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Recap

Deterministic Trend Forecast
The forecast Ŷt(`) = E (Yt+`|Y1, · · · ,Yt)

Yt = µt + Xt , Xt ∼ N (0, γ0)
Ŷt(`) = µt+`

In case of linear trend, Ŷt(`) = β0 + β1(t + `)
In case of seasonal models, µt = µt+12, Ŷt(`) = Ŷt(`+ 12).

The forecast error et(`)
E (et(`)) = 0 and Var(et(`)) = γ0.



Recap

ARIMA Forecasting: AR(1): Yt − µ = φ(Yt−1 − µ) + et
Forecast

Ŷt(1) = µ+ φ(Yt − µ)
Ŷt(`) = µ+ φ[Ŷt(`− 1)− µ] for ` ≥ 1 or
Ŷt(`) = µ+ φ`(Yt − µ), or
Since |φ| < 1, Ŷt(`) ≈ µ.

Forecast Error
one-step-ahead forecast error: et(1) = et+1, Var(et(1)) = σ2

e

longer lead forecast error:
et(`) = et+` + φet+`−1 + · · ·+ φ`−1et+1
et(`) = et+` + Ψ1et+`−1 + · · ·+ Ψ`−1et+1 holds for all ARIMA
models.
Var(et(`)) = σ2

e (1 + Ψ2
1 + · · ·+ Ψ2

`−1)

For AR(1), Var(et(`)) = σ2
e

[
1−φ2`

1−φ2

]
≈ σ2

e

1−φ2 = Var(Yt) = γ0

for large `.



Recap

MA(1): Yt = µ+ et − θet−1

Ŷt(1) = µ− θet , et(1) = et+1

Ŷt(`) = µ for ` > 1 (cf. Ŷt(`) ≈ µ for AR(1))
et(`) = et+` − θet+`−1 for ` > 1

Var(et(`)) =

{
σ2
e , ` = 1;
σ2
e (1 + θ2), ` > 1

Random Walk with Drift: Yt = Yt−1 + θ0 + et

Ŷt(1) = Yt + θ0 and Ŷt(`) = Yt + θ0`

et(1) = et+1 and et(`) = et+1 + et+2 + · · ·+ et+`,
Var(et(`)) = `σ2

e



Recap

ARMA(p, q):
The forecast

Ŷt(`) = φ1Ŷt(`− 1) + φ2Ŷt(`− 2) + · · ·+ φpŶt(`− p) + θ0

− θ1E (et+`−1|Y1,Y2, · · · ,Yt)− θ2E (et+`−2|Y1,Y2, · · · ,Yt)

− · · · − θqE (et+`−q|Y1,Y2, · · · ,Yt)

For ` > q,

Ŷt(`) = φ1Ŷt(`− 1) + φ2Ŷt(`− 2) + · · ·+ φpŶt(`− p) + θ0

Write it in terms of deviations, → Yule-Walker Equation

Ŷt(`)− µ = φ1[Ŷt(`− 1)− µ] + φ2[Ŷt(`− 2)− µ] + · · ·+
φp[Ŷt(`− p)− µ] for ` > q



Recap

Ŷt(`)− µ can be expressed as a linear combination of
exponentially decaying terms in ` (corresponding to the real
roots) and damped sine wave terms (corresponding to the
pairs of complex roots). That is Ŷt(`) ≈ µ for large `.
Note that any ARIMA model can be written in truncated
linear process form as Yt+` = Ct(`) + It(`) for ` > 1, thus
et(`) = It(`) = et+` + Ψ1et+`−1 + · · ·+ Ψ`−1et+1, and
E [et(`)] = 0 for ` ≥ 1
Var(et(`)) = σ2

e

∑`−1
j=0 Ψ2

j for ` ≥ 1



Nonstationary Models

As the random walk shows, forecasting for nonstationary ARIMA
models is quite similar to forecasting for stationary ARMA models,
but there are some striking differences.

