.



Minimum Mean Square Error Forecasting

Based on the available history of the series up to time t, namely
Y1,Y2, · · · ,Yt−1,Yt , we would like to forecast the value of Yt+l

that will occur ` time units into the future.

We call time t the forecast origin and ` the lead time for the
forecast, and denote the forecast itself as Ŷt(`).

According to the Minimum Mean Square Error Prediction theory,
we know

Ŷt(`) = E (Yt+`|Y1,Y2, · · · ,Yt)



Deterministic Trend

Consider the deterministic trend model:

Yt = µt + Xt

where the stochastic component, Xt , has a mean of zero.

We shall assume that {Xt} is in fact white noise with variance γ0,
then we have:



Deterministic Trend

Ŷt(`) = E (µt+` + Xt+`|Y1,Y2, · · · ,Yt)

= E (µt+`|Y1,Y2, · · · ,Yt) + E (Xt+`|Y1,Y2, · · · ,Yt)

= µt+` + E (Xt+`)

or
Ŷt(`) = µt+`

since for ` ≥ 1, Xt+` is independent of Y1,Y2, · · · ,Yt−1,Yt and
has expected value zero.

Thus, in this simple case, forecasting amounts to extrapolating the
deterministic time trend into the future.



Deterministic Trend

For the linear trend case, µt = β0 + β1t, the forecast is

Ŷt(`) = β0 + β1(t + `)

this model assumes that the same linear time trend persists into the
future, and the forecast reflects that assumption.

Note that it is the lack of statistical dependence between Yt+` and
Y1,Y2, · · · ,Yt−1,Yt that prevents us from improving on µt+` as a
forecast.

For seasonal models, where, say µt = µt+12, our forecast is
Ŷt(`) = µt+12+` = Ŷt(`+ 12). Thus the forecast will be also
periodic.



Deterministic Trend

The forecast error, et(`), is given by

et(`) = Yt+` − Ŷt(`)

= µt+` + Xt+` − µt+` = Xt+`

so that
E (et(`)) = E (Xt+`) = 0

That is, the forecasts are unbiased. Also

Var(et(`)) = Var(Xt+`) = γ0

is the forecast error variance for all lead times `.



Deterministic Trend

The cosine trend model for the average monthly temperature series
was estimated

µ̂t = 46.2660 + (−26.7079) cos(2πt) + (−2.1697) sin(2πt)

Here time is measured in years with a starting value of January
1964, frequency f = 1 per year, and the final observed value is for
December 1975. To forecast the June 1976 temperature value, we
use t = 1976.41667 as the time value and obtain

µ̂t = 46.2660 + (−26.7079) cos(2π(1976.41667))

+ (−2.1697) sin(2π(1976.41667)) = 68.3◦F



ARIMA Forecasting

For ARIMA models, the forecasts can be expressed in several
different ways.
Each expression contributes to our understanding of the overall
forecasting procedure with respect to computing, updating,
assessing precision, or long-term forecasting behavior.



ARIMA Forecasting

AR(1):

Consider the simple AR(1) process with a nonzero mean that
satisfies

Yt − µ = φ(Yt−1 − µ) + et

Consider the problem of forecasting one time unit into the future.
Replacing t by t + 1, we have

Yt+1 − µ = φ(Yt − µ) + et+1

Given Y1,Y2, · · · ,Yt , we take the conditional expectations of both
sides and obtain

Ŷt(1)− µ = φ[E (Yt |Y1,Y2, · · · ,Yt)− µ] + E (et+1|Y1,Y2, · · · ,Yt)



ARIMA Forecasting

From the properties of conditional expectation, we have

E (Yt |Y1,Y2, · · · ,Yt) = Yt

Also, since et+1 is independent of Y1,Y2, · · · ,Yt , we obtain

E (et+1|Y1,Y2, · · · ,Yt) = E (et+1) = 0

Thus, we have
Ŷt(1) = µ+ φ(Yt − µ)

In words, a proportion φ of the current deviation from the process
mean is added to the process mean to forecast the next process
value.



ARIMA Forecasting

Now consider a general lead time `. Replacing t by t + ` and
taking the conditional expectations of both sides produces

Ŷt(`) = µ+ φ[Ŷt(`− 1)− µ] for ` ≥ 1

since E (Yt+`−1|Y1,Y2, · · · ,Yt) = Ŷt(`− 1) and, for ` ≥ 1, et+` is
independent of Y1,Y1, · · · ,Yt .



ARIMA Forecasting

The above equation is recursive in the lead time `. It shows how
the forecast for any lead time ` can be built up from the forecasts
for shorter lead times by starting with the initial forecast Ŷt(`).

