
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 157, 189-210 (1991) 

Characteristic Inequalities of Uniformly Convex 
and Uniformly Smooth Banach Spaces 

ZONG-BEN Xu 

Department of Mathematics, Xihn Jiaolong University, 
Xi’an, People’s Republic of China 

AND 

G. F. ROACH 

Department of Mathematics, Unioersity qf Strathclyde, 
Glasgow, United Kingdom 

Submitted by C. Foias 

Received September 18, 1989 

Let X be a real Banach space with dual X* and moduli of convexity and 
smoothness hX(&) and px(r), respectively. For 1 ip< ~8, J, denotes the duality 
mapping from X into 2x* with gauge function tP-’ and jP denotes an arbitrary 
selection for J,,. Let &={d: R+-R+: d(O) =O, #(I) is strictly increasing and 
thereexistsc>Osuchthat&f)>c6,(r/2)} andB={cp:R+-+R+:rp(O)=O,cpis 
convex, nondecreasing and there exists K> 0 such that p(t) < Kp,(t)}. It is proved 
that X is uniformly convex if and only if there is a Q E d such that 

I/.~fYll”> ll”ll”fP(,i,,.~, )‘)+u&, Y) vx, JEX 

and X is uniformly smooth if and only if there is a cp E .F such that 

lb+ Alp< IblIp + P<j,z Y> + 0,A.c Y) t/x, I’ E x, 

where, for given function f, CJ, (.x, y) is defined by 

u,(x, J’)=p i 
’ (llx+tYll v Il.4)P 

0 I .f (,lb+:.K l,x,,)‘II- 

These inequalities which have various applications can be regarded as general 
Banach space versions of the well-known polarization identity occurring in Hilbert 
spaces. c 1991 Academic Press. Inc 

0. INTRODUCTION 

Among all Banach spaces the Hilbert spaces are generally regarded as 
the ones with the simplest and perhaps most immediately and clearly 
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190 XUANDROACH 

discernible geometric structure. This observation is supported and indeed 
characterised by the availability of the parallelogram law 

Ib+Yl12+ Il~-Yl12=2(ll~/12+ IIYII’) 

or equivalently the polarisation identity 

(*I 

llx+Yl12= llxl12+2Wx, Y>+ lIy112. (**I 

With this understanding we shall say that Hilbert spaces are spaces with 
the best structure. The reason for saying this is that problems posed in such 
spaces can be analysed in a comparatively straightforward and easy manner. 
However, in applications many problems do not fall naturally into spaces 
with this best structure. Therefore it is natural to ask what spaces are 
nearest to spaces with the best structure in the sense that their geometric 
structure can be characterised by similar relations to (*) and (**). 

Generalisations of (*) and (**) to Lp spaces are known [3, 12, 13,24,25]. 
The main results can be summarised as follows: Let I,, p E [0, 1 ] be 
arbitrary real numbers such that I + ,U = 1. Then 

(i) Lim inequalities [ 13, Theorem 1; 25, pp. 3-851. 

Il~~+~Yllp+g~~~ll~-Yllp~~ll~Ilp+~llYIIp~ 2<p<cQ 

lllx + PYII p + g(P) lb - Yll p 3 2 llxll p + P IIYII p, l<p<2 

for any x, y E Lp, where 

g(P) = f% 
1 +x(A A p)p-l 

(1 +x(A A #U))“--’ 

and X(P) for 0 6 p < l/2 is the unique solution of 

AxP-l-p-(Ax-p)P-‘=O, %x< 1. 
i 

When A = ,u = l/2, these inequalities reduce to the Clarkson inequalities 

Ilx+Yllp+ Il~-YIIp~2p-‘(llxllp+ IIYIIPL 26p<cc 

Ilx+YIIp+ Il~-Yllp~~p--l~II~II~+ IIYIIP), l<p<2. 