Recall that an ARIMA(p, 1, q) model can be written as a
nonstationary ARMA(p + 1, q) model, We shall write this as

Yt = ψ1Yt−1 + ψ2Yt−2 + ψ3Yt−3 + · · ·+ ψpYt−p + ψp+1Yt−p−1

+ et − θ1et−1 − θ2et−2 − · · · − θqet−q

where the script coefficients ψ are directly related to the φ
coefficients.



Nonstationary Models

In particular,

ψ1 = 1 + φ1, ψj = φj − φj−1, for j = 1, 2, · · · , p
and

ψp+1 = −φp

For a general order of differencing d , we would have p + d of the ψ
coefficients.

From this representation, we can immediately extend previous
equations to cover the nonstationary cases by replacing p by p + d
and ψj by φj .



Nonstationary Models

As an example of the necessary calculations, consider the
ARIMA(1,1,1) case. Here

Yt − Yt−1 = φ(Yt−1 − Yt−2) + θ0 + et − θet−1

so that

Yt = (1 + φ)Yt−1 − φYt−2 + θ0 + et − θet−1

Thus

Ŷt(1) = (1 + φ)Yt − φYt−1 + θ0 − θet
Ŷt(2) = (1 + φ)Ŷt(1)− φYt + θ0

and
Ŷt(`) = (1 + φ)Ŷt(`− 1)− φŶt(`− 2) + θ0



Nonstationary Models

For the general invertible ARIMA model, the truncated linear
process representation and the calculations following these
equations show that we can write

et(`) = et+`+Ψ1et+`−1 +Ψ2et+`−2 + · · ·+Ψ`−1et+1 for ` ≥ 1

and so

E (et(`)) = 0 Var(et(`)) = σ2
e

`−1∑
j=0

Ψ2
j for ` ≥ 1

However, for nonstationary series, the Ψj -weights do not decay to
zero as j increases.



Nonstationary Models

For example, for the random walk model, Ψj = 1 for all j ; for the
IMA(1,1) model, Ψj = 1− θ for j ≥ 1; for the IMA(2,2) case,
Ψj = 1 + θ2 + (1− θ1 − θ2 + 2)j for j ≥ 1; and for the ARI(1,1)
model, Ψj = (1− φj+1)/(1− φ) for j ≥ 1.

Thus, for any nonstationary model, the equation shows that the
forecast error variance will grow without bound as the lead time `
increases. This fact should not be too surprising since with
nonstationary series the distant future is quite uncertain.



Prediction Limits

As in all statistical endeavors, in addition to forecasting or
predicting the unknown Yt+`, we would like to assess the precision
of our predictions.

Deterministic Trends:

For the deterministic trend model with a white noise stochastic
component {Xt}, we recall that

Ŷt(`) = µt+` and Var(et(`)) = Var(Xt+`) = γ0

If the stochastic component is normally distributed, then the
forecast error

et(`) = Yt+` − Ŷt(`) = Xt+`

is also normally distributed.



Prediction Limits

Thus, for a given confidence level 1− α, we could use a standard
normal percentile, z1−α/2, to claim that

P

[
−z1−α/2 <

Yt+` − Ŷt(`)√
Var(et(`))

< z1−α/2

]
= 1− α

or equivalently,

P
[
Ŷt(`)− z1−α/2

√
Var(et(`)) < Yt+`

< Ŷt(`) + z1−α/2
√

Var(et(`))
]

= 1− α

Thus we may be (1−α)100% confident that the future observation
Yt+` will be contained within the prediction limits

Ŷt(`)± z1−α/2
√

Var(et(`))



Prediction Limits

As a numerical example, consider the monthly average temperature
series once more. We used the cosine model to predict the June
1976 average temperature as 68.3◦F .The estimate of√