The forecast Ŷt(2) is then obtained by Ŷt(2) = µ+ φ[Ŷt(1)− µ],
then Ŷt(3) from Ŷt(2), and so on until the desired Ŷt(`) is found.

The above equation and its generalizations for other ARIMA
models are most convenient for actually computing the forecasts. It
is sometimes called the difference equation form of the forecasts.



ARIMA Forecasting

However, this equation can also be solved to yield an explicit
expression for the forecast in terms of the observed history of the
series. Iterating backward on `, we have

Ŷt(`) = φ[Ŷt(`− 1)− µ] + µ

= φ
{
φ[Ŷt(`− 2)− µ]

}
+ µ

...
= φ`−1[Ŷt(1)− µ] + µ

so
Ŷt(`) = µ+ φ`(Yt − µ)

The current deviation from the mean is discounted by a factor φ`,
whose magnitude decreases with increasing lead time. The
discounted deviation is then added to the process mean to produce
the lead ` forecast.



ARIMA Forecasting

As a numerical example, consider the AR(1) model that we have
fitted to the industrial color property time series.

Figure: MLE of an AR(1) Model for Color.

For illustration purposes, we assume that the estimates φ = 0.5705
and µ = 74.3293 are true values. The final forecasts may then be
rounded.



ARIMA Forecasting

The last observed value of the color property is 67, so we would
forecast one time period ahead as

Ŷt(1) = µ̂+ φ̂[Yt − µ̂]

= 74.3293 + (0.5705)(67− 74.3293) = 70.14793

For lead time 2, we have

Ŷt(2) = µ̂+ φ̂[Ŷt(1)− µ] = 71.94383

Alternatively, we have

Ŷt(2) = µ̂+ φ̂2[Yt − µ]

At lead 5, we have

Ŷt(2) = µ̂+ φ̂5[Yt − µ] = 73.88636

and Ŷt(10) = 74.30253 which is nearly µ̂ = 74.3293



ARIMA Forecasting

In general, since |φ| < 1, we have simply

Ŷt(`) ≈ µ for large t

Later we shall see that this equation holds for all stationary ARMA
models.



ARIMA Forecasting

Consider now the one-step-ahead forecast error, et(1). We have

et(1) = Yt+1 − Ŷt(1)

= [φ(Yt − µ) + µ+ et+1]− [φ(Yt − µ) + µ]

or et(1) = et+1.

The white noise process {et} can now be reinterpreted as a
sequence of one-step-ahead forecast errors. We shall see that this
equation persists for completely general ARIMA models.



ARIMA Forecasting

Note also that et(1) = et+1 implies that the forecast error et(1) is
independent of the history of the process Y1,Y2, · · · ,Yt up to time
t. If this were not so, the dependence could be exploited to
improve our forecast.

It also implies that our one-step-ahead forecast error variance is
given by

Var(et(1)) = σ2
e



ARIMA Forecasting

To investigate the properties of the forecast errors for longer leads,
it is convenient to express the AR(1) model in general linear
process, or MA(∞), form.

Recall that

Yt = µ+ et + φet−1 + φ2et−2 + · · ·+

Together with Ŷt(`) = µ+ φ`(Yt − µ) , we have

et(`) = Yt+` − µ− φ`(Yt − µ)

= et+` + φet+`−1 + · · ·+ φ`−1et+1 + φ`et + · · ·
−φ`(et + φet−1 + · · · )

so that
et(`) = et+` + φet+`−1 + · · ·+ φ`−1et+1



ARIMA Forecasting

which can also be written as

et(`) = et+` + Ψ1et+`−1 + Ψ2et+`−2 + · · ·+ Ψ`−1et+1

We will show that this equation holds for all ARIMA models.

Note that E (et(`)) = 0; thus, the forecast are unbiased.
Furthermore, from this equation, we have

Var(et(`)) = σ2
e (1 + Ψ2

1 + · · ·+ Ψ2
`−1)

We see that the forecast error variance increases as the lead `
increases. Contrast this with the result for deterministic trend
models.



ARIMA Forecasting

For the AR(1) case,

Var(et(`)) = σ2
e

[
1− φ2`

1− φ2

]
which we obtain by summing a finite geometric series. For long
lead times, we have

Var(et(`)) ≈ σ2
e

1− φ2

for large `. Notice that for AR(1), γ0 = σ2
e

1−φ2

Var(et(`)) ≈ Var(Yt) = γ0 for large `.

This equation will be shown to be valid for all stationary ARMA
process.



