Times Series Analysis — Parameter
Estimation (I)

Jianyong Sun
School of Mathematics and Statistics
Xi'an Jiaotong University

19th Oct., 2017



@ Model specification — how to choose appropriate values for
p,d, and g for a given series

@ Non-stationarity case — Augmented Dickey-Fuller Test

@ Some real time sereis.




Parameter Estimation

@ We assume that a model has already been specified

@ Since the dth difference of the observed series is assumed to
be a stationary ARMA(p, g) process, we need only concern
ourselves with the problem of estimating the parameters in
such stationary model

@ In practice, we treat the dth difference of the original time
series as the time series from which we estimate the
parameters of the complete model.



The Methods of Moments

@ It is one of the easiest, if not the most efficient, methods for
obtaining parameter estimates.

@ The method consists of equating sample moments to
corresponding theoretical moments and solving the resulting
equations to obtain estimates of any unknown parameters.



The Methods of Moments

Autoregressive Models:

Consider first the AR(1) case. For this process, we have the simple
relationship p1 = ¢.

In the method of moments, p; is equated to r, the lag 1 sample
autocorrelation. Thus ¢ can be estimated by

¢p=n



The Methods of Moments

Consider AR(2) case. The relationships between the parameters ¢;
and ¢, and various moments are given by the Yule-Walker
equations:

p1 = ¢1+ p1o2 and p2 = p1o1 + P2

The method of moments replaces p1 by r1 and p» by r» to obtain

rn=¢1+ p192 and r = p1¢1 + 2

which are then solved to obtain

N ri(l—r) N rh— rl2
- - and =
o1 1-— rl2 92 1-— rl2



The Methods of Moments

Yule-Walker Estimates:

The general AR(p) case proceeds similarly. Replace px by r
throughout the Yule-Walker equations to obtain

pr+ngp2+nga+---+rp_19p = n
ner+¢2+ng3+---+rp20p = n
rp—1¢1+rp—2¢2+rp—3¢3+"'+¢p = Ip

The Durbin-Levinson recursion provides a convenient method of
solution but is subject to substantial round-off errors if the solution
is close to the boundary of the stationarity region.



The Methods of Moments

Moving Average Models:
The method of moments is not nearly as convenient when applied
to moving average models.

Consider the simple MA(1) case, we know that p; = _:Hi%' Now
equating p1 to r, we are solve a quadratic equation in 6.

If [ri] < 0.5, then the two real roots are given by

1 1
—— =+, -1
2/’1 4r12

The product of the two solutions is always equal to 1. Only one of
the solutions satisfies the invertibility condition |6| < 1:

. —l4+/1—4r
0 =

2r1




The Methods of Moments

e If = 40.5, unique, real solutions exist, namely F1, but
neither is invertible.

@ If |ry| > 0.5 (which is certainly possible even though
|p1] < 0.5), no real solutions exist, and so the method of
moments fails to yield an estimator of 6.

@ If || > 0.5, the specification of an MA(1) model would be in
considerable doubt.



The Methods of Moments

For higher-order MA models, the method of moments quickly gets
complicated. Note that

—O0k+010k—1++04—«0,
il : S — 17 27 o, q
Pk =

1462 +--+062
0 k>gq

The resulting equations are highly nonlinear in the 6's, however,
and their solution would of necessity be numerical.

There will be multiple solutions, of which only one is invertible.



The Methods of Moments

Mixed Models:

We consider only the ARMA(1,1) case. Recall

_(1-09)(9—-0)
& 1 Sl %2

d)kfl
for k > 1. Noting that p2/p1 = ¢, we can first estimate ¢ as

~ [‘2
p=2

rn

We can then use F
(1 —69)(¢ - 6)
1—20¢ + 62

to solve for 6. Note again that a quadratic equation must be solved
and only the invertible solution, if any, retained.



The Methods of Moments

Estimates of the Noise Variance:

The final parameter to be estimated is the noise variance, o2. In all
cases, we can first estimate the process variance, vo = Var(Y:), by
the sample variance

n

1 o
2 2
= E =
. n—ltl(t )

and use known relationships among 7o, 02 and the 6's and ¢'s to
estimate o2



The Methods of Moments

For the AR(p) models, note that

2

gl L
0 —
1—¢1p1— Q2ap2 — -+ — bppp
we get
G2 = (1= p1p1 — bapa — -+ — Pppp)s°

For an AR(1) process,
O'e = (1 g rl) g

since gZA) =n.