Var(et(`)) =
√
γ0 for this model is 3.7◦F . Thus 95% prediction

limits for the average Jun 1976 temperature are

68.3± 1.96(3.7) = 68.3± 7.252 or 61.05◦F to 75.55◦F



Prediction Limits

From standard regression analysis, since the forecast involves
estimated regression parameters, the correct forecast error
variance is given by γ0[1 + (1/n) + cn,`], where cn,` is a certain
function of the sample size n and the lead time `.
However, it may be shown that for the types of trends that we
are considering (namely, cosines and polynomials in time) and
for large sample sizes n, the 1/n and cn,` are both negligible
relative to 1.
For example, with a cosine trend of period 12 over N = n/12
years, we have that cn` = 2/n; thus the correct forecast error
variance is γ0[1 + (3/n)] rather than our approximate γ0

For the linear time trend model, it can be shown that
cn,` = 3(n + 2`− 1)2/[n(n2 − 1)] ≈ 3/n for moderate lead `
and large n. Thus, again our approximation seems justified.



Prediction Limits

ARIMA Models:

If the white noise terms {et} in a general ARIMA series each arise
independently from a normal distribution, then from previous
equation, the forecast error et(`) will also have a normal
distribution, and the steps leading to

Ŷt(`)± z1−α/2
√
Var(et(`))

remain valid. However, in contrast to the deterministic trend
model, recall that in the present case

Var(et(`)) = σ2
e

`−1∑
j=0

Ψ2
j



Prediction Limits

In practice, σ2
e will be unknown and must be estimated from the

observed time series. The necessary Ψ-weights are, of course, also
unknown since they are certain functions of the unknown φ’s and
θ’s. For large sample sizes, these estimations will have little effect
on the actual prediction limits given above.

As a numerical example, consider the AR(1) model that we
estimated for the industrial color property series. We use
φ = 0.5705, µ = 74.3293, and σ2

e = 24.8.

For an AR(1) model, recall

Var(et(`)) = σ2
e

[
1− φ2`

1− φ2

]



Prediction Limits

For a one-step-ahead prediction, we have

70.14793± 1.96
√
24.8 = 70.14793± 9.760721 or 60.39 to 79.91

Two steps ahead, we obtain

71.86072± 11.88343 or 60.71 to 83.18

Notice that this prediction interval is wider than the previous
interval. Forecasting ten steps ahead leads to

74.173934± 11.88451 or 62.42 to 86.19

By lead 10, both the forecast and the forecast limits have settled
down to their long-lead values.



Forecasting Illustrations

Deterministic Trends:

Figure: Forecasts and Limits for the Temperature Cosine Trend

This figure displays the last four years of the average monthly
temperature time series together with forecasts and 95% forecast
limits for two additional years. Since the model fits quite well with
a relatively small error variance, the forecast limits are quite close
to the fitted trend forecast.



Forecasting Illustrations

ARIMA Models:

Figure: Forecasts and Forecast Limits for the AR(1) Model for Color

This figure displays this series together with forecasts out to lead
time 12 with the upper and lower 95% prediction limits for those
forecasts. In addition, a horizontal line at the estimate for the
process mean is shown. Notice how the forecasts approach the
mean exponentially as the lead time increases. Also note how the
prediction limits increase in width.



Forecasting Illustrations

Figure: Forecasts from an AR(3) Model for Sqrt(Hare)

The Canadian hare abundance series was fitted by working with the
square root of the abundance numbers and then fitting an AR(3)
model. Notice how the forecasts mimic the approximate cycle in
the actual series even when we forecast with a lead time out to 25
years in this figure.



Updating ARIMA Forecasts

Suppose we are forecasting a monthly time series. Our last
observation is, say, for February, and we forecast for March, April,
and May.

As time goes by, the actual value for March becomes available.
With this new value in hand, we would like to update or revise
(and, one hopes, improve) our forecasts for April and May.

Of course, we could compute new forecasts from scratch. However,
there is a simpler way.



Updating ARIMA Forecasts

For a general forecast origin t and lead time `+ 1, our original
forecast is denoted Ŷt(`+ 1).

