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Abstract

Data modeling provides data analysis with models and methodologies. Its fun-
damental tasks are to find structures, rules and tendencies from a data set. The
data modeling problems can be treated as cognition problems. Therefore, sim-
ulating cognition mechanism and principles can provide new subtle paradigm
and can solve some basic problems in data modeling.

In pattern recognition, human eyes possess a singular aptitude to group
objects and find important structure in an efficient way. I propose to solve
a clustering and classification problem through capturing the structure (from
micro to macro) of a data set from a dynamic process observed in adequate
scale spaces. Three types of scale spaces are introduced, respectively based on
the neural coding, the blurring effect of lateral retinal interconnections, the
hierarchical feature extraction mechanism dominated by receptive field func-
tions and the feature integration principle characterized by Gestalt law in
psychology.

The use of L1 regularization has now been widespread for latent variable
analysis (particularly for sparsity problems). I suggest an alternative of such
commonly used methodology by developing a new, more powerful approach –
L1/2 regularization theory. Some related open questions are raised in the end of
the talk.
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1. Introduction

We are in the era of knowledge economy. One of the main features is the rapid
growing of the information technology which has become the most lucrative
segment of the world economy, with much of the growth occurring in the devel-
opment, management, and application of prodigious streams of data for scien-
tific, medical, engineering, and commercial purposes. Responding to the rapid
advances in information technology, data analysis has been developed at break-
neck pace in the last few decades. It has now been a very significant, or even
main part of science and engineering, as predicted by John Tukey [1] forty years
ago.

The main purpose of data analysis is to help people to understand the mean-
ing and value of the data. Initiated from statistics, data analysis has, however,
strong connections with many other disciplines such as computer science, infor-
mation processing and pattern recognition. It is inarguably accepted as a part
of information technology today.

Data Modeling provides data analysis with models and methodologies. In
other words, data modeling yields the data analysis techniques that have solid
mathematical basis. Different from traditional mathematical modeling that
aims to formulate a phenomenon, a principle or a system, data modeling mod-
els a data set. This is perhaps a basic form of applications of mathematics
nowadays.

The fundamental tasks of data modeling are to find patterns, structures,
rules, relations or tendencies from a data set, which serves then to explain
which measurement(s) or attribute(s) is relevant to the phenomenon of interest,
or what kind of structures or rules existed in a collection of data. The aims are
provision of computational models which makes it possible that data can be
automatically perceived and understood for decision. The basic problems of
data modeling include clustering, classification, regression and latent variable
analysis [2].

Clustering is a problem of partitioning a data set into subgroups based on
similarity among data. It seeks to arrange an unordered collection of objects in
a fashion so that nearby objects are similar. Very basic to knowledge discovery,
the clustering is capable of finding new concepts, new phenomenon or new pat-
terns of data. Classification is a problem of seeking a general discriminative rule
(normally, a function) to categorize the data by their attributes. The sought
discriminative function is then used in discriminative analysis, and therefore,
laid the basis of any pattern recognition application. Regression aims to deter-
mine a quantitative cause/result relationship between variables in data, where
M variables in the data are quantitative response variables, and the other N
variables are used to predict it. This quantitative relationship is generally mod-
eled as a continuous function (say, a polynomial or a neural net), and mainly
used for prediction/forecasting application. Latent variable analysis attempts
to identify the intrinsic variables from the observation, fundamental to vi
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alization, feature extraction and motion modeling. In such a problem, we are
given

y = Ax, x ∈ RN , y ∈ RM

y is a observation, x is a unobserved latent variables, and A is a linear transfor-
mation converting one into the other. The hope is that a few underlying latent
variables are responsible for essentially the structure we see in the observation,
and by uncovering those variables, we can achieve important insights. We easily
see that the latent variable analysis problem can be reexpressed as a sparsity
problem [3], as will be explained latter in section 3 of this talk.

All the above problems can be tackled within the frameworks of statis-
tics and information science. A great number of useful and effective tools and
techniques, for instance, have been developed from those methodologies. The k-
means, Graph-based Clustering, Fisher Discriminant Analysis, Support Vector
Machine, Neural Networks, Fuzzy Systems, Boosting, PCA, Manifold Learning
are just a few of the popularly used techniques. Nevertheless, all those tech-
niques face challenges when applied to real data sets we are meeting today and
in future.

The challenges come mainly from several striking features of real data sets:
(i) massiveness, say, think of the huge volumes of data automatically generated
by a satellite; (ii) high dimensionality, say, think of the DNA microarrays for
patients, where genes are huge, but relatively few patients with a given genetic
disease; (iii)) inhomogeneity, say, think of a muti-medium data set which con-
tains images, texts, media, and video in the same time; and (iv) uncertainty,
say, think of hyperspectral imagery, internet portals, and financial tick-by-tick
data, in which noise and inaccuracy are inevitably involved in gathering or mea-
surement. All these features may make the existing techniques either infeasible
or ineffective.

To be further, for example, the massiveness of a data set may cause in-
effectiveness for any algorithms related to inversion of a matrix, which takes
©(N3) operations and for large N (say in the millions) is prohibitively expen-
sive. The high dimensionality may lead to infeasibility and ineffectiveness of
most techniques based on traditional statistical methodology. This is because,
in traditional statistical methodology, we assumed many observations and a
few, well-chosen variables (namely, M � N, the large sample problem). The
data set today is, however, towards more observations but even more so, to
radically larger number of variables. We are seeing examples where the obser-
vations gathered on individual instances are curves, or spectrums, or images,
or even movies, so that a single observation has dimensions in the thousands or
billions, while there are only tens or hundreds of instances available for study
(thus, M � N, the small sample problem). Such high-dimension/small sample
problems cannot be solved effectively by the large sample algorithms.

The challenges will get more serious if we take it into account that our
purpose of data modeling, hopefully, is to provide computational models for
automatical understanding of data (such type of models are referred to as
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Machine Cognition Models). In other words, a machine cognition model pro-
vides a technique that can perform an automatical data analysis without any
other assistance. From this sense, most of existing techniques are still far from
the end.

It is unlikely to have all the problems being solved simultaneously. For some
special and separate cases, however, some significant progresses can be made.
In this talk, I review some of these progresses.

As the terminology “Pattern Recognition” implies, pattern recognition (es-
sentially, a classification problem) could be accomplished by repeating the hu-
man cognition rules (that is, Re-cognition is the way to solve the problem).
Through viewing a data modeling problem as a cognition problem, clustering,
classification and regression problems can be tackled by mimicking visual psy-
chology. Such visual psychology approach brings many benefit, defines machine
cognition models of the problems, and provides satisfactory solutions to several
long-standing problems in data analysis. We summarize the related works in
the next section.

The way how our visual system encodes observation naturally motivates the
methodology for solving latent variable analysis problem. Such an approach
could be considered in a more general framework, sparsity problems — to find
sparse solution(s) of a representation or an underdetermined equation. A com-
mon practice for solution of sparsity problems is L1 regularization, formalized
by Tibshirani [4] and Chen, Donoho, and Saunders [5]. The use of L1 regu-
larization has become so widespread that it could arguably be considered the
“modern least squares” [6]. However, for many applications, the solutions of the
L1 regularization are often less sparse than that expected. As an alternative,
L1/2 regularization then has been developed in recent years by my group. I
introduce such new methodology in section 3.

In section 4 I propose problems open to be answered along the line of re-
search topics talked here.

2. Visual Psychology Approach

We begin with an observation that for most of the data modeling problems
in low dimensions (say, N = 1, 2), the solutions of problems can always be
promptly captured with our eyes. Why it is so is due to the unrivaled cognition
ability of human being! The approach I will introduce in this section just follows
this modus of human being to solve a data modeling problem.

Thus, my basic point of view is: A data modeling problem is a cognition
problem. Although this is supported only with the low dimensional problems,
we can solve the problem through modeling it in the way of human beings
in low dimensions, and then generalizing it to the high dimensions through
formalization plus mathematical justification.

