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We have now discussed methods for specifying models and for
efficiently estimating the parameters in those models.
Model diagnostics, or model criticism, is concerned with
testing the goodness of fit of a model and, if the fit is poor,
suggesting appropriate modifications.
We shall present two complementary approaches:

analysis of residuals from the fitted model and
analysis of overparameterized models;

that is, models that are more general than the proposed model
but that contain the proposed model as a special case.



Residual Analysis

Consider in particular an AR(2) model with a constant term:

Yt = φ1Yt−1 + φ2Yt−2 + θ0 + et

Having estimated φ1, φ2 and θ0, the residuals are defined as

êt = Yt − φ̂1Yt−1 − φ̂2Yt−2 − θ̂0



Residual Analysis

For general ARMA models containing moving average terms, we
use the inverted, infinite autoregressive form of the model to define
residuals. For simplicity, we assume that θ0 is zero. From the
inverted form of the model, we have

Yt = π1Yt−1 + π2Yt−2 + π3Yt−3 + · · ·+ et

so that the residuals are defined as

êt = Yt − π̂1Yt−1 − π̂2Yt−2 − π̂3Yt−3 − · · ·

Here the π’s are not estimated directly but rather implicitly as
functions of the φ’s and θ’s.

In fact, the residuals are not calculated using this equation but as a
by-product of the estimation of the φ’s and θs.



Residual Analysis

In the next week, we shall argue that

Yt = π̂1Yt−1 + π̂2Yt−2 + π̂3Yt−3 − · · ·

is the best forecast of Yt based on Yt−1,Yt−2, · · · . Thus, we have

residual = actual - predicted

in direct analogy with regression models.



Residual Analysis

If the model is correctly specified and the parameter estimates
are reasonably close to the true values, then the residuals
should have nearly the properties of white noise.
They should behave roughly like independent, identically
distributed normal variables with zero means and common
standard deviations.
Deviations from these properties can help us discover a more
appropriate model.



Plots of the Residuals

Our first diagnostic check is to inspect a plot of the residuals over
time.

If the model is adequate, we expect the plot to suggest a
rectangular scatter around a zero horizontal level with no trends
whatsoever.

Figure: Standardized Residuals from AR(1) Model of Color.

Here standardized residuals are defined as the ratio



Plots of the Residuals

This shows such a plot for the standardized residuals from the
AR(1) model fitted to the industrial color property series.

standardized residuals =
residual√

Var(predicted)

Standardization allows us to see residuals of unusual size much
more easily.
The parameters were estimated using maximum likelihood.
This plot supports the model, as no trends are present.



Plots of the Residuals

As a second example, we consider the Canadian hare abundance
series. We estimate a subset AR(3) model with φ2 set to zero. The
estimated model is√
Yt = 3.483+ 0.919

√
Yt−1 − 0.5313

√
Yt−3 + et

Figure: Standardized Residuals from AR(3) Model for Sqrt(Hare).

Here we see possible reduced variation in the middle of the series
and increased variation near the end of the series—not exactly an
ideal plot of residuals.



Plots of the Residuals

Figure: Standardized Residuals from IMA(1,1) Model for Log Oil Price.

Parameters obtained by MLE
There are at least two or three residuals early in the series with
magnitudes larger than 3 — very unusual in a standard normal
distribution.
We should try to learn what outside factors may have
influenced unusually large drops or unusually large increases in
the price of oil.



Plots of the Residuals

Normality of the Residuals:
quantile-quantile plots are an effective tool for assessing normality.

(a) (b)
Figure: a. AR(1) Color Model Residuals; b. AR(3) Hare Model
Residuals.



Plots of the Residuals

For the color model residual, the points seem to follow the
straight line fairly closely — especially the extreme values.
the Shapiro-Wilk normality test applied to the residuals
produces a test statistic of W = 0.9754, which corresponds to
a p-value of 0.6057 → we would not reject normality based on
this test.
For the hare model residual, the extreme values look suspect.
However, the sample is small (n = 31) and, as stated earlier,
the Bonferroni criteria for outliers do not indicate cause for
alarm.