Once the observation at time t + 1 becomes available, we would
like to update our forecast as Ŷt+1(`). This yields

Yt+`+1 = Ct(`+ 1) + et+`+1 + Ψ1et+` + Ψ2et+`−1 + · · ·+ Ψ`et+1

Since Ct(`+ 1) and et+1 are functions of Yt+1,Yt , · · · , whereas
et+`+1, et+`, · · · , et+2 are independent of Yt+1,Yt , · · · ,we quickly
obtain the expression

Ŷt+1(`) = Ct(`+ 1) + Ψ`et+1



Updating ARIMA Forecasts

However, Ŷt(`+ 1) = Ct(`+ 1), and, of course,
et+1 = Yt+1 − Ŷt(1). Thus, we have the general updating
equation

Ŷt+1(`) = Ŷt(`+ 1) + Ψ`[Yt+1 − Ŷt(1)]

Notice that [Yt+1 − Ŷt(1)] is the actual forecast error at time t + 1
once Yt+1 has been observed.



Updating ARIMA Forecasts

As a numerical example, consider the the industrial color property
time series. We fit an AR(1) model to forecast one step ahead as
Ŷ35(1) = 70.14757 and two steps ahead as Ŷ35(2) = 71.94342.

If now the next color value becomes available as Yt+1 = Y36 = 65,
then we update the forecast for time t = 37 as

Ŷt+1(1) = Ŷ36(1) = 71.94342+ 0.5705(65− 70.14757) = 69.00673



Forecast Weights and Exponentially Weighted Moving Averages

For ARIMA models without moving average terms, it is clear
how the forecasts are explicitly determined from the observed
series Yt ,Yt−1, · · · ,Y1.
However, for any model with q > 0, the noise terms appear in
the forecasts, and the nature of the forecasts explicitly in
terms of Yt ,Yt−1, · · · ,Y1 is hidden.
To bring out this aspect of the forecasts, we return to the
inverted form of any invertible ARIMA process, namely

Yt = π1Yt−1 + π2Yt−2 + π3Yt−3 + · · ·+ et



Forecast Weights and Exponentially Weighted Moving Averages

Thus we can also write

Yt+1 = π1Yt + π2Yt−1 + π3Yt−2 + · · ·+ et+1

Taking conditional expectations of both sides, given
Yt ,Yt−1, · · · ,Y1, we obtain

Ŷt(1) = π1Yt + π2Yt−1 + π3Yt−2 + · · ·

(We are assuming the t is sufficiently large and/or that the
π-weights die out sufficiently quickly so that πt , πt+1, · · · are all
negligible.)



Forecast Weights and Exponentially Weighted Moving Averages

For any invertible ARIMA model, the π-weights can be calculated
recursively from the expressions

πj =


min(j ,q)∑

i=1
θiπj−i + ψj for 1 ≤ j ≤ p + d

min(j ,q)∑
i=1

θiπj−i for j > p + d

with initial value π0 = −1. (Compare this with the ARMA model
for the Ψ-weights.)



Forecast Weights and Exponentially Weighted Moving Averages

Consider in particular the nonstationary IMA(1,1) model,
Yt = Yt−1 + et − θet−1. Here p = 0, d = 1, q = 1, with φ1 = 1;
thus

π1 = θπ0 + 1 = 1− θ
π2 = θπ1 = θ(1− θ)

and generally,
πj = θπj−1 for j > 1

Thus we have explicitly

πj = (1− θ)θj−1

so we have
πj = (1− θ)θj−1 for j ≥ 1



Forecast Weights and Exponentially Weighted Moving Averages

That is, we can write

Ŷt(1) = (1− θ)Yt + (1− θ)θYt−1 + (1− θ)θ2Yt−2 + · · ·

In this case, the π-weights decrease exponentially, and futhermore,

∞∑
j=1

πj = (1− θ)
∞∑
j=1

θj−1 =
1− θ
1− θ

= 1

Thus Ŷt(1) is called the exponentially weighted moving
average (EWMA).