Let us first explain how a data set can be transformed into an object that
can be observed by our eyes. Naturally, such an object should be somewhat
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an image, and we call it the Data Image. The data image is a real one only
in low dimensions, but imaginary in high dimensional cases. Given a data set
D = {zi = (xi, yi)}M

i=1 with xi ∈ RN , yi ∈ R1, the data image of data set D
can be defined with its empirical distribution respective to the problems we are
tackling. For example, for clustering problem, the data image can be defined as

gD(z) =
1

M

M∑

i=1

δ(z − zi) (1)

For classification problem, it is then defined by

gD(x) =
1

M+ + M−




M+∑

i=1

δ(x − x+
i ) −

M
−∑

i=1

δ(x − x−
i )



 (2)

where the classification problem is assumed to be canonical, that is, a two-class
problem, and the data set is correspondingly splitted into two parts:

D = {(x+
i ,+1)}M+

i=1

⋃
{(x−

i ,−1)}M
−

i=1 .

Data images are very special images without color and continuous texture
information. A data image, however, contains various macro-information like
cluster structure, separation structure, tendency, dependence, all of those in-
terested us. According to physics, any macro-structure must consist of micro-
structures. The macro-structure of a data set thus can be observed only when
various micro-structures of the data have been perceived. What types of micro-
structures have been captured then when we observe a data image? The psychol-
ogy experiments conducted by Santos and Marqures [7] suggested the following
ingredients:

– Density Feature It is the distribution difference feature of data, which can
be measured with the number of data in a certain volume of data space;
A data set with uniform distribution is normally accepted as no feature
because no visual difference is perceived.

– Connectedness Feature It is the feature of a date set in which some data
look like the samplings on a curve or a manifold. When they are observed
from appropriately far away, those data appear as continuous curves or
manifolds.

– Orientation Feature A datum together with its surrounding data defines a
subregion of data space. If the subregion has a distinct principle direction,
the datum is said to have local orientation; If the local orientation of some
data are almost same, those data are said to have a structure direction.
Whenever there exists structure direction in the set, the data set is said
to have orientation feature.
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Those structures are reexpressed in [8] with computational models. We remark
that the micro-structures of a data set is by no means accountable, and it
actually depends on the visual attention and what type of observation purpose is
taking. For example, when a discrimination task is taking, the separation extent
(margin) and boundary may be also perceived, besides the features mentioned
above.

The crucial problems are: How those structure features have been organized
into a macro-structure, and how the macro-structures have in turn been cap-
tured by our human eyes? This is the key to any attempt of solving the data
modeling problems in the same or similar ways as our human beings do. The
complete solutions are clearly in brain science, cognition science, and perhaps
whole sciences, are in future but still unknown today. However, in recent years,
physiological discoveries and researches in computer-aided neuroanatomy, neu-
robiology, and psychology have advanced several quite accurate computational
models of primary visual system, each modeling some parts of the human vi-
sual system at a particular level of details. By simulating those known facts
and discoveries, it is possible to form data modeling techniques more or less
like the human eyes. Taking clustering problem as an example, I introduce
those progresses below.

2.1. Scale Space Based Approach. One of our common visual ex-
periences is that how clearly we observe an object depends on the distance of
our observation. This is the principle of blurring effect of lateral retinal inter-
connections in primary visual system. The scale space theory, which models the
blurring effect by applying Gaussian filtering to a digital image, was introduced
by Witkin [9] in 1983. Suppose P (x) is the intensity distribution of one object
in nature and P (x, σ) is the intensity distribution of the projected image of the
object on the retina, where σ is a scale, understood either as the distance be-
tween the object and eyes or as the curvature of crystalline lens. Then P (x, σ)
can be mathematically described by

{
∂P (x,σ,)

∂σ = ∆xP (x, σ)
P (x, 0) = P (x)

, (3)

the solution of which is explicitly given by

P (x, σ) = P (x) ∗ g(x, σ) =

∫
g(x − y)P (y)dy (4)

where ‘∗’ denotes the convolution operation and g(x, σ) is the Gaussian function

g(x, σ) =
1

(
√

2πσ)n
e−‖x‖2/2σ2

. (5)

In this way, P (x) has been embedded into a continuous family P (x, σ) of grad-
ually smoother versions of P (x). The original image corresponds to the scale
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Figure 1. How evolves the data set (a) in scale space.

σ = 0, and, as the scale σ increases, P (x, σ) gives a more and more blurring
while simplified representation of P (x) without creating spurious structure. Due
to this, P (x, σ) is referred to as a multi-scale representation of the image P (x),
and {P (x, σ)}σ≥0 is a scale space. For any σ, P (x, σ) is called a scale space
image.

Interestingly, it can be shown that the above representation is unique if
the retina property is assumed to be isotropic and spatially invariant. Without
those assumptions, nevertheless, several other complicated PDE models, say,
Anisotropic Diffusion Models, can be built. These models can not be directly
applied to the approach introduced here.

Now, applying the scale space theory to the data image (1), we have the
following multi-scale representation of data set D

P (x, σ) =
1

N

N∑

i=1

1

(σ
√

2π)2
e−

‖x−xi‖
2

2σ2 (6)

which coincides with the Parzen distribution estimations of D with Gaussian
window function. Figure 1 illustrates how a data set evolves in the scale space,
i.e., what a multi-scale representation of a data set looks like.

As demonstrated in Figure 1, the data set appears as a data image with each
datum being a light point attached with a uniform luminous flux. As we blur
this image, each datum first becomes a light blob. Throughout the blurring
process, smaller blobs merge into larger ones until the whole image contains
only one light blob at a low enough level of resolution. In the process, small
blobs always merge into large ones and new ones are never created. If we equate
each blob with a cluster, the above blurring process seems providing a natural
hierarchical clustering with resolution being the height of a dendrogram.

This is the point of our approach. That is, our idea is to capture the structure
(from micro to macro) of a data set from the dynamic process observed in
the scale space. This is a natural way to structure-finding, as inspired by the
function of a lens in the visual system and our everyday visual experience.

However, to formalize this idea into a standard procedure of data clustering,
three questions must be answered. (i) What means a cluster and how it can
be formalized? (ii) How the continuous scale σ can be discretized so as not to
affect our observation (say, not cause the loss of important structures)? and
(iii) Does the blobs (clusters) evolve in an somewhat regular way? We answer
those questions one by one below.
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First, each blob can be defined as a cluster. So, for each fixed scale σ, we
define a cluster (a light blob) as being the region in data set (corresponding to
scale σ = 0) that satisfies

Cyσ
=
{

x0 ∈ RN : lim
t→∞

x(t, x0) = yσ

}
,

where x(t, x0) is the solution of gradient flow
{

dx
dt = ∇xP (x, σ)

x(0) = x0
(7)

Here yσ is a maxima of scale space image P (x, σ), and referred as the blob
center or cluster center of Cyσ

. Thus, at each scale σ, all blobs in P (x, σ)
produce a partition of data set D with each point belonging to a unique blob
(cluster) except the boundary point. Each blob has its own survival range of
scale, and larger blobs are made up of smaller blobs through the evolution. In
consequence, a higher scale partition of D can be deduced from its lower scale
partition, as long as the evolution of clusters is regular, leading to the third
question in turn.

Second, we discretize the continuous scale σ according to the way of our
human being. In psychophysics, Weber’s law says that the minimal size of
the difference ∆I in stimulus intensity which can be sensed is related to the
magnitude of standard stimulus intensity I by ∆I = kI, where k is a constant
called Weber fraction. Coren [10] experimentally showed that k = 0.029 in one-
dimensional observation. Consequently, we suggest the following discretization
scheme for our observation:

σi − σi−1 = kσi−1

where k is any constant not larger than Weber fraction. According to psy-
chology, such a discretization scheme provides us a guarantee with which we
cannot sense the difference between any two scale space images P (x, σi) and
P (x, σi−1).

The third question is essentially concerned with whether the cluster num-
ber, π(σ), can be monotonically decreasing in the scale space. Define the cluster
center curve Γ = {yσ : σ ≥ 0}. The following Theorem 2.1 justifies that Γ ex-
actly consists of N simple curves, like Figure 2. So the monotonically deceasing
of π(σ) follows.