(ii) Characteristic inequalities [24]. Let PE (1, co) and x, YE Lp. 
Then 

Il~~+~Yl12+~P--1)~“~ll~-Yl12~~II~I12+~llYl12~ x#y, iff p-c2 

Il~~+~Yl12+~P--1)~~ll~-Yl12=~Il~llz+~IIYl12, iff p=2 

lI~~+~Y11/2+~P--1)~~Il~-Yl12~~Il~l12+~llYl12~ xfy, iff p>2 
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or equivalently, 

ll~+~l12~ll~l12+~~J~,L’~+~P-~~l/Y/12, I/XII llyll ZQ iff P<Z 

llx+Yl12=l/xl12+2(Jx,Y)+(P-1)I/Yl12, iff p=2 

Ilx+yll’< llxl12+2<Jx, y)+(p-l)IlYI12, II41 llvll ZO, iff P>& 

where ( ., . ) denotes the generalised duality pairing and J: Lp + Ly is the 
normalised duality mapping defined by 

Jx= {x*ELq: <x*,x>= b*l/ llxll, IIx*ll= ll4l), q= (p- 1))‘p. 

These inequalities contain those developed by Kay [12], Bynum and 
Drew [3], and Ishikawa [lo], respectively, as special cases. 

More generally, Reich in [19] established the following version of (**) 

in Banach spaces whose dual spaces are uniformly convex, where J is again 
the normalised duality mapping of the spaces and c.,( Ij yl( ) is given by 

with 
~x(ll~ll)=max~llxll~ 11 llyll B(lI~ll) 

Recently, Prus and Smarzewski [ 181 proved the inequality 

in uniformly convex Banach spaces with the moduli of convexity of power 
type q>,2, where 

and d is a positive constant. In these versions, no characteristic relation 
between the inequality developed and the underlying Banach spaces 
is reported. In particular, no explicit expression for a,( II y(I) in Reich’s 
inequality is given. 

In this paper we shall present a characteristic version of (**) in Banach 
spaces possessing the property of either uniform convexity or uniform 
smoothness. More precisely, with Jp: X+ X* being an appropriate duality 
mapping, 0 p: Xx X-+ [0, co) a definite functional, and p E (1, co), we 
prove that an inequality of the form 

llx+Yll”b llxll”+~<J~x, y)+a,b, Y) (0.1) 
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characterises a Banach space X of uniform convexity, and an inequality of 
the form 

Ilx + ~11’ G llxllp + P(J,x, Y> + a,(~, Y) (0.2) 

characterises a Banach space X of uniform smoothness. Unlike Reich’s 
version, the functional rrp(x, y) in our version can be expressed explicitly in 
terms of either the moduli of convexity or the smoothness of the underlying 
Banach spaces. Accordingly, obtaining a specialization of the characteristic 
inequality to particular spaces reduces to computing the moduli of convexity 
or smoothness of the space. The inequalities (0.1) and (0.2) presented here 
provide a reasonable reflection of the well-known fact that there is a 
complete duality between uniformly convex and uniformly smooth Banach 
spaces (see, e.g., [16, Proposition l.e.21). 

The inequalities developed here have applications in a number of different 
fields. Examples of the use of particular forms of these inequalities can be 
found, for instance, in [I, 3-5, 10-15, 17-21, 24-261. Further applications 
will be given in [27-291. 

1. PRELIMINARY 

Let X be a real Banach space and X* be its dual space. B(X) and S(X) 
denote respectively the unit ball and the unit sphere in X. For any pair 
XEX and x* EX*, x*(x) is denoted by (x*, x). 

Let 

6,(s)=inf{l-II$(x+y)ll:x,yES(X), llx-yll>EJ 

and 

The functions 6,: [0,2] + [0, l] and pX: [0, GO) = R+ -+ R+ are respec- 
tively referred to as the moduli of convexity and smoothness of X. Recall 
that X is said to be uniformly convex if 8X(s) > 0 for any E E (0,2] and X 
is uniformly smooth if lim, _ 0 pX(r)/z = 0. It is known [ 16, p. 63; 7; 93 that 
all Hilbert spaces and the Banach spaces 1 p, Lp, and W,f, (1~ p < cc ) all 
are both uniformly convex and uniformly smooth and 

dH(&) = 1 - Jl - (1/4)E2 (1.1) 
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i 

P-l -E2fo(c’)>~c’, 
b,p(&)=dLP(&)=6WPJ&)= * 

1 <p<2 

1 -[l -(;)p]l”>$(;jn, p>2 

p,(z)=(l+52)“2-1 

i 

(1 +zp)lip- 1 <bP; 1 <p<2 

P,P(z)=PLP(z)=Pw~(z)= p- * 
P-l 2 r2 + o( r’) < 2 r2, p 2 2. 
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(1.2) 

(1.3) 

(1.4) 

We will need the following basic properties of the functions c?~(E) and 
px(r) L-7, 161: 

(61) 6,(O) = 0, SX(s) < 1 (< 1 if X is uniformly convex); 
(62) SK(s) is continuous and nondecreasing and, dX(s) is strictly 

increasing if and only if X is uniformly convex; 

(63) 6x(E) < fiN( 
(64) if X is uniformly convex, then dX(&) =: 6, (E)/E is nondecreasing. 

