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Prefix

we saw how seasonal deterministic trends might be modeled.
However, in many areas in which time series are used,
particularly business and economics, the assumption of any
deterministic trend is quite suspect even though cyclical
tendencies are very common in such series.
This figure displays the monthly CO2 levels from January 1994
through December 2004.



Prefix

carbon dioxide levels are higher during the winter months and
much lower in the summer.
Deterministic seasonal models such as seasonal means plus
linear time trend or sums of cosine curves at various
frequencies plus linear time trend could certainly be considered
here.



Prefix

we discover that such models do not explain the behavior of
this time series. For this series and many others, it can be
shown that the residuals from a seasonal means plus linear
time trend model are highly autocorrelated at many lags.
In contrast, we will see that the stochastic seasonal models
developed in this chapter do work well for this series.



Seasonal ARIMA Models

We begin by studying stationary models and then consider
nonstationary generalizations. Let s denote the known seasonal
period; for monthly series s = 12 and for quarterly series s = 4.

Consider the time series generated according to

Yt = et −Θet−12

Notice that

Cov(Yt ,Yt−1) = Cov(et −Θet−12, et−1 −Θet−13) = 0

but that

Cov(Yt ,Yt−12) = Cov(et −Θet−12, et−12 −Θet−24) = −Θσ2
e

It is easy to see that such a series is stationary and has nonzero
autocorrelations only at lag 12.



Seasonal ARIMA Models

Generalizing these ideas, we define a seasonal MA(Q) model of
order Q with seasonal period s by

Yt = et −Θ1et−s −Θ2et−2s − · · · −ΘQet−Qs

with seasonal MA characteristic polynomial:

Θ(x) = 1−Θ1x
s −Θ2x

2s − · · · −ΘQx
Qs

It is evident that such a series is always stationary and that the
autocorrelation function will be nonzero only at the seasonal lags of
s, 2s, 3s, · · · ,Qs.



Seasonal ARIMA Models

In particular,

ρks =
−Θk + Θ1Θk+1 + Θ2Θk+2 + · · ·+ ΘQ−kΘQ

1 + Θ2
1 + Θ2

2 + · · ·+ Θ2
Q

for k = 1, 2, · · · ,Q.

For the model to be invertible, the roots of Θ(x) = 0 must all
exceed 1 in absolute value.

It is useful to note that the seasonal MA(Q) model can also be
viewed as a special case of a nonseasonal MA model of order
q = Qs but with all θ-values zero except at the seasonal lags
s, 2s, 3s, · · · ,Qs.



Seasonal ARIMA Models

Seasonal autoregressive models can also be defined. Consider

Yt = ΦYt−12 + et

where |Φ| < 1 and et is independent of Yt−1,Yt−2, · · · . It can be
shown that |Φ| < 1 ensures stationarity. Thus it is easy to argue
that E (Yt) = 0; multiplying the equation by Yt−k ,taking
expectations, and dividing by γ0 yields

ρk = Φρk−12 for k ≥ 1

Clearly,

ρ12 = Φρ0 = Φ and ρ24 = Φρ12 = Φ2

More generally,
ρ12k = Φk for k = 1, 2, · · ·



Seasonal ARIMA Models

Furthermore, setting k = 1 and then k = 11 and using ρk = ρ−k
gives us

ρ1 = Φρ11 and ρ11 = Φρ1

which implies that ρ1 = ρ11 = 0. Similarly, one can show that
ρk = 0 except at the seasonal lags 12, 24, 36, · · · . At those lags,
the autocorrelation function decays exponentially like an AR(1)
model.



Seasonal ARIMA Models

With this example in mind, we define a seasonal AR(P) model of
order P and seasonal period s by

Yt = Φ1Yt−s + Φ2Yt−2s + · · ·+ ΦPYt−Ps + et

with seasonal characteristic polynomial:

Φ(x) = 1− Φ1x
s − Φ2x

2s − · · · − ΦPx
Ps

As always, we require et to be independent of Yt−1,Yt−2, · · · , and,
for stationarity, that the roots of Φ(x) = 0 be greater than 1 in
absolute value.