ARIMA Forecasting

MA(1):

To illustrate how to solve the problems that arise in forecasting
moving average or mixed models, consider the MA(1) case with
nonzero mean:

Yt = µ+ et − θet−1

Again replacing t by t + 1 and taking conditional expectations of
both sides, we have

Ŷt(1) = µ− θE (et |Y1,Y2, · · · ,Yt)

For an invertible model, we have

Yt = (−θ1Yt−1 − θ2Yt−2 − · · · ) + et

which indicates et is a function of Y1, · · · ,Yt , so

E (et |Y1,Y2, · · · ,Yt) = et



ARIMA Forecasting

In fact, an approximation is involved in this equation since we are
conditioning only on Y1,Y2, · · · ,Yt and not on the infinite history
of the process.

However, if, as in practice, t is large and the model is invertible, the
error in the approximation will be very small. If the model is not
invertible — for example, if we have overdifferenced the data —
then this equation is not even approximately valid.



ARIMA Forecasting

Previous equations also give us the one-step-ahead forecast for an
invertible MA(1) expressed as

Ŷt(1) = µ− θet

The computation of et will be a by-product of estimating the
parameters in the model.

The one-step-ahead forecast error is:

et(1) = Yt1 − Ŷt(1)

= (µ+ et+1 − θet)− (µ− θet) = et+1



ARIMA Forecasting

For longer lead time, we have

Ŷt(`) = µ+ E (et+`|Y1,Y2, · · · ,Yt)− θE (et+`−1|Y1,Y2, · · · ,Yt)

But for ` > 1, both et+` and et+`−1 are independent of Y1, · · · ,Yt .
Consequently, these conditional expected values are the
unconditional expected values, namely zero, and we have

Ŷt(`) = µ for ` > 1.

Note that for large `, the forecast for AR(1) model is approximately
to µ



ARIMA Forecasting

The Random Walk with Drift:

To illustrate forecasting with nonstationary ARIMA series, consider
the random walk with drift defined by

Yt = Yt−1 + θ0 + et

Here

Ŷt(1) = E (Yt |Y1,Y2, · · · ,Yt) + θ0 + E (et+1|Y1,Y2, · · · ,Yt)

so that
Ŷt(`) = Yt + θ0



ARIMA Forecasting

Similarly, the difference equation form for the lead ` forecast is

Ŷt(`) = Ŷt(`− 1) + θ0 for l ≥ 1

and iterating backward on ` yields the explicit expression

Ŷt(`) = Yt + θ0` for ` ≥ 1.

Different from the forecast for AR(1) model Ŷt(`) ≈ µ for large `.
If θ 6= 0, the forecast does not converge for long leads but rather
follows a straight line with slope θ0 for all `.



ARIMA Forecasting

Note that the presence or absence of the constant term θ0
significantly alters the nature of the forecast.
For this reason, constant terms should not be included in
nonstationary ARIMA models unless the evidence is clear that
the mean of the differenced series is significantly different from
zero.
The following equation

Var(Ȳ ) =
γ0

n
+

2
n

n−1∑
k=1

(
1− k

n
γk

)
=

1
n

n−1∑
k=−n+1

(
1− |k |

n

)
γk

for the variance of the sample mean will help assess this
significance.



ARIMA Forecasting

as we have seen in the AR(1) and MA(1) cases, the one-step-ahead
forecast error is

et(1) = Yt+1 − Ŷt(1) = et+1

Also

et(`) = Yt+` − Ŷt(`)

= (Yt + `θ0 + et+1 + · · ·+ et+`)− (Yt + `θ0)

= et+1 + et+2 + · · ·+ et+`

which agrees with previous equation for AR model since in this
model Ψj = 1 for all j .



ARIMA Forecasting

So we have

Var(et(`)) = σ2
e

`−1∑
j=0

Ψ2
j = `σ2

e

In contrast to the stationary case, here Var(et(`)) grows without
limit as the forecast lead time ` increases. We shall see that this
property is characteristic of the forecast error variance for all
nonstationary ARIMA processes.



ARIMA Forecasting

ARMA(p, q):

For the general stationary ARMA(p, q) model, the difference
equation form for computing forecasts is given by:

Ŷt(`) = φ1Ŷt(`− 1) + φ2Ŷt(`− 2) + · · ·+ φpŶt(`− p) + θ0

− θ1E (et+`−1|Y1,Y2, · · · ,Yt)− θ2E (et+`−2|Y1,Y2, · · · ,Yt)

− · · · − θqE (et+`−q|Y1,Y2, · · · ,Yt)

where

E (et+j |Y1,Y2, · · · ,Yt) =

{
0 for j > 0

et+j for j ≤ 0

We note that Ŷt(j) is a true forecast for j > 0,but for j ≤ 0,
Ŷt(j) = Yt+j .