(Pl) Px(O)=Q Px(~l6~; 
(~2) pX(z) is convex, continuous, and nondecreasing; 
(~3) pX(z)/r is nondecreasing; 

(P4) Px(r) a Pff(T)i 
(p5) ~x4T)=SUp{2&/2-dx(E): 0<E<2}; 

(~6) pX(r) is equivalent to a decreasing function, namely, there exists 
a positive constant c so that pX(q)/q2 < cpx(r)/t2 whenever q 3 r > 0. 

Let cp: Ri + Rf, ~(0) = 0, be a continuous, strictly increasing function 
(such a function is said to be a gauge function). The mapping J,: X-+ 2x* 
defined by 

J, = {x* EA’*: (x*, x> = /b*l/ IId, IIx*ll = cp(llxll I> 

is called the duality mapping with gauge function cp. In particular, the 
duality mapping with gauge function q(t) = t, denoted by J, is referred to 
as the normalised duality mapping. We will use the following properties 
of duality mappings which are established in [6], [7], [8], and [23], 
respectively: 

(Jl ) J = I if and only if X is a Hilbert space; 
(52) X is uniformly smooth if and only if J (and hence Jv) is single 

valued and uniformly continuous on any bounded subset of X; 
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(53) J is surjective if and only if X is reflexive; 

(54) J,(lx) = sign(;l)(cp(lil llxll )/II4 1 J-G 2 E R’ ; 
(J5) J,xc &D(llxlI), where a@( llxll) is the subgradient of @(iI .li) at 

x and @ is given by 

Q(t) = j; q(s) ds. 

Moreover, if X is reflexive, then J,x = i?@( j/x(1 ). 

In what follows, the notation J, is used to denote the duality mapping 
with gauge function q(t) = tPP ‘, jp denotes an arbitrary selection for J, 
(namely jpx E J,x for every x E X). For arbitrarily real numbers a and b we 
always let 

a v b = max(a, b), a A b = min(a, b) 

and further, A, ,u E [O, 11, p, q E (1, co) are always assumed to be such that 

Also, given a multi-valued mapping F: X+2X*, D(F), R(F), G(F), and 
F-’ will always denote its domain, range, graph, and inverse, which are 
respectively defined by 

D(F)= {xEX: Fx#@} 

R(F) = {x* E X*, x* E Fx, x E D(F)} 

G(F)={[~,~*]EX~X*:~ED(F),~*EF~} 

F-lx*= {xED(F):x*EFx}. 

2. CHARACTERISTIC INEQUALITIES OF UNIFORMLY CONVEX BANACH SPACES 

Let X be a real Banach space with modulus of convexity dX(s), p > 1 be 
an arbitrarily real number, and 

& = { q$ : R + -+ R + : d(O) = 0, 4(t) is strictly increasing and there 

is positive constant K such that 4(t) > K a,( t/2)}. 

We now establish the main result of this section: 
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THEOREM 1. The following statements are all equivalent: 

(i) X is uniformly convex; 
(ii) there exists a function 4, EJ$ such that 

(iii) there exists a function dp E ~4 such that 

Ilx+ YllP2 llxllp+P(~p~~~j) +fJ,(x, Y) 

for any x, y E X, where 

(T,(x, y) = p s,’ (lix + “I) ” “x”)p cj, ( l,x + :;;‘; l,y,l) dt. (2.2) 

To prove this theorem we need the following lemmas which are also 
interesting in their own right. 

LEMMA 1. For every x, yes(X) and tE(O, l), let E= I/x-yll #O. Then 

Il%x+ptyll <A+pt-2(A A /L)tSX(&). 