Again, this equation can be seen as a special AR(p) model of order
p = Ps with nonzero Φ-coefficients only at the seasonal lags
s, 2s, 3s, ...,Ps.



Seasonal ARIMA Models

It can be shown that the autocorrelation function is nonzero only at
lags s, 2s, 3s, · · · , where it behaves like a combination of decaying
exponentials and damped sine functions. In particular, previous
equations easily generalize to the general seasonal AR(1) model to
give

ρks = Φk for k = 1, 2, · · ·

with zero correlation at other lags.



Multiplicative Seasonal ARMA Models

Rarely shall we need models that incorporate autocorrelation only
at the seasonal lags. By combining the ideas of seasonal and
nonseasonal ARMA models, we can develop parsimonious models
that contain autocorrelation for the seasonal lags but also for low
lags of neighboring series values.

Consider a model whose MA characteristic polynomial is given by

(1− θx)(1−Θx12) = 1− θx −Θx12 + θΘx13

Thus the corresponding time series satisfies

Yt = et − θet−1 −Θet−12 + θΘet−13



Multiplicative Seasonal ARMA Models

For this model, we can check that the autocorrelation function is
nonzero only at lags 1, 11, 12, and 13. We find

γ0 = (1 + θ2)(1 + Θ2)σ2
e

ρ1 = − θ

1 + θ2

ρ11 = ρ13 =
θΘ

(1 + θ2)(1 + Θ2)
, and

ρ12 = − Θ

1 + Θ2



Multiplicative Seasonal ARMA Models

Figure: Autocorrelation from previous equations

Of course, we could also introduce both short-term and seasonal
autocorrelations by defining an MA model of order 12 with only θ1
and θ12 nonzero



Multiplicative Seasonal ARMA Models

In general, then, we define a multiplicative seasonal
ARMA(p, q)×(P,Q)s model with seasonal period s as a model
with AR characteristic polynomial φ(x)Φ(x) and MA characteristic
polynomial θ(x)Θ(x), where

φ(x) = 1− φ1x − φ2x
2 − · · · − φpxp

Φ(x) = 1− Φ1x
s − Φ2x

2s − · · · − ΦPx
Ps

and

θ(x) = 1− θ1x − θ2x2 − · · · − θqxq

Θ(x) = 1−Θ1x
s −Θ2x

2s − · · · −ΘQx
Qs



Multiplicative Seasonal ARMA Models

The model may also contain a constant term θ0. Note once more
that we have just a special ARMA model with AR order p + Ps and
MA order q + Qs, but the coefficients are not completely general,
being determined by only p + P + q + Q coefficients.

If s = 12, p + P + q + Q will be considerably smaller than
p + Ps + q + Qs and will allow a much more parsimonious model.



Multiplicative Seasonal ARMA Models

As another example, suppose P = q = 1 and p = Q = 0 with
s = 12. The model is then

Yt = ΦYt−12 + et − θet−1

Using our standard techniques, we find that

γ1 = Φγ11 − θσ2
e

γk = Φγk−12 for k ≥ 2



Multiplicative Seasonal ARMA Models

After considering the equations implied by various choices for k , we
arrive at

γ0 =
1 + θ2

1− Φ2σ
2
e

ρ12k = Φk for k ≥ 1

ρ12k−1 = ρ12k+1 =

(
− θ

1 + θ2 Φk

)
for k = 0, 1, 2, · · · ,

with autocorrelations for all other lags equal to zero.



Multiplicative Seasonal ARMA Models

Figure: Autocorrelation from previous equations

This figure displays the autocorrelation functions for two of
these seasonal ARIMA processes with period 12: one with
Φ = 0.75 and θ = 0.4, the other with Φ = 0.75 and θ = −0.4.
The shape of these autocorrelations is somewhat typical of the
sample autocorrelation functions for numerous seasonal time
series. The even simpler autocorrelation function given by
previous equations and displayed in previous figure also seems
to occur frequently in practice (perhaps after differencing).