Forecast Weights and Exponentially Weighted Moving Averages

Simple algebra shows that we can also write

Ŷt(1) = (1− θ)Yt + θŶt−1(1)

and
Ŷt(1) = Ŷt−1(1) + (1− θ)

[
Yt − Ŷt−1(1)

]
These equations show how to update forecasts from origin t − 1 to
origin t, and they express the result as a linear combination of the
new observation and the old forecast or in terms of the old forecast
and the last observed forecast error.



Forecast Weights and Exponentially Weighted Moving Averages

The parameter 1− θ is called the smoothing constant in
EWMA literature, and its selection (estimation) is often quite
arbitrary.
From the ARIMA model-building approach, we let the data
indicate whether an IMA(1,1) model is appropriate for the
series under consideration.
If so, we then estimate θ in an efficient manner and compute
an EWMA forecast that we are confident is the minimum
mean square error forecast. A comprehensive treatment of
exponential smoothing methods and their relationships with
ARIMA models is given in Abraham and Ledolter (1983).



Forecasting Transformed Series

Differencing: Suppose we are interested in forecasting a series
whose model involves a first difference to achieve stationarity. Two
methods of forecasting can be considered:

forecasting the original nonstationary series, for example by
using the difference equation form of ARMA(p, q) with φ’s
replaced by ψ’s throughout, or
forecasting the stationary differenced series Wt = Yt − Yt−1
and then “undoing" the difference by summing to obtain the
forecast in original terms.

We shall show that both methods lead to the same forecasts. This
follows essentially because differencing is a linear operation and
because conditional expectation of a linear combination is the same
linear combination of the conditional expectations.



Forecasting Transformed Series

Consider in particular the IMA(1,1) model. Basing our work on the
original nonstationary series, we forecast as

Ŷt(1) = Yt − θet and Ŷt(`) = Ŷt(`− 1) for ` > 1

Consider now the differenced stationary MA(1) series
Wt = Yt − Yt−1. We would forecast Wt+` as

Ŵt(1) = −θet and Ŵt(`) = 0 for ` > 1



Forecasting Transformed Series

However, Ŵt(1) = Ŷt(1)− Yt ; thus Ŵt(1) = −θet is equivalent to
Ŷt(1) = Yt − θet as before. Similarly, Ŵt(`) = Ŷt(`)− Ŷt(`− 1).

The same result would apply to any model involving differences of
any order and indeed to any type of linear transformation with
constant coefficients. (Certain linear transformations other than
differencing may be applicable to seasonal time series.



Forecasting Transformed Series

Log Transformations:
As we saw earlier, it is frequently appropriate to model the
logarithms of the original series — a nonlinear transformation. Let
Yt denote the original series value and let Zt = log(Yt). It can be
shown that we always have

E (Yt+`|Yt ,Yt−1, · · · ,Y1) ≥ exp [E (Zt+`|Zt ,Zt−1, · · · ,Z1)]

with equality holding only in trivial cases.



Forecasting Transformed Series

Thus, the naive forecast exp[Ẑt(`)] is not the minimum mean
square error forecast of Yt+`. To evaluate the minimum mean
square error forecast in original terms, we shall find the following
fact useful: If X has a normal distribution with mean µ and
variance σ2, then

E [exp(X )] = exp

[
µ+

σ2

2

]
In our application

µ = E (Zt+`|Zt ,Zt−1, · · · ,Z1)



Forecasting Transformed Series

and

σ2 = Var(Zt+`|Zt ,Zt−1, · · · ,Z1)

= Var [et(`) + Ct(`)|Zt ,Zt−1, · · · ,Z1)

= Var [et(`)|Zt ,Zt−1, · · · ,Z1) + Var [Ct(`)|Zt ,Zt−1, · · · ,Z1)

= Var [et(`)|Zt ,Zt−1, · · · ,Z1)

= Var [et(`)]

These follow from the truncated linear process (applied to Zt) and
the fact that Ct(`) is a function of Zt ,Zt−1, · · · , whereas et(`) is
independent of Zt ,Zt−1, · · · . Thus the minimum mean square error
forecast in the original series is given by

exp

{
Ẑt(`) +

1
2
Var [et(`)]