Proof. The inequality follows trivially when x and y are linearly 
independent. Suppose that x and y are linearly dependent and denote by 
E the subspace spanned by the elements x, y, and the zero element. Then 
the element Ax + pty belongs to E. Let z be the intersection of the vector 
x - y and the ray z(,Ix + pty), r 3 0, in the subspace E. Then there exist 
real numbers cx and p such that 

z = cc(Ax + pty), Ct>O (2.3) 

z = Bx + (1 - fl)(Ax + py), o<p<1. (2.4) 

Since x and y are linearly dependent, it follows that 

UA=p+(l-p)I* 

apt = /A( 1 -b). 

Solve these equations and find 

a=(i+pt)-’ and P=(A+pt)-‘R(l-t). 

Consequently, from (2.3) and (2.4) it follows that 

II/zx+ptyll =a-] llzll = (2 + WI IIPX + (1 - BUX + PYN 

d (~+Ilt)CPllxll+ (1 -PI Il~~+PYlll 

=(I-t)i*+tIlAx+/&ylyI/. (2.5) 
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Furthermore, we observe that the function of the form f(s, w) = 
~-‘(llx+~~ll - ll4l)> s > 0, is nondecreasing in s and for every fixed s and 
MJ in X. Hence the definition of the modulus of convexity implies that 

ll~x+PYll = 1 +Pcl/~“+PL(Y--x)l/ - llXlll/P 

= 1 t-,&L, y-x)<1 +I!#, Y-X) 

=1-2~[1-~Ilx+yII]d1-2~~*(E) 

whenever ,U 6 l/2 and, similarly, that 

ljlx+ pyI( G 1 - 2)” 6*(s) whenever ;1< f . 

Combining these inequalities with (2..5), we have that 

l~;lx+~r~ll~(l-t)~+t[1-2(~Lr\)b,(E)l 

=%+/L-2(p A i)tSx(E) 

and the proof is complete. 

LEMMA 2. X is uniformly convex if and only is, for each p E ( 1, CC ), there 
exists a strictly increasing function S,,(A, p, .): R+ -+ R+, 6,(1, p, 0) = 0, 
such that 

6~~llxlIp+PllYllp (2.6) 

for every x, y E X. 

Proof: When the inequality (2.6) is satisfied, for any x, y E S(X), 
I/x - y IJ 3 E, we take A = p = l/2 in the inequality and find 

which implies that 

S,(E)> 1- [14,(& 4, &)]‘~p>O 

namely, X is uniformly convex. Conversely, suppose that X is uniformly 
convex. We then construct a function 6,(3,, 11, .) so that the inequality (2.6) 
is fulfilled. For this purpose, we first define a function (pP : [O, l] x 
[O, l]xR+ by 

(~~(5 p, E) = min{fF)(A P, c), ff’(A k &)I, (2.7) 
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where 

(2.8 1 

=A[1 -~P-‘/(~i’~--1- [p-2(/A A ~)~X(E/2)]p(p--l)~‘}p-~1]. 

(2.9) 

We show that with the function ‘pP so defined the inequality 

Il~~+PYllp+(Pp@~ PL, ~)~41XIl”+Pll.YllP (2.10) 

holds for every XE S(X) and y E B(X). Indeed, let t, = l/vll, j = t;‘y, 
E = /Ix- ~11, and E= IIx - jll. We consider the function g defined by 

g(t) = 2 + ptP - [I. + pt - 2(p A E,)t dX(E)IP, O<t<l. 

Form Lemma 1. we then have 

g(t,) < t? + pto” - lllx + ,ut, jll p = 1” + /it; - IlAx + pJ>ll p 

=wdp+PllYIIp- Il~x+PYIIp. (2.11) 

We now distinguish two possible cases: 

Case I. t, < 1 -s/2. Then the strictly decreasing monotonicity of the 
function (A + pt”) - (A + pt)” implies that 

g(t,) 3 Eb + pt; - (3. + pt,)P >fr’(i, p, c). 

From (2.11), therefore, (2.10) follows directly. 

Case II. t,> l-42. Then E= llx-jll 2 11x-y/l - IIy-jll = 
E - (1 - to) 3 42. By the property (62), it follows that 

g(t,)$l++pt{- j.+pur,-2(p A i.)t,6, f ( >I 
P 

=: h(t,). 

We find that the function h(t,), 0 < t, < 1, attains its minimum at 
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which is the unique solution of the equation 

h~(to)=p{~t~~‘-[lf~to-2(1’“1)to~~(~)]p-’ 

x 
[ 

p-2(/l/l %)6, ; i 111 =o 
or equivalently 

[ 
A+pto-2(p A i)t()d, ; ( )I 

P 

= MO p- l [A + pto - 2(/l A A)t, b,(E/2)] 
P-U * 1”) ~,A@) . 