The Methods of Moments

For the MA(q) case, we have
Yo=(1+6]+65+ - +62)02,

SO 5
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For the ARMA(1,1) process, we have:

(1—2¢0 +6%) ,

Y0 = 1_—(1)2%
thus ”
o
X ¢ 2

= ————=~ S
1—2¢0 + 62



Numerical Examples

Method-of-Moments

True Parameters Estimates

Model 6 [ b, 0 b, o, n

MA(1) -0.9 —0.554 120
MA(1) 09 0.719 120
MA(l)  —09 NAT 60
MA(1) 0.5 —-0.314 60
AR(1) 0.9 0.831 60
AR(1) 0.4 0.470 60
AR(2) 15 -0.75 1472 -0.767 120

No method-of-moments estimate exists since r; = 0.544 for this simulation.

Figure: Method-of-Moments Parameter Estimates for Simulated Series

The estimates for all the autoregressive models are fairly good but
the estimates for the moving average models are not acceptable.



Numerical Examples

Consider the Canadian hare abundance series with a square root
transformation. Consider an AR(2) model with the hare data. The
two sample ACFs are r; = 0.736 and r» = 0.304. Using previous
equations, the method-of-moments estimates of ¢; and ¢, are

y 1
@ M —1.1178
1-— r1
2
- — 0519
92 1-— rl2

The sample mean and variance of this series are found to be 5.82
and 5.88. Then the noise variance can be estimated as

O'e = (1 — gi)lrl ¢2I’2)52 = 1.97



Numerical Examples

The estimated model is then

VY:-5.82 = 1.1178 (\/Vio1 — 5.82)~0.519 (/Y2 — 5.82) +e;

or
VY =2335+1.11784/Y:—1 — 0519/ Yi_2 + &

with estimated noise variance of 1.97.



Numerical Examples

Consider now the oil price series. It is suggested that we specify an
MA(1) model for the first differences of the logarithms of the
series. The lag 1 sample autocorrelation in that exhibit is 0.212, so
the method-of-moments estimate of @ is

A~ — = ! 2
b 1++/1-4(0.212)2 0.222.

2(0.212) i

The mean of the differences of the logs is 0.004 and the variance is
0.0072. The estimated model is

Vlog(Y:) = 0.004 + e; + 0.222¢;_1

with estimated noise variance of

52
Fo? = — = 0.00686.
1462

The standard error of the sample mean is 0.0060.




Numerical Examples

Thus, the observed sample mean of 0.004 is not significantly
different from zero and we would remove the constant term from
the model, giving a final model of

log(Y:) = log(Yi—1) + e + 0.222¢;_



Least Squares Estimation

Because the method of moments is unsatisfactory for many models,
we must consider other methods of estimation. First, the least
squares.

At this point, we introduce a possibly nonzero mean, p, into our
stationary models and treat it as another parameter to be
estimated by least squares.



Least Squares Estimation

Autoregressive Models:

Consider the first-order case where:
Yi—p=0¢(Yec1—p) + e

We can view this as a regression model with predictor variable Y;_1
and response variable Y;. Least squares estimation then proceeds
by minimizing the sum of squares of the differences

(Ye— 1) — 6(Yer — 1)



Least Squares Estimation

Since only Y1, Y2,---, Y, are observed, we can only sum from
t=2tot=n:

Sc(,p) = Z[ (Ve = 1) = (Yemr — )

which is usually called the conditional sum-of-squares function.
According to the principle of least squares, we estimate ¢ and u by
the respective values that minimize Sc(¢, 1) given the observed
values of Y1, Y2, -+, Y.



Least Squares Estimation

Take derivatives of Sc w.r.t u, and zeroing it, we obtain

u:(n_l th ¢2Yt1
Now for large n
1 ig 1 S
Y; & YiirY
n—1 : n—1Z Sy
t=2 £=2

Thus, regardless of the value of ¢, we have:

1t i -
(Y —¢Y)=V

-

We sometimes say, except for end effects, i =Y .



Least Squares Estimation

Consider now the minimization of S.(¢, \A/) w.r.t. ¢. We have

3 TlYe= V)(¥is = 9)
Zgzz(yt—l i Y)2
Except for one term missing in the denominator, namely (Y, — Y)?
, this is the same as .