Nonstationary Seasonal ARIMA Models

An important tool in modeling nonstationary seasonal processes is
the seasonal difference. The seasonal difference of period s for
the series {Yt} is denoted ∇sYt and is defined as

∇sYt = Yt − Yt−s

For example, for monthly series we consider the changes from
January to January, February to February, and so forth for
successive years. Note that for a series of length n, the seasonal
difference series will be of length n − s; that is, s data values are
lost due to seasonal differencing.



Nonstationary Seasonal ARIMA Models

As an example where seasonal differencing is appropriate, consider
a process generated according to

Yt = St + et

with
St = St−s + εt

where {et} and {εt} are independent white noise series. Here {St}
is a “seasonal random walk", and if σε � σe , {St} would model a
slowly changing seasonal component.



Nonstationary Seasonal ARIMA Models

Due to the nonstationarity of {St}, clearly {Yt} is nonstationary.
However, if we seasonally difference {Yt}, we find

∇sYt = St − St−s + et − et−s = εt + et − et−s

An easy calculation shows that ∇sYt is stationary and has the
autocorrelation function of an MA(1)s model.



Nonstationary Seasonal ARIMA Models

The model described by previous equations could also be
generalized to account for a nonseasonal, slowly changing
stochastic trend. Consider

Yt = Mt + St + et with
St = St−s + εt and
Mt = Mt−1 + ξt

where {et}, {εt}, {ξt} are mutually independent white noise series.



Nonstationary Seasonal ARIMA Models

Here we take both a seasonal difference and an ordinary
nonseasonal difference to obtain (It should be noted that ∇sYt will
in fact be stationary and ∇∇sYt will be noninvertible. We use
previous equations merely to help motivate multiplicative seasonal
ARIMA models.)

∇∇sYt = ∇(Mt −Mt−s + εt + et − et−s)

= (ξt + εt + et)− (εt−1 + et−1)− (ξt−s + et−s) + et−s−1

The process defined here is stationary and has nonzero
autocorrelation only at lags 1, s − 1, s, and s + 1, which agrees with
the autocorrelation structure of the multiplicative seasonal model
ARMA(0,1)×(0,1) with seasonal period s.



Nonstationary Seasonal ARIMA Models

These examples lead to the definition of nonstationary seasonal
models. A process {Yt} is said to be a multiplicative seasonal
ARIMA model with nonseasonal (regular) orders p, d , and q,
seasonal orders P,D, and Q, and seasonal period s if the
differenced series:

Wt = ∇d∇D
s Yt

satisfies an ARMA(p, q)× (P,Q)s model with seasonal period s.
We say that {Yt} is an ARIMA(p, d , q)× (P,D,Q)s model with
seasonal period s.

Clearly, such models represent a broad, flexible class from which to
select an appropriate model for a particular time series. It has been
found empirically that many series can be adequately fit by these
models, usually with a small number of parameters, say three or
four.



Model Specification, Fitting, and Checking

we shall simply highlight the application of these ideas specifically
to seasonal models and pay special attention to the seasonal lags.
As always, a careful inspection of the time series plot is the first
step.

Figure: Sample ACF of CO2 Levels

This figure shows the sample autocorrelation function for that
series. The seasonal autocorrelation relationships are shown quite
prominently in this display. Notice the strong correlation at lags 12,
24, 36, and so on. In addition, there is substantial other correlation
that needs to be modeled.



Model Specification, Fitting, and Checking

Figure: Time Series Plot of the First Differences of CO2 Levels

Figure: Sample ACF of First Differences of CO2 Levels

The general upward trend has now disappeared but the strong
seasonality is still present, as evidenced by the behavior of the
sample ACF. Perhaps seasonal differencing will bring us to a series
that may be modeled parsimoniously.