Theorem 2.1 ([11]). For almost all data sets, we have: 1) zero is a regular
value of ∇xP (x, σ); 2) as σ → 0, the clustering obtained for P (x, σ) with σ >
0 induces a clustering at σ = 0 in which each datum is a cluster and the
corresponding partition is a Voronoi tessellation, i.e., each point in the scale
space belongs to its nearest-neighbor datum, and 3) as σ increases from σ = 0,
there are N maximal curves in the scale space with each of them starting from
a datum of the data set.
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Figure 2. The cluster center curves defined by maxima of scale space data images.

Theorem 2.1 not only shows the simplicity of the cluster center curves that
contains no forking, but also implies that for sufficiently small scale, the cluster
center curves consist exactly of N branches with each datum being a cluster
center. This shows that the deduced approach is independent of initialization.
In addition, “zero is a regular value of ∇xP (x, σ)” implies the local uniqueness
of stationary state of system (7), thus underlies the convergence of the gradient
flow.

Based on the expositions above, a complete procedure, called Clustering by
Scale Space Filtering (CSSF), for data clustering is developed. See [11] for the
details.

The clustering approach made here has many exclusive advantages: Some
readily observed advantages, for example, are: (i) The patterns of clustering
are highly consistent with the perception of human eyes; (ii) The algorithms
thus derived are computationally stable and insensitive to initialization; (iii)
They are totally free from solving difficult global optimization problems; (iv) It
allows cluster in a partition to be obtained at different scales, and more subtle
clustering, such as the classification of land covers, can be obtained; and (v)
The algorithms work equally well in small and large data sets with low and
high dimensions.

The most promising advantage of the approach, however, is the provision
of a cognitive answer to the long-standing problem of cluster validity. Cluster
validity is a vexing but very important problem in cluster analysis because each
clustering algorithm always finds clusters even if the data set is entirely random.
While many cluster algorithms can be applied to a given problem, there is in
general no guarantee that any two algorithms will produce consistent answers
(so, it is why clustering has been regarded as a problem with a part art form
and part scientific undertaking [2]).

What is a meaningful (real) cluster? The basis of human visual experience
that the real cluster should be perceivable over a wide range of scales leads us
to adopt the notion of “lifetime” of a cluster as its validity criterion: A cluster
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with longer lifetime is preferred to a cluster with shorter lifetime; The cluster
with longest lifetime in the scale space is the most meaningful or real cluster
of a data set. We define the lifetime of a cluster and the lifetime of a clustering
respectively as follows:

Definition 1. Lifetime of a cluster is the range of logarithmic scales over which
the cluster survives, i.e., the logarithmic difference between the point when the
cluster is formed and the point when the cluster is absorbed into or merged
with other clusters.

Definition 2. Let π(σ) be the number of clusters in a clustering achieved at a
given scale σ. Suppose Cσ is a clustering obtained at σ with π(σ) = m. The σ-
lifetime of Cσ is defined as the supremum of the logarithmic difference between
two scales within which π(σ) = m.

The reasons why logarithmic scale is used was proven in [11] based on the
experimental tests reported in [12], which experimentally justified that π(σ)
decays with scale σ according to π(σ) = ce−βσ, where c is a constant and β is
an unknown parameter.

See Figure 2, by Definitions 1 and 2, the data set D thus contains 5 real
clusters, and the partitions of multi-scale representation of D at σ = 1.5 ∼ 2.5
result in the most valid clustering, precisely consistent with the perception of
the human eyes.

With the lifetime criterion for cluster validity, we can also answer some
questions like whether or not there is a valid structure in a data set. The
answer for example is: If π(σ) takes a constant over a wide range of the scale,
a valid structure exists, otherwise, no structure in the data. We can also apply
the lifetime criterion to do outlier check. The deduced criterion, say, is that if
Ci contains a small number of data and survives a long time, then Ci is an
outlier, otherwise, it is a normal cluster.

The scale space based approach thus can provide us an automatic validity
check and result in the final most valid clustering. It is also robust to noise in
the data.

The scale space approach has provided a unified framework for scale-related
clustering techniques derived recently from many other fields such as estimation
theory, recurrent signal processing, statistical mechanics, and artificial neural
networks. The approach has been extensively applied nowadays as a useful
clustering analysis tool in science and engineering. Examples, e.g., see the series
of works conducted in Laurence’s lab on protein structure identification [13].

2.2. Receptive Field Function Based Approach. This is also a
scale space approach, but, different from the last subsection where a continuous
scale space is used. I introduce a discrete scale space approach in this subsection.

The continuous scale space approach provides a promising paradigm for
clustering. However the high expense is obvious: The scale needs to be dis-
cretized and generation of partition at each fixed scale requires an iteration,
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too. As a result, two theoretically infinite processes have to be executed in or-
der that a clustering analysis task is accomplished. Moreover, the CSSF can be
essentially understood as the Gaussian kernel density based clustering. It works
perfectly for the data sets with Gaussian distribution, but not necessarily good
(actually very bad sometimes) for non-Gaussian data sets. We hope to gener-
alize the approach to cope with any complex data set, while within a discrete
scale space framework.

Some more intrinsic visual mechanism and principles are thus needed. I
summarize those preliminary knowledge ([14] [15] [16]) on Visual Information
Processing (VIP) and Receptive Field Mechanism first in the following.

2.2.1. VIP and Receptive Field Mechanism. Visual system is a highly
complex biological system, which is mainly composed of the retina, primary
visual cortex and extra-striate visual cortex. As justified in physiology and
anatomy, visual information is transmitted through a certain pathway layer by
layer in visual system. Visual information are firstly captured by photoreceptor
cells, and then received by ganglion cells. After this retina level, visual informa-
tion will be transmitted through optic nerves to cross the lateral geniculate and
finally reach the primary visual cortex. At the retina and primary visual cortex
level, the main function of information processing is Feature Extraction. Then
the visual information is transmitted into advanced visual cortex for Feature
Integration or Concept Recognition.

VIP with large connected neurons is very complex, however, it can be easily
described and simulated with electrophysiology. Many tests show that each
neuron of a certain level corresponds to a spatial region of front layer, where
neurons transform visual information to the neuron, and the region is called
Receptive Field of the neuron (RF) [17] [18]. Each neuron has a certain response
pattern (prototype) on the corresponding RF which is called Receptive Field
Function (RFF). Physiological and biological tests reveal that the shapes of the
RF are spatially variant in visual cortex. The RFs of ganglion cells are mainly
concentric circle, while the RFs of neurons in visual cortex are more complex.

Given a stimulus I(x), the response of a neuron in primary visual system
can be measured by

f(x; Θ) = I(x) ∗ R(x; Θ)

=

∫
I(y − x)R(y; Θ)dy

(8)

where R(x; Θ) is RFF of the neuron, and Θ is a set of parameters. In Eq.(8),
f(x; Θ) is the response of the neuron with stimulus I(x), which is the filtering
response and called as a feature of I(x).

Different features of a visual input can be extracted by different neurons at
different layer. In terms of Eq.(8), this can be equivalently made by different
RFFs. Some of the well recognized RFFs in visual system are Gaussian func-
tion [11], Gaussian derivative function [19], Gabor function [20], DoG (different
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Figure 3. Structure features of data image: (a) No structure (uniform distributed);
(b) Density feature; (c) Connectedness feature; (d) Orientation feature.

of Gaussian) function and 3-Gaussian functions. With these different RFFs,
various features of visual input can be extracted. These extracted features can
then be integrated to form a more complicated feature until a concept is iden-
tified.

There are various investigations into feature integration mechanism. How-
ever no general solution is rosolved up to now. Gestalt principle in psychology,
nevertheless, summarizes some very fundamental perception rules of human
being, which provides us useful guidance on how features can be organized.
Gestalt principle summarizes the perception laws of how the objects (features)
are perceived as a whole [21]. It says that human being tend to order our expe-
rience in a manner that is regular, orderly, symmetric, and simple. These are
formalized respectively as the Law of Proximity, the Law of Continuity, the Law
of Similarity, the Law of Closure and the Law of Symmetry. According to these
laws, the objects with spatial or temporal proximity, with similar properties
such as density, color, shape and texture, with connectedness and orientation
features, with symmetric structure, are prone to be perceived as a whole. Our
human being tends to group objects to an entity or a closure even it is actually
not.

In this view, we can regard the VIP as a procedure of the hierarchical feature
extraction dominated by RFFs and the feature integration characterized with
Gestalt laws.