Plots of the Residuals

Figure: QQ plot: Residuals from IMA(1,1) Model for Oil Price.

the IMA(1,1) model that was used to model the logarithms of
the oil price series.
Here the outliers are quite prominent ....



Autocorrelation of the Residuals

To check on the independence of the noise terms in the model,
we consider the sample autocorrelation function of the
residuals, denoted r̂k .
For true white noise and large n, the sample autocorrelations
are approximately uncorrelated and normally distributed with
zero means and variance 1/n.
Unfortunately, even residuals from a correctly specified model
with efficiently estimated parameters have somewhat different
properties.

for small lags k and j , the variance of r̂k can be substantially
less than 1/n and the estimates r̂k and r̂j can be highly
correlated
for larger lags, the approximate variance 1/n does apply, and
further r̂k and r̂j are approximately uncorrelated.



Autocorrelation of the Residuals

As an example of these results, consider a correctly specified and
efficiently estimated AR(1) model. It can be shown that, for large n,

Var(r̂1) ≈
φ2

n
(1)

Var(r̂k) ≈
1− (1− φ2)φ2k−2

n
for k > 1 (2)

Corr(r̂1, r̂k) ≈ −sign(φ) (1− φ2)φk−2

1− (1− φ2)φ2k−2 for k > 1 (3)

where sign(φ) = 0 if φ = 0, sign(φ) = 1 if φ > 0 otherwise
sign(φ) = −1 if φ < 0



Autocorrelation of the Residuals

Figure: Approximations for Residual Autocorrelations in AR(1) Models

The table illustrates these formulas for a some φ and k values.
Var(r̂1) ≈ 1/n is a reasonable approximation for k ≥ 2 over a wide
range of φ-values.



Autocorrelation of the Residuals

If we apply these results to the AR(1) model that was estimated for
the industrial color property time series with φ̂ = 0.57 and n = 35,
we obtain the results

Figure: Approximate Standard Deviations of Residual ACF values.

Figure: Sample ACF of Residuals from AR(1) Model for Color.

The dashed horizontal lines plotted are based on the large lag
standard error of ±2/n. There is no evidence of autocorrelation in
the residuals of this model.



Autocorrelation of the Residuals

For an AR(2) model, it can be shown that

Var(r̂1) ≈
φ2

2
n

and Var(r̂2) ≈
φ2

2 + φ2
1(1+ φ2)

2

n

If the AR(2) parameters are not too close to the stationarity
boundary, then

Var(r̂k) ≈
1
n

for k ≥ 3.



Autocorrelation of the Residuals

If we fit an AR(2) model by maximum likelihood to the square root
of the hare abundance series, we find that φ̂1 = 1.351 and
φ̂2 = −0.776. Thus we have√

Var(r̂1) ≈
| − 0.776|√

35
= 0.131

√
Var(r̂2) ≈

√
(−0.776)2 + (1.351)2(1+ (−0.776)2)2

35
= 0.141√

Var(r̂k) ≈ 1/
√
35 = 0.169 for k ≥ 3.



Autocorrelation of the Residuals

Figure: Sample ACF of Residuals from AR(2) Model for Hare

This figure displays the sample ACF of the residuals from the
AR(2) model of the square root of the hare abundance.
The lag 1 autocorrelation here equals -0.261, which is close to
2 standard errors below zero but not quite.
The lag 4 autocorrelation equals -0.318, but its standard error
is 0.169.
We conclude that the graph does not show statistically
significant evidence of nonzero autocorrelation in the residuals.