Model Specification, Fitting, and Checking

Figure: Time Series Plot of First and Seasonal Differences of CO2.

The figure displays the time series plot of the CO2 levels after
taking both a first difference and a seasonal difference. It appears
that most, if not all, of the seasonality is gone now.



Model Specification, Fitting, and Checking

Figure: Sample ACF of First and Seasonal Differences of CO2.

This figure confirms that very little autocorrelation remains in the
series after these two differences have been taken. This plot also
suggests that a simple model which incorporates the lag 1 and lag
12 autocorrelations might be adequate.



Model Specification, Fitting, and Checking

We will consider specifying the multiplicative, seasonal
ARIMA(0,1,1)×(0, 1, 1)12 model:

∇12∇Yt = et − θet−1 −Θet−12 + θΘet−13

which incorporates many of these requirements. As usual, all
models are tentative and subject to revision at the diagnostics stage
of model building.



Model Fitting

Having specified a tentative seasonal model for a particular
time series, we proceed to estimate the parameters of that
model as efficiently as possible.
As we have remarked earlier, multiplicative seasonal ARIMA
models are just special cases of our general ARIMA models.
As such, all of our work on parameter estimation carries over
to the seasonal case.



Model Fitting

Figure: Parameter Estimates for the CO2 Model.

This table gives the maximum likelihood estimates and their
standard errors for the ARIMA(0,1,1)×(0, 1, 1)12 model for CO2
levels.

The coefficient estimates are all highly significant, and we proceed
to check further on this model.



Diagnostic Checking

To check the estimated the ARIMA(0,1,1)×(0, 1, 1)12 model, we
first look at the time series plot of the residuals.

Figure: Residuals from the ARIMA(0,1,1)×(0, 1, 1)12 Model.

Th gives this plot for standardized residuals. Other than some
strange behavior in the middle of the series, this plot does not
suggest any major irregularities with the model, although we may
need to investigate the model further for outliers, as the
standardized residual at September 1998 looks suspicious.



Diagnostic Checking

Figure: ACF of Residuals from the ARIMA(0,1,1)×(0, 1, 1)12 Model.

The only “statistically significant" correlation is at lag 22, and
this correlation has a value of only -0.17, a very small
correlation.
Furthermore, we can think of no reasonable interpretation for
dependence at lag 22.
Finally, we should not be surprised that one autocorrelation
out of the 36 displayed is statistically significant. This could
easily happen by chance alone.



Diagnostic Checking

The Ljung-Box test for this model gives a chi-squared value of
25.59 with 22 degrees of freedom, leading to a p-value of 0.27 — a
further indication that the model has captured the dependence in
the time series.

Figure: Residuals from the ARIMA(0,1,1)×(0, 1, 1)12 Model.

The figure displays the histogram of the residuals. The shape is
somewhat “bell-shaped" but certainly not ideal. Perhaps a
quantile-quantile plot will tell us more.



Diagnostic Checking

Figure: Residuals: ARIMA(0,1,1)×(0, 1, 1)12 Model.

Here we again see the one outlier in the upper tail, but the
Shapiro-Wilk test of normality has a test statistic of W = 0.982,
leading to a p-value of 0.11, and normality is not rejected at any of
the usual significance levels.



Diagnostic Checking

As one further check on the model, we consider overfitting with an
ARIMA(0,1,2)×(0, 1, 1)12 model.

Figure: ARIMA(0,1,1)×(0, 1, 2)12 Overfitted Model.

we see that the estimates of θ1 and Θ have changed very little —
especially when the size of the standard errors is taken into
consideration. In addition, the estimate of the new parameter, θ2,
is not statistically different from zero. Note also that the estimate
σ2
e and the log-likelihood have not changed much while the AIC has

actually increased.



Diagnostic Checking

The ARIMA(0,1,1)×(0, 1, 1)12 model was popularized in the first
edition of the seminal book of Box and Jenkins (1976) when it was
found to characterize the logarithms of a monthly airline passenger
time series. This model has come to be known as the airline
model.