}



Forecasting Transformed Series

Throughout our discussion of forecasting, we have assumed
that minimum mean square forecast error is the criterion of
choice. For normally distributed variables, this is an excellent
criterion.
However, if Zt has a normal distribution, then Yt = exp(Zt)
has a lognormal distribution, for which a different criterion
may be desirable.
In particular, since the log-normal distribution is asymmetric
and has a long right tail, a criterion based on the mean
absolute error may be more appropriate.
For this criterion, the optimal forecast is the median of the
distribution of Zt+` conditional on Zt ,Zt−1, · · · ,Z1.
Since the log transformation preserves medians and since, for a
normal distribution, the mean and median are identical, the
naive forecast exp[Ẑt(`)] is the optimal forecast for Yt+` in the
sense that it minimizes the mean absolute forecast error.



Summary of Forecasting with Certain ARIMA Models

IMA(1,1) with Constant Term: Yt = Yt−1 + θ0 + et − θet−1

Ŷt(`) = Ŷt(`− 1) + θ0 − θet = Yt + `θ0 − θet
Ŷt(1) = (1− θ)Yt + (1− θ)θYt−1 + · · · (the EWMA for θ0 = 0)

et(`) = et+` + (1− θ)et+`−1 + · · ·+ (1− θ)et+1 for ` ≥ 1
Var(et(`)) = σ2

e [1 + (`− 1)(1− θ)2]

Ψj = 1− θ for j > 0

Note that if θ0 6= 0, the forecasts follow a straight line with slope
θ0, but if θ0 = 0, which is the usual case, then the forecast is the
same for all lead times, namely

Ŷt(`) = Yt − θet



Summary of Forecasting with Certain ARIMA Models

IMA(2,2): Yt = 2Yt−1 − Yt−2 + θ0 + et − θ1et−1 − θ2et−2

Ŷt(1) = 2Yt − Yt−1 + θ0 − θ1et − θ2et−1

Ŷt(2) = 2Ŷt(1)− Yt + θ0 − θ2et
Ŷt(`) = 2Ŷt(`− 1)− Ŷt(`− 2) + θ0 for ` > 2

Ŷt(`) = A + B`+
θ0
2
`2

where

A = 2Ŷt(1)− Ŷt(2) + θ0

B = Ŷt(2)− Ŷt(1)− 3
2
θ0



Summary of Forecasting with Certain ARIMA Models

For IMA(2,2),
If θ0 6= 0, the forecasts follow a quadratic curve in `,
but if θ0 = 0, the forecasts form a straight line with slope
Ŷt(2)− Ŷt(1) and will pass through the two initial forecasts
Ŷt(1) and Ŷt(2).
It can be shown that Var(et(`)) is a certain cubic function of
`; see Box, Jenkins, and Reinsel (1994, p. 156).
We also have

Ψj = 1 + θ2 + (1− θ1 − θ2)j for j > 0

It can also be shown that forecasting the special case with
θ1 = 2ω and θ2 = −ω2 is equivalent to so-called double
exponential smoothing with smoothing constant 1− ω; see
Abraham and Ledolter (1983).



Summary

Forecasting or predicting future as yet unobserved values is
one of the main reasons for developing time series models.
Methods discussed in this chapter are all based on minimizing
the mean square forecasting error.
When the model is simply deterministic trend plus zero mean
white noise error, forecasting amounts to extrapolating the
trend.
However, if the model contains autocorrelation, the forecasts
exploit the correlation to produce better forecasts than would
otherwise be obtained. We showed how to do this with
ARIMA models and investigated the computation and
properties of the forecasts.



Summary

In special cases, the computation and properties of the
forecasts are especially interesting and we presented them
separately.
Prediction limits are especially important to assess the
potential accuracy (or otherwise) of the forecasts.
Finally, we addressed the problem of forecasting time series for
which the models involve transformation of the original series.



Questions?