Hence 

inf h(t,) = h(t,) = A + pt”* - N- ‘[IA + w* - 2(P A ntt* 6,Y(d2)1 
O<fOCI P-U A 1) s,(o) 

=l.-&lt~-‘[p-2(p A 3,)6,(&/2)]-‘=f~‘(1,~,&). 

Consequently, (2.10) follows, 

It is easy to see that the function 6,(A, p, E) is strictly increasing in E. 
Therefore, (2.10) implies that the inequality (2.6) is fulfilled for 

6,(& ,4 &I= min{4,(& P, E),~,(P, 4 8)). (2.12) 

With this, the proof is completed. 

LEMMA 3. Let S,(;l, p, E) be given as in (2.12). Then 

lim sup 6,(A, p, E)/P + lim sup 6,(%, P, &)/IL b K, 6, 
,I - 0 i + 0 

where Kp is a positive constant defined by 

, 

K,=4(2+&)min ip(p--1)~ ,,(;,A l)(p-l), 

(p- l)[l - (JL l)P(P “-‘I, I- 
(2s4)p l-p 

P-1 1 I . (2.13) 

Proof: Since 6,(A, ~1, E) is symmetric with respect to A and ,u, it is seen 
that 

lim sup 8,(1, p, E)/P + lim sup S,(A, CL, &)/A 
p-0 1-O 

3 2 min{ lim f ’ (A, ~1, E)/P, limo fF’(k, p, &)/A: i= 1, 2). ,r-0 b” 
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From (2.8) and (2.9), we calculate 

limI:“(),ii,i);i=l-[l+~61(1-431-’=:p2(1) 
i. + 0 

~~ofp’(i.,ii.r)lp=(p-1)~l-(1-2~~(~))p(l’~-1)~’~=h,(6) 

Ipp 
lim 

fF)(j., p, 
&)/A = 1 - 

1 
1 +- 2p 

i. - 0 p-l 
6 

x ( & 

2 )I =: h2(8): 

where 6 = 6,(~/2). Then, using the fact that the property (63) implies 

which yields 

0 ; 2>46(2-6)>(4+2$)6 and b<i(2--&) forany EE(o,~], 

we consequently obtain 

gr(s)/B>(4+2$) inf gr(.s) 
O<eG* 

2=(4+2fi)(p-1) 

g2(a)/b>(4+2$) inf g*(s) 
OGES.2 

=(4+2&(p-1) [l-($-l)“‘” ~“-‘I 

h(WJ 2 inf 
o<a<(1/2)(2-,/7) 

h,(6)/6=(4+2&) 

From these inequalities, Lemma 3 readily follows. 

Proof of Theorem 1. (i) += (ii). Since the duality mapping .I, is positively 
homogeneous from (54) we can assume ljxll v llv/l = 1 without loss of 
generality. Thus, applying Lemma 2, we have 

Il~x+wllp+~p(~,P, lIx-Yll)~~llxllp+PIIYllp vx, ycx 
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which in particular implies 

IIX+P~(Y-w- IIXII~~IYII~- II~II~~-~,~~, P, II-AI) (2.14) 

lIy+~4x-y)llP- IlyIIP~~“(IlxIIp- lIyllP)-~pw> llx-yll)~ (2.15) 

Since X is uniformly convex, X is also reflexive [ 16, Proposition l.e.31. It 
follows from the property (J5) that Jpx= a(( l/p)llxilp) for every XEX. 
Accordingly, the inequalities (2.14) and (2.15) further imply 