Forecasting Seasonal Models

Computing forecasts with seasonal ARIMA models is, as expected,
most easily carried out recursively using the difference equation
form for the model. For example, consider the model
ARIMA(0,1,1)×(1, 0, 1)12.

Yt − Yt−1 = Φ(Yt−12 − Yt−13) + et − θet−1 −Θet−12 + θΘet−13

which we rewrite as

Yt = Yt−1 + Yt−12 − ΦYt−13 + et − θet−1 −Θet−12 + θΘet−13

The one-step-ahead forecast from origin t is then

Ŷt(1) = Yt + ΦYt−11 − ΦYt−12 − θet −Θet−11 + θΘet−12



Forecasting Seasonal Models

and the next one is

Ŷt(2) = Ŷt(1) + ΦYt−10 − ΦYt−11 −Θet−10 + θΘet−11

ans so forth. The noise terms et−13, et−12, et−11, · · · , et (as
residuals) will enter into the forecasts for lead times
` = 1, 2, · · · , 13, but for ` > 13 the autoregressive part of the
model takes over and we have

Ŷt(`) = Ŷt(`− 1) + ΦŶt(`− 12)− ΦŶt(`− 13) for ` > 13

To understand the general nature of the forecasts, we consider
several special cases.



Forecasting Seasonal Models

Seasonal AR(1)12:

The seasonal AR(1)12 model is Yt = ΦYt−12 + et . Clearly, we have

Ŷt(`) = ΦŶt(`− 12)

However, iterating back on `, we can also write

Ŷt(`) = Φk+1Yt+r−11

where k and r are defined by ` = 12k + r + 1 with 0 ≤ r < 12 and
k = 0, 1, 2, · · · . In other words, k is the integer part of (`− 1)/12
and r/12 is the fractional part of (`− 1)/12.



Forecasting Seasonal Models

If our last observation is in December, then the next January value
is forecast as Φ times the last observed January value, February is
forecast as Φ times the last observed February value, and so on.

Two Januarys ahead is forecast as Φ2 times the last observed
January. Looking just at January values, the forecasts into the
future will decay exponentially at a rate determined by the
magnitude of Φ.

All of the forecasts for each month will behave similarly but with
different initial forecasts depending on the particular month under
consideration.



Forecasting Seasonal Models

Note the fact that the Ψ-weights are nonzero only for multiple of
12, namely,

Ψj =

{
Φj/12 for j = 0, 12, 24, · · · ,
0 otherwise

we have that the forecast error variance can be written as

Var(et(`)) =

[
1− Φ2k+2

1− Φ2

]
σ2
e

where as before, k is the integer part of (`− 1)/12.



Forecasting Seasonal Models

Seasonal MA(1)12: For the seasonal MA(1)12, we have
Yt = et −Θet−12 + θ0. In this case, we see that

Ŷt(1) = −Θet−11 + θ0

Ŷt(2) = −Θet−10 + θ0
...

Ŷt(12) = −Θet + θ0

and
Ŷt(`) = θ0 for ` > 12

Here we obtain different forecasts for the months of the first year,
but from then on all forecasts are given by the process mean.



Forecasting Seasonal Models

For this model, Ψ0 = 1,Ψ12 = −Θ, and Ψj = 0 otherwise. Thus,
we have

Var(et(`)) =

{
σ2
e 1 ≤ ` ≤ 12

(1 + Θ2)σ2
e 12 < `



Forecasting Seasonal Models

ARIMA(0,0,0)×(0, 1, 1)12

The ARIMA(0,0,0)×(0, 1, 1)12 model is Yt − Yt−12 = et −Θet−12
or Yt+` = Yt+`−12 + et+` −Θet+`−12, so that

Ŷt(1) = Yt−11 −Θet−11

Ŷt(2) = Yt−10 −Θet−10
...