The lone missing term is negligible for stationary processes, and
thus the least squares and method-of-moments estimators are
nearly identical, especially for large samples.



Least Squares Estimation

For the general AR(p) process, the same methods can be used to
obtain the same result, namely i = Y.

To generalize the estimation of the ¢'s, we consider the

second-order model. If we replace y by Y in the conditional
sum-of-squares function, so

Se(¢1,¢2, Y Z[ Ye—Y)=61(Yee1 — V) — ¢o(Yeo — V)PP



Least Squares Estimation

Take Sc w.r.t. ¢1, zeroing it, we have:

“2) (Ve = V) =1 (Yer = V) = g2(Yea = V)|(Yer — ¥) =0

=3
> b1+

2
( (Yee1 = Y)(Ye2 — V)) ¢2
=3

which we can rewrite as

(Y= V) (Yeq - (

t=3

uM:

3



Least Squares Estimation

The sum of the lagged products 3 7 5(V: — Y)(Yi-1 — Y) is very

nearly the numerator of ri, just one product (Y2 — Y)(Y1 —Y)is
missing.

A similar situation exists for 3 ¢ 3(Ye-1 — Y)(Yi_2 — Y), but
(Yo — Y)(Yn—1 — Y) is missing.

If we divide both sides of 7 3(Y;: — Y)(Yii1 = Y) by

S _3(Y: — Y)?, then except for end effects, which are negligible
under the stationarity assumption, we obtain

r=¢1+ ne



Least Squares Estimation

Take derivatives Sc w.r.t. ¢2, and zeroing it, analyze similarly as
previous, we have:

r=ne1+ ¢
We obtain the sample Yule-Walker equations for an AR(2) model.
for the general stationary AR(p) case: To an excellent

approximation, the conditional least squares estimates of the ¢'s are
obtained by solving the sample Yule-Walker equations.



Least Squares Estimation

Consider now the least-squares estimation of 6 in the MA(1)
model: Y; = e; — Oer_1.

Note that invertible MA(1) models can be expressed as AR(c0)

YA 2o YO BRTTTNE v iy - I,



Least Squares Estimation

So, least squares can be carried out by choosing a value 6 that
minimizes

Se®) =) =D [Yi+0Ye1+6Ye 2+ 0V 34T

where e; = e;(6) is a function of the observed series and the
unknown parameter 6.



Least Squares Estimation

@ It is clear that the least squares problem is nonlinear in the
parameters.

@ We will not be able to minimize Sc(#) by taking a derivative
with respect to 6, setting it to zero, and solving.

@ Thus, even for the simple MA(1) model, we must resort to
techniques of numerical optimization.

@ Other problems exist in this case: We have not shown explicit
limits on the summation nor have we said how to deal with the
infinite series under the summation sign.



Least Squares Estimation

To address these issues, consider evaluating S.(6) for a single given
value of 6. Rewrite MA(1):

et = Yi+0Oera

Using this equation, e, - - , e, can be calculated recursively if we
have the initial value eg.

A common approximation is to set eg = 0 (this is its expected
value). Then, conditional on ey = 0, we have:



Least Squares Estimation

€1

€3

€n

Y1
Yo + fep
Y3 + fep

Yo+ 0en1

Thus calculate Sc(#) conditional on ey = 0 for that single given

value of 0.



Least Squares Estimation

For the simple case of one parameter, we could carry out a grid
search over the invertible range (—1, 1) for 6 to find the minimum
sum of squares.

For more general MA(q) models, a numerical optimization
algorithm, such as Gauss-Newton or Nelder-Mead, will be needed.

For higher-order MA models, the ideas are the same. We compute
er = et(b1,-- - ,0q) recursively from

er=Yr+ 0161+ 0er o+ -+ 064

with eg = e_; = --- = e_4 = 0. The sum of squares is minimized
jointly in 0y, --- , 64 using a multivariate numerical method.



Least Squares Estimation

Mixed Models:

Consider the ARMA(1,1) model:
Y =¢Yi1+e — e

As in the pure MA case, we wish to minimize S.(6) = > e?. We
can rewrite ARMA(1,1) as

er=Y: m0¥Gg +0e i

To obtain e;, we have the so-called ‘startup’ problem, namely Yj.



