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Recap
Four methods to do parameter estimation

method-of-moment
For AR models, Yule-Walker equations
For MA models, nonlinear equations
For mixed models, difficult. ARMA(1,1) — φ̂ = r2

r1
, nonlinear

equation for θ̂
To estimate σ2

e , use sample variance



Recap
conditional least square

For AR(p), minimize
Sc(φ, µ) =

∑n
t=p+1[(Yt − µ)−

∑p
j=1 φj(Yt−j − µ)]2 →

Yule-Walker equations
For MA(1) model

minimize Sc(θ) =
∑

[Yt + θYt−1 + θ2Yt−2 + · · · ]2 →
numerical optimization
Given θ, through recursion to obtain et ’s, then minimize
Sc(θ) =

∑
e2
t

For ARMA model,
et = Yt − φ1Yt−1 − · · · − φpYt−p + θ1et−1 + · · ·+ θqet−q,
compute

∑
e2
t results in ‘start-up’ problems.



Recap
Maximum likelihood

joint probability of Y1, · · · ,Yn

For AR(1), define
S(φ, µ) =

∑n
t=2[(Yt − µ)− φ(Yt−1 − µ)]2 + (1− φ2)(Y1 − µ)

Define L(φ, µ, σ2
e ) = (2πσ2

e )
−n/2(1− φ2)1/2 exp

[
− 1

2σ2
e
S(φ, µ)

]
Unconditional least square

minimize S(φ, µ)

Large-sample properties of the MLE and conditional and
unconditional least square estimators



Illustrations of Parameter Estimation

1st Example: Consider the simulated MA(1) series with θ = −0.9.
We consider the estimates by method-of-moments, maximum
likelihood and unconditional sum-of-squares and conditional
least-square, listed in the table.

Method θ̂ Std .

MM -0.554 NA
MLE -0.915 0.04
Unconditional SS -0.923 0.04
Conditional SS -0.879 0.04

where the Std. is the standard error, estimated as√
Var(θ̂) ≈

√
1− θ2

n
≈ 0.04



Illustrations of Parameter Estimation

2nd Example: Consider the simulated MA(1) series with θ = 0.9.
We have

Method θ̂ Std .

MM 0.719 NA
MLE 0.958 0.04
Unconditional SS 0.983 0.04
Conditional SS 1.00 0.04

Here the maximum likelihood estimate of θ̂ = 1 is a little
disconcerting since it corresponds to a noninvertible model.



Illustrations of Parameter Estimation

3rd Example: MA(1) simulation with θ = −0.9. We have

Method θ̂ Std .

MM -0.719 NA
MLE -0.894 0.06
Unconditional SS -0.961 0.06
Conditional SS -0.979 0.06

The standard error can be computed as√
Var(θ̂) ≈

√
1− θ2

n
≈ 0.06



Illustrations of Parameter Estimation

For our simulated autoregressive models, the results are reported in
the following table

Parameter MM Conditional Unconditional MLE n
φ SS SS
0.9 0.831 0.857 0.911 0.892 60
0.4 0.470 0.473 0.473 0.465 60

The standard errors for the estimates are√
Var(φ̂) ≈

√
1− φ2

n
≈ 0.07

and √
Var(φ̂) ≈

√
1− φ2

n
≈ 0.11

Considering the magnitude of these standard errors, all four
methods estimate reasonably well for AR(1) models.



Illustrations of Parameter Estimation

Figure: Parameter Estimation for a Simulated AR(2) Model

The standard errors for the estimates are√
Var(φ̂1) ≈

√
Var(φ̂2) ≈

√
1− φ2

2
n

≈ 0.06

considering the size of the standard errors, all four methods
estimate reasonably well for AR(2) models.



Illustrations of Parameter Estimation

Final Example, consider the ARMA(1,1). Here φ = 0.6, θ = −0.3
and n = 100.

Figure: Parameter Estimation for a Simulated ARMA(1,1) Model



Illustrations of Parameter Estimation

Look at some real time series. The sample PACF strongly suggested
an AR(1) model for the industrial chemical property time series.