2.2.2. Receptive Field Function when Data Image Is Perceived. As
the first step towards formalization of a more generic approach for scale space
clustering, according to the VIP mechanism, we must first answer what type of
RFFs should be adopted in the feature extraction process.

When a data set is observed, the receptive fields of neurons are adaptively
formed. In other words, the RFFs are adaptive to the structure features of
data image, particularly those of Density Feature, Connectedness Feature and
Orientation Feature, as shown in Figure 3. Let χ be the data space. In [8], the
following RFF was then suggested:

R(x; y,Θ) = min
x∈Γ(y),y∈Γ(x)

{
R̂(x; y,Θ), R̂(y;x,Θ)

}
(9)
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where x, y ∈ χ is any element,

R̂(x; y,Θ) = exp

(
−1

2
V (x, y; k)A(y;m)V T (x, y; k)

)
(10)

and Θ = {m, k : m, k are integers} is a parameter set that is used to confine
the neighborhoods of a data set on which the data features are extracted.

In (10), V (x, y; k) is a vector, called manifold vector, designed to model the
connectedness features of the data image, defined by

V (x, xj ; k) =

{
xj−x

||x−xj ||
dg(x, xj ; k)

0

x 6= xj

x = xj

where dg(x, y; k) is the geodesic metric between x and y, k is a neighborhood
size parameter in computation of geodesic distance. It is clear that with such a
definition, the manifold vector V (x, y; k) is a vector from x to y with its norm
being geodesic metric between x and y. The matrix A(y;m) in (10), called
anisotropy matrix, is designed to describe the orientation feature of the data
set. Assume Γ(x) is a chosen m-neighborhood of x, and A(y;m) is then defined
as A(x;m) = B−1(x;m) with B(x;m) being the covariance matrix

B(x;m) =

∑
xi∈Γ(x)(x − xi)(x − xi)

T

|Γ(x)|

where |Γ(x)| denotes the number of data contained in Γ(x).
It is immediate to see from (9) that the RFF so defined is a symmetric

function. The symmetrization procedure in (9) was invented to characterize
the density feature of the data set.

As suggested in real visual system, the RFF defined here is spatially local-
ized, anisotropic and orientation selective. When A(x;m) = I and V (x, xj ; k) =
xj−x, the RFF defined by (9)–(10) coincides with exactly the Gaussian function
(5) used in CSSF.

2.2.3. Discrete Scale Space. With the RFF specified as in (9)–(10), accord-
ing to VIP mechanism, a set of features of data image can then be extracted
by formula (8). In effect, viewed as a data image, each datum of the data is
a light point, which projects into χ at a certain location on retina. Suppose
that each light point corresponds to a neuron (a photoreceptor cell) on retina
photoreceptor level, and, for any x ∈ χ, it most activates the neuron x′ at the
t-th layer of VIP. Then the receptive field, Γ(x′), of x′ is a region of pattern
space (or photoreceptor cell) which contains x, and RFF of x′ is a function
R(x;x′,Θ) such that

(i) The nontrivial domain of R coincides with Γ(x′), i.e.,

Γ(x′) = {x ∈ χ : R(x, x′; Θ) 6= 0}
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(ii) The response of x′ is given by

f(x; Σ) = X ∗ R(x′, x; Θ) =
∑

xk∈Γ(x)

R(xk − x; 0,Θ)xk (11)

Let X(t) be the feature of data set D extracted by VIP at t-th layer, and
X(0) simply corresponds to D. Then, X(t) can be expressed as

X(t + 1) = U(D)X(t), X(0) = D (12)

with

U(D) = [uij ]16i,j6N =

[
R(xi;xj , k)

∑N
s=1 R(xi;xs, k)

]

16i,j6N

(13)

Here X(t) and X(0) are understood as M × N matrices.
The representation (12) defines a discrete scale space {X(t) = U(D)tD : t ≥

0}. We call it the discrete scale space of data set D deduced from its feature.
Correspondingly, it defines a multi-scale representation of data set D based on
its features.

2.2.4. A Visual Clustering Framework (VClust). As in the continuous
scale space case, a generic clustering procedure, called VClust in [8], can now
be defined as follows:






X(t + 1) = U(D)X(t), X(0) = D; t = 1, 2, ...
Pt(X) = G1({X(t)}t=0,1,··· ,t).

P (t) = G2({Pt(X)})

where operator G1 is the operation to get partition (clustering) of D at scale t,
and G2 is the operation to read the final most valid clustering of D. Both G1

and G2 can be defined completely similar to the case in CSSF.
It can be justified that VClust maintains all the promising properties of

CSSF, while dismissing the two crucial drawbacks of CSSF: the high com-
plexity and infeasibility to non-Gaussian data sets. Table 1 provides a direct
support for this assertion. It further demonstrates the feasibility, effectiveness
and robustness of VClust, as compared with some other competitive clustering
techniques.

The data sets in Figure 4 are all with complicated structures (particularly,
non-Gaussian). The algorithms used for comparison are all well developed, rep-
resentatives of respective approaches. Besides CSSF, the Chameleon [22] is de-
rived from the graph-based approach, the spectral-Ng [23] and spectral-shi [24]
are spectrum-based, the DBSCan [25] and the Gaussian Blurring Mean Shift
(GBMS) are density-based. The latest LEGClust algorithm [26] based on the
information entropy is also tested. In comparsion, NMI, the normalized mutual
information, was taken as the criterion for measuring the performance of each
algorithm.

Zongben Xu
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Table 1. Performance comparison of different clustering algorithms when
applied to data sets in Figure 4, measured with NMI.

Methods \Data sets (a) (b) (c) (d) (e) (f)
VClust 1.0 1.0 1.0 1.0 1.0 1.0

CSSF 0.4357 0.7682 0.4732 0.3269 0.2718 0.4966

Chameleon 1.0 0.9379 0.6824 1.0 0.5991 0.6425

Spectral-Ng 1.0 0.8326 1.0 0.4157 0.4921 0.7103

Spectral-Shi 0.8726 0.9721 1.0 0.7892 0.5283 0.6947

LEGClust 1.0 0.9846 0.4919 1.0 0.3721 1.0

DBScan 0.4115 0.7286 0.4351 0.3924 0.2362 0.4529

Figure 4. Some data sets with complicated structures used for comparison of different
clustering techniques.

2.3. Neural Coding Based Approach. The scale space approach
for clustering has been extended to classification problems. A similar idea was
also used to do model selection for Gaussian Support Vector Machine, and in
particular, a very useful data-driven formulae for Gaussian width parameter
σ was discovered [27] (cf. Figure 5). Nevertheless, a much more significant
extension of the scale space approach is the development of a new methodology:
A neural coding based approach for data modeling.

In our brain, a neuron receives information from other neurons and
processes/ responses through integrating information from other neurons, then
sends the integrated information to others. We can generally classify the neu-
rons into two types: the stimulative neurons (understood as the photoreceptor
cells in visual system), which stimulate other neurons, and the active neurons,
which receive information from stimulative neurons and produce response. Let
X = {Xi}M

i=1 be stimulative neurons and Y = {Yj}N
j=1 the active neurons,

where Xi is a canonical stimulus, and Yj is the receptive field function of neu-
ron j that characterizes its response property. Let ej(Xi) denote the activation
extent of active neuron j when the stimulative neuron i is stimulated, and let
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Figure 5. When a data set is observed from different distances, different structures
are perceived.

S(Xi, Yj) denote the matching degree, or say, the similarity between the stimu-
lus Xi and RFF Yj . Then there holds a very fundamental coding principle: For
any stimulative input, we response always maximally. That is to say, the neural
coding in brain system is always such that for every input X, it maximizes the
following response function

E(Y ) =





∑

i,j

ej(Xi)S(Xi, Yj)




 (14)

In preliminary visual system, neural coding is basically linear. Thus, let
f(X) = (f1(X1), f2(X2), ..., fM (XM ))ᵀ be a stimulation mode, and R(Yj ,X; Θ)
be the RFF of neuron j. Then we have [16] [28]

S(Xi, Yj) = |fj(X; Θ)|
and

ej(Xi) =

{
fj(X;Θ)
|fj(X;Θ)| ; if Xi ∈ Γ(Yj)

0; otherwise
(15)

where Γ(Yj) is the receptive field of neuron j and fj(X; Θ) is the response of
Yj given by

fj(X; Θ) = f(X) ∗ R(Yj ,X; Θ) =
∑

xk∈Γ(Yj)

R(Yj − Xk; 0,Θ)fk(Xk).