Autocorrelation of the Residuals

With monthly data, we would pay special attention to possible
excessive autocorrelation in the residuals at lags 12, 24, and so
forth. With quarterly series, lags 4, 8, and so forth would merit
special attention.
It can be shown that results analogous to those for AR models
hold for MA models. In particular, replacing φ by θ in Eq. (1),
(2) and (3) gives the results for the MA(1) case.
Similarly, results for the MA(2) case can be stated by replacing
φ1 and φ2 by θ1 and θ2, respectively, in Eqs (4), (5) and (6).
Results for general ARMA models may be found in Box and
Pierce (1970) and McLeod (1978).



The Ljung-Box Test

In addition to looking at residual correlations at individual lags,
it is useful to have a test that takes into account their
magnitudes as a group.
For example, it may be that most of the residual
autocorrelations are moderate, some even close to their critical
values, but, taken together, they seem excessive.
Box and Pierce (1970) proposed the statistic

Q = n(r̂2
1 + r̂2

2 + · · ·+ r̂2
K )

to address this possibility.



The Ljung-Box Test

They showed that if the correct ARMA(p, q) model is
estimated, then, for large n, Q has an approximate chi-square
distribution with K − p − q degrees of freedom.
Fitting an erroneous model would tend to inflate Q.
Thus, a general “portmanteau" test would reject the
ARMA(p, q) model if the observed value of Q exceeded an
appropriate critical value in a chi-square distribution with
K − p − q degrees of freedom.



The Ljung-Box Test

The chi-square distribution for Q is based on a limit theorem
as n→∞ , but Ljung and Box (1978) subsequently discovered
that even for n = 100, the approximation is not satisfactory.
By modifying the Q statistic slightly, they defined a test
statistic whose null distribution is much closer to chi-square for
typical sample sizes.
The Ljung-Box statistics is given by

Q∗ = n(n + 2)
(

r̂2
1

n − 1
+

r̂2
2

n − 2
+ · · ·+

r̂2
K

n − K

)



The Ljung-Box Test

Notice that since (n + 2)/(n − k) > 1 for every k ≥ 1, we have
Q∗ > Q, whichpartly explains why the original statistic Q tended to
overlook inadequate models.

More details on the exact distributions of Q∗ and Q for finite
samples can be found in Ljung and Box (1978), see also Davies,
Triggs, and Newbold (1977).



The Ljung-Box Test

Figure: Residual Autocorrelation Values from AR(1) Model for Color

This figure lists the first six autocorrelations of the residuals
from the AR(1) fitted model for the color property series. Here
n = 35.
The Ljung-Box test statistic with K = 6 is equal to Q∗ ≈ 0.28.
This is referred to a chi-square distribution with 6− 1 = 5
degrees of freedom. This leads to a p-value of 0.998, so we
have no evidence to reject the null hypothesis that the error
terms are uncorrelated.



The Ljung-Box Test

Figure: Diagnostic Display for the AR(1) Model of Color Property.



The Ljung-Box Test

The figure shows three of our diagnostic tools in one
display—a sequence plot of the standardized residuals, the
sample ACF of the residuals, and p-values for the Ljung-Box
test statistic for a whole range of values of K from 5 to 15.
The horizontal dashed line at 5% helps judge the size of the
p-values.
The estimated AR(1) model seems to be capturing the
dependence structure of the color property time series quite
well.



The Ljung-Box Test

the runs test may also be used to assess dependence in error
terms via the residuals.
Applying the test to the residuals from the AR(3) model for
the Canadian hare abundance series, we obtain expected runs
of 16.09677 versus observed runs of 18.
The corresponding p-value is 0.602, so we do not have
statistically significant evidence against independence of the
error terms in this model.



Overfitting and Parameter Redundancy

Our second basic diagnostic tool is that of overfitting. After
specifying and fitting what we believe to be an adequate model, we
fit a slightly more general model; that is, a model “close by" that
contains the original model as a special case.

For example, if an AR(2) model seems appropriate, we might
overfit with an AR(3) model. The original AR(2) model would be
confirmed if:

the estimate of the additional parameter, φ3, is not
significantly different from zero, and
the estimates for the parameters in common, φ1 and φ2, do
not change significantly from their original estimates.