Ŷt(12) = Yt −Θet

and then
Ŷt(`) = Ŷt(`− 12) for ` > 12

It follows that all Januarys will forecast identically, all Februarys
identically, and so forth.



Forecasting Seasonal Models

If we invert this model, we find that

Yt = (1−Θ)(Yt−12 + ΘYt−24 + Θ2Yt−36 + · · · ) + et

Consequently, we can write

Ŷt(1) = (1−Θ)
∞∑
j=0

ΘjYt−11−12j

Ŷt(2) = (1−Θ)
∞∑
j=0

ΘjYt−10−12j

...

Ŷt(12) = (1−Θ)
∞∑
j=0

ΘjYt−12j



Forecasting Seasonal Models

From this representation, we see that the forecast for each January
is an EWMA of all observed Januarys, and similarly for each of the
other months.

In this case, we have Ψj = 1−Θ for j = 12, 24, · · · , and zero
otherwise. The forecast error variance is then

Var(et(`)) = [1 + k(1−Θ)2]σ2
e

where k is the integer part of (`− 1)/12.



Forecasting Seasonal Models

ARIMA(0,1,1)×(0, 1, 1)12:

Yt = Yt−1 + Yt−12 − Yt−13 + et − θet−1 −Θet−12 + θΘet−13

the forecast satisfy

Ŷt(1) = Yt + Yt−11 − Yt−12 − θet −Θet−11 + θΘet−12

Ŷt(2) = Ŷt(1) + Yt−10 − Yt−11 −Θet−10 + θΘet−11
...

Ŷt(12) = Ŷt(11) + Yt − Yt−1 −Θet + θΘet−1

Ŷt(13) = Ŷt(12) + Ŷt(1)− Yt + θΘet

and

Ŷt(`) = Ŷt(`− 1) + Ŷt(`− 12)− Ŷt(`− 13) for ` > 13



Forecasting Seasonal Models

To understand the general pattern of these forecasts, we can use
the representation

Ŷt(`) = A1 + A2`+
6∑

j=0

[
B1j cos

(
2πj`
12

)
+ B2j sin

(
2πj`
12

)]

where the A′s and B ′s are dependent on Yt ,Yt−1, · · · , or,
alternatively, determined from the initial forecasts
Ŷt(1), Ŷt(2), · · · , Ŷt(13). This result follows from the general
theory of difference equations and involves the roots of
(1− x)(1− x12) = 0.



Forecasting Seasonal Models

Notice that the equation reveals that the forecasts are
composed of a linear trend in the lead time plus a sum of
periodic components.
However, the coefficients Ai and Bij are more dependent on
recent data than on past data and will adapt to changes in the
process as our forecast origin changes and the forecasts are
updated.
This is in stark contrast to forecasting with deterministic time
trend plus seasonal components, where the coefficients depend
rather equally on both recent and past data and remain the
same for all future forecasts.



Prediction Limits

Prediction limits are obtained precisely as in the nonseasonal case.
We illustrate this with the carbon dioxide time series.

Figure: Forecasts and Forecast Limits for the CO2 Model

This figure shows the forecasts and 95% forecast limits for a lead
time of two years for the ARIMA(0,1,1)×(0, 1, 1)12 model that we
fit. The last two years of observed data are also shown. The
forecasts mimic the stochastic periodicity in the data quite well,
and the forecast limits give a good feeling for the precision of the
forecasts.



Prediction Limits

Figure: Long-Term Forecasts for the CO2 Model

This figure displays the last year of observed data and forecasts out
four years. At this lead time, it is easy to see that the forecast limits
are getting wider, as there is more uncertainty in the forecasts



Summary

Multiplicative seasonal ARIMA models provide an economical
way to model time series whose seasonal tendencies are not as
regular as we would have with a deterministic seasonal trend
model.
Fortunately, these models are simply special ARIMA models so
that no new theory is needed to investigate their properties.
We illustrated the special nature of these models with a
thorough modeling of an actual time series.



Questions?