In this case, the response function (14) becomes

EΘ(Y ) =
∑

i,j

ej(Xi)S(Xi,Xj) =
∑

j

f(X) ∗ R(Yj ,X; Θ).

If one takes the parameter Θ be σ, then {Eσ(Y ) : σ ≥ 0} gives the continuous
scale space, and maximization of the response function directly leads to CSSF.

We naturally consider the nonlinear coding case. Different from linear case,
nonlinear neural coding theory [29] [30] views the relationship between stimu-
lative neurons and active neurons nonlinear. The theory says that the response

Zongben Xu
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of a neuron is accomplished in two stages. In the first stage, as linear case, it
integrates all stimuli from input cells, according to linear coding

U
(1)
ij = f(X) ∗ R(Yj ,X; Θ) (16)

and in the second stage, it goes to two successive independent nonlinear proce-
dures: within-pathway-nonlinearity and the divisive gain control nonlinearity,

ej(Xi) =

[
U

(1)
ij

]p

[
Cp

2 +
∑
k

U
(1)
ik

]p ×

[
U

(1)
ij

]r

[
Cr

1 + U
(1)
ij

]r (17)

where C1 and C2 are semi-saturation constants; r, p are the normalization
parameters, controlling the degree of increasing response to the most sensitive
stimulus, and decreasing the effect of insensitive stimulus.

With a neural coding scheme, a data modeling problem can be tackled in
the subsequent way: Let X = {Xi}N

i=1 be the data set, and Y = {Yj}M
j=1 be

the solution we would like to find. We model the data modeling problem as an
optimization problem

max
Y




E(Y ) =
∑

i,j

ej(Xi)S(Xi, Yj)




 (18)

through defining an appropriate similarity measure S(Xi, Yj), where ej(Xi) is
any specified neural coding.

Examples are as follows:
Let X = {Xi}N

i=1 be a data set with M clusters. Yj is centroid of j-th cluster;
dkj is distance between Xk and the centroid Yj of the j-th cluster; g( 1

dkj
) is

similarity between Xk and the centroid Yj of the j-th cluster, and g(·) is any
an increasing function. Then, (18) degenerates to CSSF when ej(Xi) is taken
as the linear neural coding.

The Improved Probabilistic C-Means [31] provides an example with the
nonlinear coding, where S(Xi, Yj) = 1/dkj . The technique improves substan-
tially on Fuzzy C-means, noise clustering, and possible C-means. A comparison
between PCM and its neural coding based counterpart is shown in Figure 6.

I suggest a methodology for solving a generic regression problem in section 4.

3. L1/2 Regularization Theory

Latent variable analysis aims to identity the intrinsic variables from observa-
tion, while Neural Coding in neurobiology is concerned with how sensory and
other information is represented in the brain by neurons. The aims of these
two seemingly irrelevant subjects coincide with each other. So, borrowing the
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Figure 6. Comparison of clustering results with PCM and its neural coding based
revision, where · is data point, • is cluster center and × denotes noisy data point.

methodology from neural coding can shed light on the way we solve a latent
variable analysis problem.

The most striking feature of neural coding is its sparsity, which means that
only a relatively small set of neurons in brain have strong response when a
stimulus is received. Substantial biological evidence for such property occurs
at earlier stages of processing across a variety of organisms, for example, audi-
tory system of rats, visual system of primates and layer 6 in the motor cortex
of rabbits [32]. Olshausen and Field [33] developed a mathematical model of
sparse coding of natural image in visual system. Validated by neurobiological
experiments, the receptive fields of simple cells in mammalian primary visual
cortex are characterized as being spatially localized, oriented and bandpass.
They demonstrated that such receptive fields emerge in their model when only
the two global objectives are placed on a linear coding of natural images. In
this case, the information of natural image is preserved, and the representation
is sparse. Their model reads as

min
{
||I − Bx||22 + λp(x)

}
(19)

where I denotes the grey scale value of an image patch, B denotes the basis ma-
trix consisted of the simple-cell receptive fields that are learned from samples, x
is the sparse representation of natural image, and p(x) is the sparse-promoting

function which could be chosen as −e−x2

, log(1+x2) or |x|1 . The research con-
ducted by Olshausen and Field is important. It shows not only that the neural
coding in primary visual processing (mainly with simple cells) does be sparse
and can be linear, but also that the visual sparse coding can be simulated and
found via a mathematical model. Such study has been generalized to complex
cells in [34]. We observe that the model (19) is nothing else but a regularization
scheme for solution of general sparsity problems.

Mathematically, a sparsity problem can be described as a problem of finding
sparse solution(s) of an representation or a underdetermined equation. Besides
the neural coding problem introduced above, variable selection, graphical mod-
eling, error correction, matrix completion and compressed sensing (particularly,

Zongben Xu
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signal recovery and image reconstruction) are all the typical examples. All these
problems can be described as the following:

Given a M ×N matrix A and a procedure of generating observation
y such that y = Ax, we are asked to recover x from observation y
such that x is of the sparsest structure (that is, x has the fewest
nonzero components).

The problem then can be modeled as the following L0 optimization problem

min ‖x‖0 subject to y = Ax (20)

where (and henceforth) ‖x‖0, formally called L0 norm, is the number of nonzero
components of x. Obviously, when M � N (namely, the high dimension/small
sample case), the sparsity problems are seriously ill-posed and may have multi-
ple solutions. A common practice is then to apply regularization technique for
the solution(s). Thus, the sparsity problems can be frequently transformed into
the following so called L0 regularization problem

min
x∈RN

{
‖y − Ax‖2

2 + λ‖x‖0

}
(21)

where x = (x1, · · · , xN )T ∈ RN and λ > 0 is a regularization parameter.
The L0 regularization can be understood as a penalized least squares with

penalty ‖x‖0 , in which parameter λ functions as balancing the two objective
terms. The complexity of the model is proportional with the number of vari-
ables, and solving the model generally is intractable, particularly when N is
large (It is a NP-hard problem, see, e.g., [35]). In order to overcome such diffi-
culty, many researchers have suggested to relax L0 regularization and instead,
to consider the following L1 regularization

min
x∈RN

{
‖y − Ax‖2

2 + λ‖x‖1

}
(22)

where ‖x‖1 is the L1 norm of RN .
The use of the L1 norm as a sparsity-promoting function appeared early in

1970’s. Taylor, Banks and McCoy [36] proposed the use of L1 norm to decon-
volve seismic traces by improving on earlier ideas of Claerbout and Muir [37].
This idea was latter refined to better handle observation noise [38], and the
sparsity-promoting nature of L1 regularization was empirically confirmed. Rig-
orous uses of (22) began to appear in the late-1980’s, with Donoho and Stark
[39] and Donoho and Logan [40] quantifying the ability to recover sparse reflec-
tivity functions. The application areas of L1 regularization began to broaden
in the mid-1990’s, as the LASSO algorithm [4] was proposed as a method in
statistics for sparse model selection, Basis Pursuit [5] was proposed in com-
putational harmonic analysis for extracting a sparse signal representation from
highly overcomplete dictionaries, and a technique known as total variation min-
imization was proposed in image processing [41, 42].
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The L1 regularization has now become so widespread that it could arguably
be considered the “modern least squares” [6]. This is promoted not only by the
sparsity-promoting nature of L1 norm and the existence of very fast algorithms
for solution of the problem, but also by the fact that there are conditions
guaranteeing a formal equivalence between the combinatorial problem (21) and
its relaxation (22)[43].

