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a b s t r a c t

The effect of the surface roughness in different dimensional range on the field emission behavior of
CueCr electrodes is studied. Hawking machining and finish machining are used to achieve the different
surface conditions. The macroscopic surface roughness value of the hawking machining, measured by the
conventional roughness meter, is one order of magnitude lower than that of the finishing machining.
However, the obvious increase of field emission tendency was found on the electrode surface obtained by
the hawking machining compared with the finishing machining. The surface roughness in nanoscale was
evaluated by AFM (Atomic Force Microscope), indicating that the micro-roughness of the hawking
machining is higher than that of the finishing machining. These results indicated the deficiency of the
conventional roughness evaluation method on the field emission tendency and suggested that hawking
machining might not improve endurance voltage strength of the electrodes in vacuum.

© 2016 Elsevier Ltd. All rights reserved.
Electrical breakdown in vacuum is usually caused by the field
emission electrons emitted from the micro-protrusions on the
electrode surface [1,2]. The field emission current correlates to the
breakdown field intensity, which always be recognized as following
the FeN equation [3].

J ¼ Aab2E2=f exp
n
Bf3=2

.
E
o

where A and B are constants, J is the current density, f is the work
function and b is the electric field gain factor which relative to the
condition of the micro-protrusions on the electrode surface [4e9].
For this reason, the surface roughness is always expected to be
decreased so as to the endurance voltage strength of the electrode
in vacuum improves [10e13].

Recently, hawking machining, a new processing technologies,
was developed in machining filed to decrease the surface rough-
ness. Hawking machining is an ultrasonic machining technology
which can decrease surface roughness less than one order of
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magnitude compared with conventional mechanical working. The
machining, mixing of high frequency mechanical energy and
thermal energy, could grind metallic surface by the cold plastic
deformation and then decrease the surface roughness of the
workpieces. It was reported that the surface roughness can
decrease to 0.2 by the hawking machining (Surface roughness is
expressed in arithmetic mean roughness (Ra)) [14], obviously less
than most of the fine machining method.

In this paper, the effect of the surface roughness by finish
machining and hawking machining on the field emission behavior
of CueCr electrode is comparatively studied. Meanwhile, whether
hawkingmachining can improve the voltagewithstand of electrode
material is investigated.

The Cu75Cr25 electrode material was utilized as raw materials,
whose preparation method and the microstructure was reported in
Ref. [15]. All samples were processed by finish machining first in a
CNC lathe. Subsequently, some of samples were processed by the
hawking machining.

The surface roughness values are measured by KR20010 profile
measurement system and Cypher AFM, whose results are marked
as macroscopic surface roughness and microscopic surface rough-
ness, respectively according to their measurement range and ac-
curacy. The maximum measurement range of the Profile
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Measurement System is 120 mm and the resolution is 0.5 mm. The
maximum measurement range of AFM is 690 � 920 mm and the
resolution is 0.06 nm. The field emission performance of Cu75Cr25
alloy is measured by EFG-H40-20W electron optical emission sys-
tem with the distance between cathode and anode (Tungsten
electrode is cathode and Cu75Cr25 alloy is anode) as 250 mm. The
measurement area is in the center of sample. The vacuum degree
during the measuring was kept as lower than 2.8 � 10�5 Pa.

From Fig. 1, it can be seen that macroscopic surface roughness
value of hawking machining and finish machining are 0.15 mm and
2.00 mm (measurement range is 15 mm), respectively. The
Fig. 1. Macroscopic surface roughness value of Cu75Cr25
macroscopic surface roughness value of the hawking machining,
measured by the conventional roughness meter, is one order of
magnitude lower than that of the finishing machining. The result
indicates that hawking machining can dramatically decrease the
conventional surface roughness value.

From Fig. 2, it can be seen that micro-roughness values are
225.3 nm (measurement range is 20 mm), 69.5 nm (7 mm) and
8.5 nm (1 mm). The surface of hawking machining is too rough to be
tested by the AFM. Therefore, it can be inferred that micro-
roughness value of hawking machining is obviously higher than
that of finishing machining.
alloy (a) hawking machining (b) finish machining.



Fig. 2. Microscopic surface roughness of finish machining Cu75Cr25 alloy.
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Fig. 3 shows surface protuberance sketch of finish machining
and hawking machining. It can be seen that, for finish machining,
the protuberance is smooth and the curvature radius of protuber-
ance is large. During hawking machining, smooth protuberance
was broken into small and sharp protuberance. The curvature
radius of protuberance decreases significantly. On the macro level,
protuberance of finish machining is obviously higher than that of
Fig. 3. Surface protu
hawking machining. So, the macroscopic surface roughness value
of the hawking machining, measured by the conventional rough-
ness meter, is one order of magnitude lower than that of the fin-
ishing machining. On the other hand, subordinate protuberance
obtained by the finish machining (at nanometer level) is small and
smooth, as shown in red box. For the hawking machining, protu-
berance at nanometer level is large and sharp. Themicro-roughness
berance sketch.



Fig. 4. The curve of field electron emission current - voltage.
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value of hawking machining, evaluated by AFM, is higher than that
of finish machining.

From Fig. 4, it can be seen that the inception voltage of field
emission (IVFE) of hawkingmachining is about 1200 V and the IVFE
of finish machining is more than 2500 V. When applied voltage is
below inception voltage, the field emission current is stable and
almost 0 A. Once applied voltage exceeds inception voltage, the
field emission current increases rapidly. The electrical breakdown
voltage depends on the IVFE [16]. The obvious increase of field
emission was found on the electrode surface obtained by the
hawking machining, which indicates that the hawking machining
should not reduce field emission tendency.

The measurement range and accuracy of macroscopic surface
roughness is frommicron to millimeter level [17e19]. However, the
field electron emission occurs at the protuberance with the size
range from nanometer to micron [20e28]. Measurement range of
macroscopic surface roughness and the size range of protuberance
for field emission are not at the same level. On the other hand, the
measurement range and measurement accuracy of the micro-
roughness at micron level and nanometer level [29,30] are closer
to the size of protuberance for field emission. Therefore, the micro-
roughness is more suitable to evaluate the interception of field
emission compared with the macroscopic one. For the electrode
experienced the hawking machining, although its macroscopic
surface roughness value measured by the conventional roughness
meter is one order of magnitude lower than that of the finishing
machining, it displays obvious increased on field emission ten-
dency because of its higher micro-roughness confirmed by AFM
evaluation. These results indicated the deficiency of the conven-
tional roughness evaluationmethod on the field emission tendency
and suggested that hawking machining might not improve
endurance voltage strength of the electrodes in vacuum.

In conclusion, the micro-roughness is more suitable to evaluate
the field emission property of electrode materials compared with
the macroscopic surface roughness. The hawking machining,
leading to low macroscopic surface roughness but high micro-
roughness, should not be used to improve the endurance voltage
strength of electrode materials.
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