Least Squares Estimation

One approach is to set Yo = 0 or to Y if our model contains a
nonzero mean. A better approach is to begin the recursion at
t = 2, thus avoiding Y altogether, and simply minimize

Sc(¢,0) = Z e
=2

For the general ARMA(p, q), we compute

=Y —1Ye1— P2 Ve — - — ¢th—p
+ 0161+ 06t 2+ -+ 0qet_g
with e, = e,_1 = -+ = €p41-¢ = 0, then minimize
Sc(¢p1,-++ ,¢p,01,- -+ ,0q) numerically to obtain the conditional

least squares estimates of all the parameters.



Least Squares Estimation

For parameters 01, - - - , 64 corresponding to invertible models, the
start-up values e, = e,_1 = - -+ = €p11—q Will have very little
influence on the final estimates of the parameters for large samples.

For series of moderate length and also for stochastic seasonal
models, the start-up values will have a more pronounced effect on
the final estimates for the parameters.



Maximum Likelihood and Unconditional Least Squares

Thus we are led to consider the more difficult problem of maximum
likelihood estimation.

The advantage of the method of maximum likelihood is that all of
the information in the data is used rather than just the first and
second moments, as is the case with least squares

Another advantage is that many large-sample results are known
under very general conditions. One disadvantage is that we must
for the first time work specifically with the joint probability density
function of the process.



Maximum Likelihood and Unconditional Least Squares

Maximum Likelihood Estimation:

For any set of observations, Y1, Y2,--- , Y, time series or not, the
likelihood function L is defined to be the joint probability density of
obtaining the data actually observed.

it is considered as a function of the unknown parameters in the
model with the observed data held fixed.

For ARIMA models, L will be a function of the ¢'s, 6's, u and crg
given the observations Y7, Y5,--- , Y,

The maximum likelihood estimators are then defined as those
values of the parameters for which the data actually observed are
most likely, that is, the values that maximize the likelihood
function.



Maximum Likelihood and Unconditional Least Squares

First, let's start with the AR(1) model. The most common
assumption is that the white noise terms are independent, normally
distributed random variables with zero means and common
standard deviation o:

2
1/2 €
plec) = (2m02) /exp{—%g}

e

By independence, the joint pdf for ex, e3,--- , e, is

Af o
n—1)/2 Drn €f
| |p (&) = (2mo2) ("1 exp{—égg }



Maximum Likelihood and Unconditional Least Squares

Now consider

Yo—p = d(Y1-p)t+e
Ya—p = ¢(Yo—p)+es

Yo =t = o(Yn=1 — )+ e

If we condition on Y7 = yj, this equation defines a linear
transformation between ey, e3,--- , e, and Y5, Y3, , Y.



Maximum Likelihood and Unconditional Least Squares

Thus, we get

f()/2,}/37 T 7Yn‘}/1) = (27"0’2)7("71)/2

Xexp{ — 22[ P(ye— 1—#)]2}

et2

Now consider the marginal distribution of Y.

It follows from the linear process representation of the AR(1)
process that Y7 will have a normal distribution with mean p and
variance 02 /(1 — $?) because

Ye=p+ e+ der1+ der o+ ¢Per 3+



Maximum Likelihood and Unconditional Least Squares

Multiplying the conditional pdf 7(y2,- -, ya|y1) by the marginal
pdf of Y7 gives us the joint pdf of Y1, Y5, .-, Y, that we require.

Interpreted as a function of the parameters ¢, ;1 and o2, the
likelihood function for an AR(1) model is given by

525(0.0)

e

L(6, . 0%) = (2m0?) (1 — %) exp [—

where

n

S, 1) = > [(Ye— 1) — &(Yer — )P + (1 — ?) (V1 — 1)

t=2

which is called the unconditional sum-of-squares function.



Maximum Likelihood and Unconditional Least Squares

For AR(1), the log-likelihood function, denoted ¢(¢, i, 02) is
given by

1
20

({9, p,02) = 5 log(2m) — 5 og(03) + 5 log(1~ 67) -

5 55(9, 1)

For a given ¢ and p, £(é, 1, 02) can be maximized analytically
w.r.t. o2 in terms of ¢ and p. We obtain

S(o. 1)

n

25
O =

Usually divide by n — 2 rather than n (since we are estimating two
parameters, ¢ and i) to obtain an estimator with less bias.