The L1 regularization is, however, still far from satisfication. For many ap-
plications, the solutions of the L1 regularization are less sparse than those of the
L0 regularization. It can not handle the collinearity problem, and may yield in-
consistent selections [44] when applied to variable selection; It often introduces
extra bias in estimation [45], and can not recover a signal or image with the
least measurements when applied to compressed sensing. Thus, a mandatory
and crucial question arises: Can the sparsity problems be solved by some other
means? As shown below, I suggest the use of following alternative: the L1/2

regularization

min
x∈RN

{
‖y − Ax‖2

2 + λ‖x‖1/2
1/2

}
. (23)

3.1. Why L1/2 Regularization? We may seek other sparsity-promoting
functions p(x) to replace ‖x‖1 in (22). The generality of polynomial functions
then naturally leads us to try p(x) = ‖x‖q

q with q ≥ 0. The geometry of Banach
space implies, as suggested also by the classical least squares, q > 1 may not
lead to the sparsity-promoting property of functions p(x). So q ∈ (0, 1] are only
candidates. In consequence, the Lq regularizations have been suggested [46],
that is, instead of L1 regularization (22), using

min
x∈RN

{
‖y − Ax‖2

2 + λ‖x‖q
q

}
(24)

where ‖x‖q is the Lq quasi-norm of RN , defined by‖x‖q =
(∑N

i=1 |xi|q
)1/q

.

The problem is which q is the best? By using the phase diagram tool in-
troduced by Donoho and his collaborators [47, 48], Wang, Guo and Xu [49]
provided an affirmative answer to the question. Through applying the Lq regu-
larizations to the typical sparsity problems of variable selection, error correction
and compressed sensing with the reweighted L1 technique suggested in [46], they
experimentally showed that the Lq regularizations can assuredly generate more
sparse solutions than L1 regularization does for any q ∈ (0, 1), and, while so,
the index 1/2 somehow plays a representative role: Whenever q ∈ [1/2, 1), the
smaller q, the sparser the solutions yielded by Lq regularizations, and, when-
ever q ∈ (0, 1/2], the performances of Lq regularizations have no significant
difference (cf. Figures 7 and 8). From this study, the special importance of L1/2

regularization is highlighted.
Figure 7 shows how sparsity (k/M , k is the number of nonzeros in x, and

M is number of rows in A) and indeterminacy (M/N) affect the success of Lq

regularizations. The contours indicate the success rates for each combination

Zongben Xu
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Figure 7. Phase diagrams of Lq (q = 0.1, 0.3, 0.5, 0.7, 1.0) when applied to a sparsity
problem (signal recovery).
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Figure 8. The interpolated success percentage curve of Lq regularizations, when ap-
plied to signal recovery.

of {k,M,N}, where red means the 0% success, blue means 100% success, the
belt area means others. In the figure, the commonly occurred yellow curves
are Theoretical L1/L0 Equivalence Threshold Curve found by Donoho [47, 48],
which consists of the values at which equivalence of the solutions to the L1 and
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L0 regularizations breaks down. The curve delineates a phase transition from
the lower region where the equivalence holds, to the upper region, where the
equivalence does not hold. Along the x-axis the level of underdeterminedness
decreases, and along the y-axis the level of sparsity of the underlying model
increases. The belt area in each case roughly defines a curve, which can be
referred to as A Lq/L0 Equivalence Threshold Curve. Then, Figure 7 exhibits
that the Lq/L0 equivalence threshold curves are always above of the theoretical
L1/L0 equivalence threshold curve, showing a preferable sparsity-promoting
nature of Lq regularizations.

Figure 8 shows the interplolated success percentage curve of Lq regulariza-
tions. Here the success percentage for a regularization is defined as the ratio
of the blue region in the whole region of the phase plane. It is very clearly
demonstrated that the L1/2 regularization is nearly best, and therefore, can be
taken as a representative of Lq regularizations with all q in (0, 1].

Another reason why L1/2 is selected is due to its privilege of permitting fast
solution, as that for L1 regularization.

3.2. How L1/2 Fast Solved? The increasing popularity of L1 regular-
ization comes mainly from the fact that the problem is convex and can be very
fast solved. The L1/2 regularization, however, is a nonconvex, non-smooth and
non-Lipschitz optimization problem. There is no directly available fast algo-
rithm for the solution. Fortunately, I and my PhD students recently found such
a fast algorithm for L1/2 regularization problem [50].

The found fast algorithm is an iterative method, called the iterative half
thresholding algorithm or simply half algorithm, which reads as

xn+1 = Hλnµn, 1
2
(xn + µnAT (y − Axn)) (25)

Here Hλµ, 1
2

is a diagonally nonlinear, thresholding operator specified as in The-
orem 3.1, µn are parameters to control convergence and λn are adaptive regular-
ization parameters. The derivation of the algorithm is based on a fundamental
property of L1/2 regularization problem, the thresholding representation prop-
erty, as defined and proved in [50].

Theorem 3.1 ([50]). The L
1/2

regularization permits a thresholding represen-
tation, i.e., there is a thresholding function h such that any of its solution, x,
can be represented as

x = H(Bx) (26)

where H is a thresholding operator deduced from h and B is a linear operator
from RN to RN . More specifically, one can take in (26) that for any fixed λ,
µ > 0,

B(x) = Bµ(x) = x + µAT (y − Ax) (27)

H(x) = Hλµ,1/2 = (hλµ/2(x1), hλµ/2(x2), ..., hλµ/2(xN ))ᵀ (28)

Zongben Xu
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where hλµ/2(t) is defined by

hλµ/2(t) =

{
2
3 t
(
1 + cos

(
2π
3 − 2ϕλ

3

))
, |t| > 3

4 (λµ)
2
3

0, otherwise
. (29)

with

ϕλµ = arccos

(
λµ

8

( |t|
3

)− 3
2

)
. (30)

With the thresholding representation (27)-(30), the iterative algorithm (25)
then can be seen as the successive approximation for common fixed point of
operators H and B. The diagonal nonlinearity of the thresholding operator
Hλµ,1/2 makes it possible to implement the iteration (25) component-wisely.
The high efficiency and fastness of the half algorithm thus follows. The thresh-
olding representation (27)-(30) also has other meaningful consequences, say, it
can be applied to justify the finiteness of local minimizers of L1/2 regulariza-
tion problem. This is an unusual, very useful property of a nonconvex problem,
which distinguishes the L1/2 regularization strikingly from other optimization
problems.

Theorem 3.1 can also be used to derive an alternative theorem on solutions of
L1/2 regularization problem. From the theorem, some almost optimal parameter
setting strategies can then be suggested. For example, the following parameter-
setting strategy in (25) has been recommended in [50]:

µn =
(1 − ε)

‖A‖2 , λn =
4

3
‖A‖2 |[Bµn

(xn)]k|3/2

where ε is any small fixed positive constant.
The half algorithm has been applied to a wide rang of applications associ-

ated with signal recovery, image reconstruction, variable selection and matrix
completion in [50]. The applications consistently support that the algorithm is
a fast solver of L1/2 regularization, comparable with and corresponding to the
well known iterative soft thresholding algorithm for L1 regularization.

It is interesting to ask a question here: Is there other index q in (0, 1),
except 1/2, which permits a thresholding representation for Lq regularization?
In [50], an observation was made to guess that only with q = 1, 2/3, 1/2, Lq

regularization admits a (27)-(28) like representation. A general answer is still
unknown.

3.3. What Theory Says? The following theorem justify the convergence
of the iterative half thresholding algorithm.

Theorem 3.2 ([51]). Assume µn ∈ (0, ‖A‖−2
) and λn is monotonically de-

creasing to a fixed λ ≥ 0. Then the half thresholding algorithm converges to
a local minimum of L1/2 regularization problem (23). Furthermore, if any k
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columns of A (denoted by Ak) are linear independent, and µn, λnsatisfies

µn < 1/smin(AT
k Ak);λn =

4

3
‖A‖2 |[Bµ0

(xn)]k|3/2

where smin(AT
k Ak) is the smallest eigenvalue of matrix AT

k Ak, then the algo-
rithm converges to a k-sparsity solution of the L1/2 regularization.