P(~,Y, X-Y> d IbII~- IIyllP--lim SUP 6,(4,4 IL- yll)/~. 
L - 0 

Combining these two inequalities then yeilds 

(I,x-i,y-x-~)~~[limsup6,(1,p, IL-YIIYP 
p-0 

+ lim sup 6,(& P, 11.x - yll )/Al. 
2 - 0 

From Lemma 3, we thus obtain 

that is, (ii) is established for #,(I) = Kp s,(t/2). 
(ii)*(iii). Let ~(t)=(l/p)~~~+ty~~~andO=t,<t,< ... <t,=l an 

arbitrary partition of the interval [0, 11. By the property (J5), we have 

; Il’+yll”-; Ilw=@uww)=~~’ (@(&+1)-@(h)) 
II = 0 

N -- I 

a c <jp(-x + fk.v), Y)(tk+ I - fk). 
k=O 

It follows from (ii) that 

llx+yllP- Ilxllp-~<jP, y> 
n-1 

>P c <jp(x+tky)-jpX~ Y)(tk+l-tk) 
k=O 

./f’ (I,x+tk.d ” iixil)p/ 

k=O tk p 
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Since d,, is strictly increasing and I/x + tyli v llxli is continuous in t, the 
function 

s(t) = (lb + tyll v llxll)p 
dp(ll 

tllvll 
t x + tY II v II4 1 

is integrable (in the sense of Riemann). We therefore have 
N-l 

ll-u+yI/p-llxllp-P~jp.~~Y~~~i_m_P 2 S(t,)(t,+,--tk) 
k=O 

=P 
s 

1 

S(t) dt 
0 

which establishes (iii). 
(iii)=(i). For any x, YES(X), the inequality in (iii) implies that 

o= Ilx+(Y-x)/12- llxl12 

32(jMx, y-x)+2 j; (lIx+t(Y-~)ll v lLa2 

x 42 ( t IIY - XII 
llx+~(y-x)ll v llxll dt > 

32(jx, y-x)+ZJ; t?q&(t/Iy-xII)dt 

=2(jx, y-x)+2~~‘~-“‘B2(q)/~d~, 

Hence, from the increasing monotonicity of d2, we find 

1 - (.k Y> 3 j; ~~(YI)/YI 4 whenever I/x - yll > e. 

This, combined with the property (62) and the fact d,(q) E d implies that 
there exists a strictly increasing function Y(E) (for example, Y(E) = 
K2 !; ~Aul/2h 4) such that (jx, y) B 1 - Y(E) for any X, YE S(X), 
IIx - yll > E. Consequently, [20, Lemma 2.41 implies that X is uniformly 
convex. This completes the proof. 

Remark 1. It is seen from the proof of Theorem 1 that we have the 
specific inequalities 

(~,~-~p~,~~-~)~Kp(IlxII v IIYII)~~x 
> 

(2.16) 
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with 

~p(x,y~=p~pj~~iX+tyJIv i%,(2(,,xJ$v llxl,)df (2.17) 

which hold for every x, y in a uniformly convex Banach space, where K, 
is as defined in Lemma 3. In particular, when X has modulus of convexity 
of power type m (m> l), (2.16) and (2.17) imply that for some positive 
constant K 

(jm~-~mY,~-Y)~Kll~-Yll~ (2.16)’ 

Ilx+Yll”> II~llm+mCim~, Y)+KllYll”. (2.17)’ 

These inequalities, together with (3.2) and (3.8), generalise the Lp 
(1 < p < co) characteristic inequalities in [24], which in turn extend the 
well-known polarisation identity in Hilbert spaces. We notice that the 
inequalities (2.16)’ and (2.17)’ are homogeneous in the sense that all terms 
in the expression have the same power ( (jmx, y ) is naturally regarded as 
having power m, because ( jmx, x ) = llxll”). This favourable feature plays 
an important role similar to the Lp characteristic inequalities (see, e.g., 
[4, 5, 11, 17, 21, 241). This also explains the advantage of using the 
generalised duality mappings Jp rather than the normalised one. For 
example, (2.16) and (2.16)’ extend and improve the results in [ 1, Theorem 1; 
22, Proposition 2.111. 

Remark 2. Recall that a possibly multi-valued mapping A from X into 
X* is said to be strictly monotone (respectively, strongly monotone) if, 
(f-g,x-y)>O for every [x,f], [y, g]EG(A) and x#y (respectively, 
there exists a strictly increasing function 9: R + R+, d(O) = 0, such that 
~f-~~~-Y~3~(llx-Yll)ll~-Yll for any Cx,fl, lIy,gl~G(A)). 
Furthermore, a strongly monotone operator is said to be uniformly 
monotone if O(t) = Kt for some positive constant K. It is shown in 
[23, Lemma 2.12; 25, Theorem 3.4.21 that the strict monotonicity of the 
normalised duality mapping J on B(X) characterises the strict convexity of 
X (where X is said to be strictly convex if any x, y E S(X), x # y, imply that 
(l/2) [Ix + yll < 1). We observe that (2.16) implies 

W-jY,x-YY)2K,(llxll v IIYIl)2~x 
> 

. 