ARIMA Forecasting

Previous equation involves some minor approximation. For an
invertible model, we know that using the π-weights, et can be
expressed as a linear combination of the infinite sequence
Yt ,Yt−1,Yt−2, · · · . However, the π-weights die out exponentially
fast, and the approximation assumes that πj is negligible for
j > t − q.



ARIMA Forecasting

Consider an ARMA(1,1) model, we have

Ŷt(1) = φYt + θ0 − θet

with Ŷt(2) = φŶt(1) + θ0

more generally,

Ŷt(`) = φŶt(`− 1) + θ0 for ` ≥ 2

using previous equation to get the recursion started.



ARIMA Forecasting

Previous equations can be written in terms of the process mean and
then solved by iteration to get the alternative explicit expression

Ŷt(`) = µ+ φ`(Yt − µ)− φ`−1et for ` ≥ 1

The noise terms et−(q−1), · · · , et−1, et appear directly in the
computation of the forecasts for leads ` = 1, 2, · · · , q. However, for
` > q, the AR portion of the difference equation takes over and we
have

Ŷt(`) = φ1Ŷt(`−1)+φ2Ŷt(`−2)+ · · ·+φpŶt(`−p)+θ0 for ` > q



ARIMA Forecasting

Thus the general nature of the forecast for long lead times will be
determined by the autoregressive parameters φ1, φ2, · · · , φp (and
the constant term, θ0, which is related to the mean of the process).

Recall that θ0 = µ(1− φ1 − φ2 − · · · − φp), we can write previous
equation in terms of deviations from µ as

Ŷt(`)− µ = φ1[Ŷt(`− 1)− µ] + φ2[Ŷt(`− 2)− µ] + · · ·+
φp[Ŷt(`− p)− µ] for ` > q



ARIMA Forecasting

As a function of lead time `, Ŷt(`)− µ follows the same
Yule-Walker recursion as the autocorrelation function ρk of the
process. Recall that for an ARMA model, the autocorrelation
function satisfies

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p for k > q.

Thus, the roots of the characteristic equation will determine
the general behavior of Ŷt(`)− µ for large lead times.
In particular, Ŷt(`)− µ can be expressed as a linear
combination of exponentially decaying terms in `
(corresponding to the real roots) and damped sine wave terms
(corresponding to the pairs of complex roots).



ARIMA Forecasting

Thus, for any stationary ARMA model, Ŷt(`)− µ decays to
zero as ` increases, and the long-term forecast is simply the
process mean µ as given in Ŷt(`) ≈ µ
This agrees with common sense since for stationary ARMA
models the dependence dies out as the time span between
observations increases, and this dependence is the only reason
we can improve on the “naive" forecast of using µ alone.



ARIMA Forecasting

To argue the validity of

Var(et(`)) = σ2
e (1 + Ψ2

1 + · · ·+ Ψ2
`−1)

in the present generality, we need to consider a new representation
for ARIMA processes. Appendix G shows that any ARIMA model
can be written in truncated linear process form as

Yt+` = Ct(`) + It(`) for ` > 1

where for our present purposes, we need only know that Ct(`) is a
certain function of Yt ,Yt−1, · · · and

It(`) = et+` + Ψ1et+`−1 + · · ·+ Ψ`−1et+1 for ` ≥ 1



ARIMA Forecasting

Furthermore, for invertible models with t reasonably large, Ct(`) is
a certain function of the finite history Yt ,Yt−1, · · · ,Y1. Thus we
have

Ŷt(`) = E (Ct(`)|Y1, · · · ,Yt) + E (It(`)|Y1, · · · ,Yt) = Ct(`)

Finally,

et(`) = Yt+` − Ŷt(`)

= [Ct(`) + It(`)]− Ct(`) = It(`)

= et+` + Ψ1et+`−1 + Ψ`−1et+1



ARIMA Forecasting

Thus for a general invertible ARIMA process,

E [et(`)] = 0 and Var(et(`)) = σ2
e

`−1∑
j=0

Ψ2
j for ` ≥ 1

Recall that for a general linear process Yt = et + Ψ1et−1 + · · · , we
have

Cov(Yt ,Yt−k) = σ2
e

∞∑
i=0

ΨiΨi+k

We see that for long lead times in stationary ARMA models, we
have

Var(et(`)) ≈ σ2
e

∞∑
j=0

Ψ2
j or Var(et(`)) ≈ γ0 for large `



Questions?