For the proof of Theorem 3.2, we refer to [51]. The proof depends upon
a very careful analysis on the thresholding operator H defined as in (28). In
the considered case, H is deduced intrinsically from the resolvent of gradient

of ‖.‖1/2
1/2. Unlike the L1 regularization case, where ‖x‖ is a convex function, so

that ∂(‖x‖) is maximal monotone and the resolvent operator (I + ∂(‖x‖))−1

is nonexpansive. In the L1/2 regularization case, however, ‖x‖1/2
1/2 is non-convex

and non-Lipschitz, so that the resolvent operator (I + λ∂(‖ · ‖1/2
1/2))

−1 is only

restrainedly defined and is not nonexpansive.
When applying a nonconvex sparsity-promoting function as a penalty, a

problem we commonly worry about is the local minimum problem: The al-
gorithm might only converge to a local minimum. Sometimes, this becomes
the reason why a nonconvex regularization scheme would not be adopted in
practice. However, due to the finiteness of local minima of L1/2 regularization
problem, Theorem 3.2 provides a promise that it can find the global optimal
solution provided we run the algorithm many times with uniformly distributed
random initial values.

With application to latent variable analysis or compressed sensing, the in-
dependence condition in Theorem 3.2 can be very intuitively explained. In the
later case, for example, we have A = ΨΦ with Ψ being M ×N sampling matrix
and Φ a basis matrix. Theorem 3.2 then says that a k-sparsity signal x can be
recovered from M measurements with M � N only if the sampling Ψ is such
that every k columns of ΨΦ are independent. This is obviously reasonable, and
in fact constitutes the basis how the sampling should be taken.

The next theorem shows the condition when L1/2/L0 equivalence occurs.
Recall that a matrix is said to possess Restricted Isometry Property (RIP) if

(1 − δk) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk) ‖x‖2
2 whenever ‖x‖0 ≤ k

The restricted isometry constant δk(A) is the smallest constant for which the
RIP holds for all k-sparsity vector x.

Theorem 3.3 ([52]). Any k-sparsity vector x can be exactly recovered via L1/2

regularization if δ2k(A) < 1/2.

Note that Candės and Tao showed the L1/L0 equivalence when δ3k(A)+
δ4k(A) < 2 [53], and later Candės relaxed to δ2k(A) <

√
2 − 1 ≈ 0.414

[54], Foucart and Lai [55] verified the L
q
/L0 equivalence under the condition
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δ2k(A) < 2(3−
√

2)/7 ≈ 0.4531. Theorem 3.3 provided a looser L1/2/L0 condi-
tion δ2k(A) < 0.5.

It is interesting to compare the convergence condition in Theorem 3.2 with
the L1/2/L0 equivalence condition δ2k(A) < 1/2 in Theorem 3.3. In effect, the
condition “any k columns of A (denoted by Ak) are linear independent” in
Theorem 3.2 can be reformulated as δk(A) < 1, which is much looser than
δ2k(A) < 1/2. This leads to a natural question: Whether Theorem 3.3 is still
true when the condition δ2k(A) < 1/2 is relaxed to δk(A) < 1. I guess this is
the case. However the real answer is open.

Theorems 3.4 and 3.5 below summarize two important statistical properties
of L1/2 regularization. Consider the linear model

y = Xᵀβ + ε,Eε = 0, Cov(ε) = σ2I (31)

where y = (y1, y2, ..., yM )ᵀ is an M × 1 response vector, X = (X1,X2, ...,XM )
(Xi ∈ RN ) and β = (β1, β2, ..., βN )ᵀ is unknown target vector, ε is a random
error and σ is a constant. For any 1 ≤ k ≤ N, let βk denote the k-sparsity vector
of β, that is, the vector whose k components coincide with those of β whenever
the corresponding components βi are among the k largest ones in magnitude,
and other N − k components are zeros. Note that when L1/2 regularization is
applied to problem (31), its solution is given by

β̂ = arg min
β∈RN

{
M∑

i=1

(βᵀXi − yi)
2 + λ ‖x‖1/2

1/2

}
. (32)

Theorem 3.4 ([56]). Let β∗ be any solution of (31) and β̂ any solution of (32).
Then for any a > 0 and under some mild conditions, for any δ ∈ (0, 1) with
probability larger than 1 − δ, there holds the following estimation

∥∥∥β̂ − β∗
∥∥∥

2
≤ ©(λ

√
k + ‖β∗ − β∗

k‖2 + ‖β∗ − β∗
k‖ /

√
l) (33)

where l is any constant satisfying k ≤ l ≤ (N − k)/2, t is constant satisfying

0 < t ≤ C(k, l), λ ≥ 8(2−t)
t max{

√
C0, 1}

(
aσ
√

2
M ln 2N

δ

)
,and β∗

k is the k-

sparsity vector of β∗.

The estimation (33), which measures how well the solution yielded by L1/2

regularization approximates the target solution, can be shown to be optimal in
the sense of achieving an ideal bound. It reveals that even though the number of
samples is much smaller than that of the dimension of parameters, the solutions
of L1/2 regularization can achieve a loss within logarithmic factor of the ideal
mean squared error one would achieve with an oracle. This shows that L1/2

regularization is good at tacking the high-dimension/small sample problems.
One of direct applications of model (31) is variable selection. Fan [57] has

ever suggested a standard of measuring how well an algorithm performs varaible



3176

selection via the model (31). That is the so called oracle property: An ideal
varaible selection algorithm should automatically set the irrelevant variables
to zero. The following Theorem 3.5 shows that L1/2 regularization has the
oracle property. Without loss of generality, we assume that the target vector
β∗ = (β∗ᵀ

1 , β∗ᵀ
2 )ᵀ with β∗

1 having no zero component and β∗
2 = 0.

Theorem 3.5 ([56]). If λ = ◦(M1/4), then the L1/2 regularization possesses
the following properties:

(i) Consistency in variable selection: limM→∞P (β̂2 = 0} = 1;

(ii) Asymptotic normality:
√

M((β̂1 − β∗
1) →dN(0, σ2C).

Theorem 3.5 shows that L1/2 regularization is an idea variable selection
method.

3.4. How Useful? The L1/2 regularization has been applied to solve var-
ious sparsity problems, and among them compressed sensing is a very typical
example. The compressed sensing (CS) has been one of the hottest research
topics in recent years. Different from the traditional Shannon/Nyquist theory,
CS is a novel sampling paradigm that goes against the common wisdom in data
acquisition. Given a sparse signal in a high dimensional space, one wishes to
reconstruct the signal accurately from a number of linear measurements much
less than its actual dimensionality. The problem can be modeled as the sparsity
problem (20) with

A = ΨΦ (34)

where Ψ is a M ×N sampling matrix, Φ is a N ×N basis matrix and A is called
a sensing matrix. A very fundamental requirement here is M � N . Given fewer
measurements y = Ax = ΨΦx on a signal, we then are asked to reconstruct the
signal x from y.

Let us take MRI as a concrete example. In MRI, the scanner takes slices
from two dimensional Fourier domain of an image [58]. In order to reduce scan
time and the exposure of patients to electromagnetic radiation, it is desirable
to take fewer measurements. In this case, we hope to exploit the sparsity of the
image in the Fourier or wavelet domain for reconstructing the image from fewer
measurements. In application, the measurements are normally accomplished
via sampling the image in its Fourier specture domain. According to [59], when
sampling in this way on L rays in the domain and taken a Gaussian sampling
on each ray, the resultant sensing matrix is Gaussian random, satisfying the so
called RIP condition ([60]) so that the image can be exactly reconstructed.

We experimented with the standard Shepp-Logan phantom, a 256 × 256
MRI image shown as in Figure 9(a). The half thresholding algorithm (Half )
in [50] and the Reweighted L1 method (RL1 ) in [61] for L1/2 regularization
were applied in comparison with L1 regularization. In implementation of L1

regularization, the well known L1 magic algorithm (L1magic) [62] and the soft
thresholding algorithm (soft) [63] were applied, while the hard thresholding
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algorithm (hard) [64] was adopted to perform L0 regularization. We ran the
simulations by varying the measurements from L = 70 to 40. The simulations
reveal that before L = 60, all the algorithms succeeded in exactly recovery.
Nevertheless, when L reduced to under 55, the L1 regularization algorithms
failed, but L1/2 algorithm still succeeded, as listed in Table 2. It is seen that
when sampling are taken on 52 rays, the half and hard algorithms both can
recover the image, with half having the highest precision. When we reduce
the sampling rays to L = 40, the algorithms L1 magic, RL1, soft and hard
are all perform very poor, while the half algorithm reconstructed the image
with a very high precision, which distinguishes the half from other competi-
tive algorithms very obviously. See Figure 9 and Table 2 for the reconstructed
images.