Figure: Parameter Estimation for the Color Property Series.

Here the standard error of the estimates is about√
Var(φ̂) ≈

√
1− (0.57)2

n
≈ 0.14

so all of the estimates are comparable.



Illustrations of Parameter Estimation

Consider the hare abundance series. We base all modeling on the
square root of the original abundance numbers. Based on the
partial autocorrelation function, we will estimate an AR(3) model.

Figure: Maximum Likelihood Estimates from R Software: Hare Series.

The intercept here is the estimate of the process mean µ not of θ0.

Noting the standard errors, the estimates of the lag 1 and lag 3
autoregressive coefficients are significantly different from zero, as is
the intercept term, but the lag 2 autoregressive parameter estimate
is not significant.



Illustrations of Parameter Estimation

The estimated model would be written√
Yt−5.6923 = 1.0519

(√
Yt−1 − 5.6923

)
−0.2292

(√
Yt−2 − 5.6923

)
− 0.3930

(√
Yt−3 − 5.6923

)
+ et

or√
Yt = 3.25+ 1.0519

√
Yt−1 − 0.2292

√
Yt−2 − 0.3930

√
Yt−3 + et

where Yt is the hare abundance in year t in original terms.



Illustrations of Parameter Estimation

The oil price series. The sample ACF suggested an MA(1) model
on the differences of the logs of the prices.

Figure: Estimation for the Difference of Logs of the Oil Price Series.

The method-of-moments estimate differs quite a bit from the
others. The others are nearly equal given their standard errors of
about 0.07.



Bootstrapping ARIMA Models

we summarized some approximate normal distribution results
for the estimator γ̂ where γ̂ is the vector consisting of all the
ARMA parameters.
These normal approximations are accurate for large samples,
and statistical software generally uses those results in
calculating and reporting standard errors.
However, the general theory provides no practical guidance on
how large the sample size should be for the normal
approximation to be reliable
Bootstrap methods (Efron and Tibshirani, 1993; Davison
and Hinkley, 2003) provide an alternative approach to
assessing the uncertainty of an estimator and may be more
accurate for small samples.



Bootstrapping ARIMA Models

We shall confine our discussion to the parametric bootstrap
that generates the bootstrap time series Y ∗1 ,Y

∗
2 , · · · ,Y ∗n by

simulation from the fitted ARIMA(p, d , q) model.
The bootstrap may be done by fixing the first p + d initial
values of Y ∗ to those of the observed data.
For stationary models, an alternative procedure is to simulate
stationary realizations from the fitted model, which can be
done approximately by simulating a long time series from the
fitted model and then deleting the transient initial segment of
the simulated data — the so-called burn-in.



Bootstrapping ARIMA Models

If the errors are assumed to be normally distributed, the errors
may be drawn randomly and with replacement from
N (0, σ̂2

e ).
For the case of an unknown error distribution, the errors can
be drawn randomly and with replacement from the residuals of
the fitted model.
For each bootstrap series, let γ̂∗ be the estimator computed
based on the bootstrap time series data using the method of
full maximum likelihood estimation assuming stationarity.
The bootstrap is replicated, say, B times. (For example,
B = 1000.)



Bootstrapping ARIMA Models

From the B bootstrap parameter estimates, we can form an
empirical distribution and use it to calibrate the uncertainty in
γ̂.
Suppose we are interested in estimating some function of γ,
say h(γ), e.g., the AR(1) coefficient.
Using the percentile method, a 95% bootstrap confidence
interval for h(γ) can be obtained as the interval from the 2.5
percentile to the 97.5 percentile of the bootstrap distribution
of h(γ) .