Overfitting and Parameter Redundancy

Take the industrial color property time series as an example.
Previous studies suggested it to be an AR(1) model.

(a) AR(1)

(b) AR(2)

Figure: (a) AR(1) model results for the color property series. (b) AR(2)
results



Overfitting and Parameter Redundancy

First note that, the estimate of φ2 is not statistically different
from zero. This fact supports the choice of the AR(1) model.
Secondly, we note that the two estimates of φ1 are quite close,
especially when we take into account the magnitude of their
standard errors.
Finally, note that while the AR(2) model has a slightly larger
log-likelihood value, the AR(1) fit has a smaller AIC value.
The penalty for fitting the more complex AR(2) model is
sufficient to choose the simpler AR(1) model.



Overfitting and Parameter Redundancy

A different overfit for this series would be to try an ARMA(1,1)
model.

Figure: Overfit of an ARMA(1,1) Model for the Color Series.

Notice that the standard errors of the estimated coefficients
for this fit are rather larger than previous results.
Regardless, the estimate of φ1 from this fit is not significantly
different from the estimate in previous.
The estimate of the new parameter, θ, is not significantly
different from zero.
This adds further support to the AR(1) model.



Overfitting and Parameter Redundancy

any ARMA(p, q) model can be considered as a special case of a
more general ARMA model with the additional parameters equal to
zero.

However, when generalizing ARMA models, we must be aware of
the problem of parameter redundancy or lack of identifiability.



Overfitting and Parameter Redundancy

To make these points clear, consider an ARMA(1,2) model:

Yt = φYt−1 + et − θ1et−1 − θ2et−2 (1)

Now replace t by t − 1 to obtain

Yt−1 = φYt−2 + et−1 − θ1et−2 − θ2et−3 (2)

If we multiply both sides of Eq. (1) by any constant c and then
subtract it from Eq. (2), we obtain (after rearranging)

Yt−(φ+c)Yt−1+φcYt−2 = et−(θ1+c)et−1−(θ2−θ1)et−2+cθ2et−3



Overfitting and Parameter Redundancy

This apparently defines an ARMA(2,3) process. But notice that we
have the factorizations

1− (φ+ c)x + φcx2 = (1− φx)(1− cx)

and

1− (θ1 + c)x − (θ2 − cθ1)x
2 + cθ2x

3 = (1− θ1x − θ2x2)(1− cx)

Thus the AR and MA characteristic polynomials in the ARMA(2,3)
process have a common factor of (1− cx).
Even though Yt does satisfy the ARMA(2,3) model, clearly the
parameters in that model are not unique – the constant c is
completely arbitrary. We say that we have parameter redundancy in
the ARMA(2,3) model.



Overfitting and Parameter Redundancy

The implications for fitting and overfitting models are as follows:
1. Specify the original model carefully. If a simple model seems at

all promising, check it out before trying a more complicated
model.

2. When overfitting, do not increase the orders of both the AR
and MA parts of the model simultaneously.

3. Extend the model in directions suggested by the analysis of the
residuals. For example, if after fitting an MA(1) model,
substantial correlation remains at lag 2 in the residuals, try an
MA(2), not an ARMA(1,1).



Overfitting and Parameter Redundancy

Figure: Overfitted ARMA(2,1) Model for the Color Property Series.

Suppose we try an ARMA(2,1) model. Notice that even though the
estimate of σ2

e and the log-likelihood and AIC values are not too far
from their best values, the estimates of φ1, φ2, and θ are way off,
and none would be considered different from zero statistically.



Summary

Residual analysis
We looked at various plots of the residuals, checking the error
terms for constant variance, normality, and independence.
The properties of the sample autocorrelation of the residuals
play a significant role in these diagnostics.
The Ljung-Box statistic portmanteau test was discussed as a
summary of the autocorrelation in the residuals.
Lastly, the ideas of overfitting and parameter redundancy were
presented.



Questions?