Table 2. The image reconstruction results
L Method MSE Time L Method MSE Time

L1magic fail ∞ L1magic 9.3458 (fail) 1008.72
RL1 fail ∞ RL1 4.6881 (fail) 3650.24

40 soft 8.2469 882.0637 52 soft 0.9812 (fail) 1795.5
hard 15.3978 1038.1 hard 7.98e-6 105.0087
half 5.30e-7 2738.8 half 3.15e-7 181.6311

Figure 9. The reconstructed images by different regularization algorithms when
L = 52.

This application demonstrates the outperformance of L1/2 regularization
over L1 regularization. Such outperformance of L1/2 regularization is also con-
sistently supported by other experiments and applications.

Before ending this section, I would like to make an observation on overall
features of Lp regularizations when p takes over entire real axis. The L1 reg-
ularization is well known, that has the sparsity-promoting property and leads
to a convex problem easy to be solved; When p > 1, the Lp regularizations
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have not maintained the sparsity-promoting property any more, but possess
a stronger convex property (uniformly convex property) and the problems get
more and more easily solved; While when p < 1, the Lp regularizations have
a stronger and stronger sparsity-promoting property, but have not maintained
the convex property any more, and the problems get more and more difficult
to be solved. This demonstrates a threshold or center position of p = 1 over
which the sparsity-promoting property, the convex property and the easiness of
solution all break down. In this sense, we can see that L1 regularization just is
the scheme with the weakest sparsity-promoting property and the weakest con-
vex property (so, the weakest scheme), but more positively, it provides the best
convex approximation to L0 regularization and the best sparsity-promoting ap-
proximation to L2 regularization. It is well known that all p with 1 ≤ p ≤ ∞
constitute a complete system within which p = 2 plays a very special role. I
therefore guess that p = 1/2 might somehow plays also a special role in another
system {p : 0 ≤ p ≤ 1}. The study on L1/2 regularization is providing a direct
support to this view.

4. Concluding Remarks

Data modeling is emerging as a cross-disciplinary, fast developing discipline.
New ideas and new methodologies have been called for. In this talk I have
introduced two new methodologies which seems meaningful and potentially
important. Along the line of research in this talk, however, there are many
problems open. As final remarks, I list some of those problems for further study.

Problem 1. Towards L1/2 regularization theory

I first summarize the open questions I have raised in exposition of the last
section. Firstly, Does any other Lq regularizations rather than q = 1/2 permit a
thresholding representation? Following the idea in [50], it is not difficult to say
“yes” for q = 2/3, but how about for other q in (0, 1)? The answer for this ques-
tion is meaningful to development of other more effective sparsity-promoting
algorithms. Secondly, we have shown the superiority and representative of L1/2

regularization among Lq regularizations with q ∈ (0, 1) based on a phase dia-
gram study. This is certainly an experiment based approach. So, Does the rep-
resentative role of L1/2 regularization can be justified in a somewhat theoretical
way? An tightly relevant question arises from an observation of phase diagrams
in Figure 7. The belt area in each diagram roughly defines an empirical Lq/L0

equivalence threshold curve, which fundamentally characterizes the sparsity-
promoting capability of each corresponding regularization scheme. Does there
exist theoretical Lq/L0 equivalence threshold curves for any Lq regularization?
Are those Lq/L0 equivalence threshold curves in Figure 3 the theoretical ones?
Thirdly, we have proved the convergence of the L1/2 regularization algorithm
(half thresholding algorithm) under the condition δk(A) < 1, while justified the

Zongben Xu
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L1/2/L0 equivalence under the much tighter condition δ2k(A) < 1/2. A nat-
ural question is: Whether δk(A) < 1 is also a sufficient condition for L1/2/L0

equivalence?

Problem 2. Towards geometry of L1/2 space

Let Γ = {p : 1 ≤ p ≤ ∞}. It is well known that with any p ∈ Γ, Lp

space (understood either as function spaces or as sequence spaces) is a Banach
space, and, within the duality framework 1

p + 1
q = 1, L2 is self-dual and can be

characterized with Parallelogram Law or equivalently Binomial Formula

‖x + y‖2
2 = ‖x‖2

2 + 2〈x, y〉 + ‖y‖2
2 ,∀x, y ∈ L2

It is such characteristic identity law that makes many mathematical tools avail-
able, say, Fourier analysis and wavelet analysis. The Hilbert characteristic iden-
tity law was extended by Xu and Roach [65] into Banach space setting, which
states that a Banach space X is uniformaly convex if and only if there is a
positive function σp such that

‖x + y‖p ≥ ‖x‖p
+ p〈Jpx, y〉 + σp(x, y) ‖y‖p

,∀x, y ∈ X (35)

and it is uniformaly smooth if and only if there is a positive function δp such
that

‖x + y‖p ≤ ‖x‖p
+ p〈Jpx, y〉 + δp(x, y) ‖y‖p

,∀x, y ∈ X (36)

where Jp is the duality mapping with the guage tp/p, σp is uniquely determined
by the convexity modulus of X and δp uniquely determined by the smoonthness
modulus of X. These Banach characteristic inequality laws admit two sets of
explicit homogenous forms in Lp spaces with 1 < p < ∞, since in this case, the
spaces are both uniformal convex and uniformaly smoonth. A space with two
or one of the two inequalities of the form (35) and (36) is very fundamental. In
the case, many quantitative analysis and mathematical deductions then can be
made in the space.

Let Σ = {p : 0 ≤ p ≤ 1}. It is then known that for any p ∈ Σ, Lp is
not a Banach space, but is a quasi-normed space. Promoted by studying Lq

regularization, I would like to know the geometry of quasi-normed spaces Lp

with p ∈ Σ. More particularly, due to the speciality of L1/2 regularization, I
want to ask: Does there exist a some kind of duality framework (say, p+ q = 1)
such that within the framework L1/2 space is self-dual? Also, for studying L1/2

regularization purpose, I would like to know: Does there hold some kinds of
characteristic laws like (35) and (36)? If so, the convergence of L1/2 algorithm
and L1/2/L0 equivalence can be done in a straightforward way.

Problem 3. Towards a neural coding based machine learning theory

The neural coding based data modeling suggests also a new paradigm for
solution of generic learning problem. In effect, assume X is a feature space,



3180

Y is a response space and Z = X × Y is the data space. For a given set of
training examples D = {zi = (xi,yi)}M

i=1 which are drawn i.i.d from an unknown
distribution P on Z, and a preset family of functions z = {f : X → Y }, a
learning problem is asked to seek a function f∗ in z such that the expected
risk E(f) is minimized, that is,

f∗ = arg min
f∈z

E(f) =

∫
l(f, z)dP

The ERM principle suggests to use the empirical error Eemp(f) to replace E(f)
and find f∗ through

f∗ = arg min
f∈z

{
1

M

M∑

i=1

l(zi, f)

}
(37)

while regularization principle is to solve the problem through

f∗ = arg min
f∈z

{
1

M

M∑

i=1

l(zi, f)} + λ ‖f‖p
p

}

where l(., f.) is a loss measure when f is taken as a solution, and p ≥ 0 is a
parameter.

The above learning principles are tightly connected with the neural coding
methodology introduced in section 2.3. Actually, for any f ∈ z, if we let z =
(f(x), x) be a candidate solution, then the loss l(zi, f) measures the dissimilarity
between zi and z, so 1/l(zi, f) describes the similarity. Consequently, (37) can
be recast as f∗ = arg maxf

∑
i

S(zi, z) with S(zi, z) = 1/l(zi, f).

Based on the neural coding methodology, we thus propose to solve the learn-
ing problem by the revised ERM principle

f∗ = arg min
f∈z

{
1

M

M∑

i=1

w(zi)l(zi, f)

}

and the reviseed regularization principle

f∗ = arg min
f∈z

{
1

M

M∑

i=1

w(zi)l(zi, f)} + λ ‖f‖p
p

}
(38)

where w(zi) is any fixed neural coding or something like. This then provides
a more reasonable learning paradigm. The problems are: Can we develop a
similar statistical learning theory for such neural coding based paradigm? Can
we develop a corresponding L1/2 or L1 theory for (38)?

Zongben Xu
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