Bootstrapping ARIMA Models

We illustrate the bootstrap method with the hare data.
First bootstrap method: Generate recursively using the
equation

Y ∗t − φ̂1Y
∗
t−1 − φ̂2Y

∗
t−2 − φ̂3Y

∗
t−3 = θ̂0 + e∗t

for t = 4, 5, · · · , 31, where e∗t are chosen independently from
N (0, σ2

e ) and Y ∗1 = Y1, · · · ,Y ∗3 = Y3

Second, obtained using the same method except that the
errors are drawn from the residuals.
Third, the stationary bootstrap with a normal error distribution
Fourth, the stationary bootstrap with the empirical residual
distribution for the fourth row



Bootstrapping ARIMA Models

Figure: Bootstrap and Theoretical Confidence Intervals for the AR(3)
Model Fitted to the Hare Data

All results are based on about 1000 bootstrap replications, but full
maximum likelihood estimation fails for 6.3%, 6.3%, 3.8%, and
4.8% of 1000 cases for the four bootstrap methods I, II, III, and IV,
respectively.



Bootstrapping ARIMA Models

All four methods yield similar bootstrap confidence intervals,
although the conditional bootstrap approach generally yields
slightly narrower confidence intervals.
This is expected, as the conditional bootstrap time series bear
more resemblance to each other because all are subject to
identical initial conditions.
The bootstrap confidence intervals are generally slightly wider
than their theoretical counterparts that are derived from the
large-sample results.
Overall, we can draw the inference that the φ2 coefficient
estimate is insignificant, whereas both the φ1 and φ3
coefficient estimates are significant at the 5% significance level.



Bootstrapping ARIMA Models

The bootstrap method has the advantage of allowing easy
construction of confidence intervals for a model characteristic
that is a nonlinear function of the model parameters.
the characteristic AR polynomial of the fitted AR(3) model for
the hare data admits a pair of complex roots. Indeed, the
roots are 0.84± 0.647i and −2.26
The two complex roots can be written in polar form:
1.06 exp(±0.657i).
As in the discussion of the quasi-period for the AR(2) model,
the quasi-period of the fitted AR(3) model can be defined as
2π/0.657 = 9.57. Thus, the fitted model suggests that the
hare abundance underwent cyclical fluctuation with a period of
about 9.57 years.



Bootstrapping ARIMA Models

The interesting question of constructing a 95% confidence
interval for the quasi-period could be studied using the delta
method.
However, this will be quite complex, as the quasi-period is a
complicated function of the parameters.
the bootstrap provides a simple solution: For each set of
bootstrap parameter estimates, we can compute the
quasi-period and hence obtain the bootstrap distribution of the
quasi-period.
Confidence intervals for the quasi-period can then be
constructed using the percentile method, and the shape of the
distribution can be explored via the histogram of the bootstrap
quasi-period estimates



Bootstrapping ARIMA Models

Note that the quasi-period will be undefined whenever the
roots of the AR characteristic equation are all real numbers.
Among the 1000 stationary bootstrap time series obtained by
simulating from the fitted model with the errors drawn
randomly from the residuals with replacement, 952 series lead
to successful full maximum likelihood estimation.
All but one of the 952 series have well-defined quasi-periods



Bootstrapping ARIMA Models

Figure: Histogram of Bootstrap Quasi-period Estimates

The histogram shows that the sampling distribution of the
quasi-period estimate is slightly skewed to the right.



Bootstrapping ARIMA Models

Figure: Q-Q Normal Plot of Bootstrap Quasi-period Estimates

The Q-Q normal plot suggests that the quasi-period estimator
has, furthermore, a thick-tailed distribution.
The delta method and the normal distribution approximation
may be inappropriate
Finally, using the percentile method, a 95% confidence interval
of the quasi-period is found to be (7.84,11.34).



Summary

we delved into the estimation of the parameters of ARIMA
models.
We considered estimation criteria based on the method of
moments, various types of least squares, and maximizing the
likelihood function.
The properties of the various estimators were given, and the
estimators were illustrated both with simulated and actual
time series data.



Questions?



Delta Method

Delta Method
In statistics, the delta method is a result concerning the
approximate probability distribution for a function of an
asymptotically normal statistical estimator from knowledge of the
limiting variance of that estimator.



Delta Method

if there is a sequence of random variables Xn satisfying
√
n[Xn − θ]→d N (0, σ2)

Then for any function g satisfying the property that g ′(θ) exists
and non-zero, then

√
n[g(Xn)− g(θ)]→d N (0, σ2[g ′(θ)]2)