Maximum Likelihood and Unconditional Least Squares

Now estimate ¢ and u. A comparison of the unconditional
sum-of-squares function S(¢, i) with the earlier conditional
sum-of-squares function Sc(¢, i) reveals one simple difference

S(¢, 1) = S, ) + (1 = ¢°) (Y1 — p)?

Since Sc(¢, i) involves a sum of n — 1 components, whereas

(1 — ¢?)(Y1 — p)? does not involve n, we shall have

S(¢, 1) = Sc(¢, pt). Thus the values of ¢ and p that minimize
S(¢p, ) or Sc(o, i) should be very similar, at least for larger sample
sizes.



Maximum Likelihood and Unconditional Least Squares

Unconditional Least Squares:

@ As a compromise between conditional least squares estimates
and full maximum likelihood estimates, we might consider
obtaining unconditional least squares estimates;

@ that is, estimates minimizing S(¢, pt). Unfortunately, the term
(1 — ¢?)(Y1 — i)? causes the equations 9S/0¢ = 0 and
0S/0u = 0 to be nonlinear in ¢ and pu, and reparameterization
to a constant term 6y = p(1 — ¢) does not improve the
situation substantially. Thus minimization must be carried out
numerically.

@ The resulting estimates are called unconditional least
squares estimates.



Properties of the Estimates

The large-sample properties of the maximum likelihood and least
squares (conditional or unconditional) estimators are identical and
can be obtained by modifying standard maximum likelihood theory.
Details can be found in Shumway and Stoffer (2006, pp. 125-129).

We shall look at the results and their implications for simple ARMA
models.



Properties of the Estimates

For large n, the estimators are approximately unbiased and normally
distributed. The variances and correlations are as follows:

AR(1):  Var(¢) = i

n

D QN I’
AR(2) : Var(¢1) ~ Var(¢o) ~ ==

Corr(1, $2) ~ | fl@ =40




Properties of the Estimates

B — 62
MA(L):  Var(d) ~ ~
< ) 193
MA(2) : Var(61) = Var(6,) ~
5 5 0
wmmﬁgz_lj%

Var

ARMA(1,1):  Var($) ~ [ }[1_¢q2
Hi

|55

V(I —¢?)(1-6?)
1— 90

Corr(,0) ~



Properties of the Estimates

Notice that in AR(1), the variance of the estimator of ¢
decreases as ¢ approaches +1.

Notice that even though an AR(1) model is a special case of
an AR(2) model, the variance of ¢; shows that our estimation
of ¢1 will generally suffer if we erroneously fit an AR(2) model
when, in fact, ¢» = 0.

Similar comments could be made about fitting an MA(2)
model when an MA(1) would suffice or fitting an ARMA(1,1)
when an AR(1) or an MA(1) is adequate.

For the ARMA(1,1) case, note the denominator of ¢ — 6 in the
variances. If ¢ and 6 are nearly equal, the variability in the
estimators of ¢ and € can be extremely large.

In all of the two-parameter models, the estimates can be
highly correlated, even for very large sample sizes.



Properties of the Estimates

n
¢ 50 100 200
0.4 0.13 0.09 0.06
0.7 0.10 0.07 0.05
0.9 0.06 0.04 0.03

Figure: AR(1) Model Large-Sample Standard Deviations of .

This table gives numerical values for the large-sample approximate
standard deviations of the estimates of ¢ in an AR(1) model for
several values of ¢ and several sample sizes.



Properties of the Estimates

For stationary autoregressive models, the method of moments
yields estimators equivalent to least squares and maximum
likelihood, at least for large samples.

For models containing moving average terms, such is not the case.
For an MA(1) model, it can be shown that the large-sample
variance of the method-of-moments estimator of € is equal to

1+602%+460%+ 6%+ 68

Var(0) ~ PO

It is seen that the variance for the method-of-moments estimator is
always larger than the variance of the maximum likelihood
estimator.



Properties of the Estimates

0.25 1.07
0.50 142
0.75 2.66
0.90 533

Figure: Method of Moments (MM) vs. Maximum Likelihood (MLE) in
MA(1) Models

This figure displays the ratio of the large-sample standard
deviations for the two methods for several values of 6.

if 8 is 0.5, the method-of-moments estimator has a large-sample
standard deviation that is 42% larger than the standard deviation of
the estimator obtained using maximum likelihood.



Questions?