By using the fact that the function c?~(E) = sup{ &r/2 - pX*(r): t > 0) is the 
maximal convex function majorised by ax(s) and $X(~)/~2 is equivalent to 
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an increasing function (see [ 16, Proposition l.e.6]), we get (noticing that 
IIXII ” llvll G 1) 

>cK,$, Ilx-yli ( > 2 VJX, Y E B(X) (2.18) 

here c is the positive constant such that F,( t, ) t: < c b,( t2)/ti whenever 
Odtl6t2. Since S,(t) is convex, the function J(t) = cK, a,( t/2)/t is 
positive and nondecreasing. Thus, (2.18) implies that 

~~~-~Y~-~-Y~3(5~Il~-YI/~Il~-YII v’x, Y E B(J-1, 
where d(t) = (1 + t) -’ t&t) is a strictly increasing function from R + into 
R+ such that d(O) =O. As a result, Theorem 1 then says that a Banach 
space X is uniformly convex if and only if J is strongly monotone in B(X), 
which provides a uniform version of the result given in [23, Lemma 2.121. 
Also, from (2.16) it is seen that a Banach space X has modulus of convexity 
of power tye 2 if and only if J is uniformly monotone, which is a slight 
extension of [22, Proposition 2.111. Corresponding to the well-known fact 
that the continuity of J characterizes the smoothness of X, we now can 
conclude that the monotonicity of J characterizes the convexity of X. This 
presents a link between the theory of monotone operators and geometry of 
Banach spaces, which is very useful in tackling problems in these two areas 
(see [22, 27, 281, for instance). 

Remark 3. We emphasize that the inequality developed in Lemma 2 
also is of practical and theoretical importance although this is not our 
main concern here. Some interesting applications of this type of inequalities 
do exist, see, for example, [lo, 11, 13, 15, 18, 241. However, we remark 
that not only does the inequality in Lemma 2 generalise that given in 
[ 18, Lemma 2.11 to general uniformly convex Banach spaces, but also the 
method used for proving the inequality is completely elementary and also 
constructive (in particular, it is not necessary to apply Martingle theory 
like Prus and Smarzewski in [ 181). 

3. CHARACTERISTIC INEQUALITIES OF UNIFORMLY SMOOTH BANACH SPACES 

Let X be a real Banach space with modulus of smoothness pX(z) and 

F=(cp:R++R+: ~(0) = 0, cp convex, nondecreasing and there exists 

a constant K> 0 such that cp(r) d Kp,(z)}. 

In this section we prove the following duality results of Theorem 1: 



204 XUANDROACH 

THEOREM 2. For any 1 -C p < co, the,following statements are equivalent: 

(i) X is umformly smooth ; 
(ii) Jr is single-valued and there is cpp E 9 such that 

IlJpx-JpylI ~(ll4l v IIYII)~~~ ‘pp ,/xII v ,,yll ( ‘lx- yl’ ) vx, YEX, (3.1) 

where G,(t) = cp,(t)/t; 
(iii) there exists a cp,~F such that 

llx+~ll~~llxll~+~(J,x, y)+o,(x, y) v’x, y E x, (3.2) 

where 

(iv) there exists a jr E Jr such that 

Il~+~/l~dll~ll~+~~~~~,~~+~~~~,~~ vx, y E x. 

To prove this theorem, we need the following lemma. 

(3.3) 

LEMMA 4. Let X be a uniformly smooth Banach space, Jr: X + X* and 
J,* : X* + X be the duality mappings with gauge function b(t) = tP- ’ and 
1+5(s) = sq ~ ‘, respectively. Then J; ’ = J,*. 

Proof The uniform smoothness of X implies that X is reflexive and that 
X* is uniformly convex and reflexive [ 16, Proposition l.e.31). Therefore, 
from the properties (52) and (J3), ;I; is single-valued and surjective. This 
implies that the inverse J; ’ : X* = D(J; ’ ) -+ X = X* * exists and is given by 

J;‘x*={,x,EX: j/,x=x*} VX*EX*. 

On the other hand, let Q(x) = (l/p) IJxII p for every x in X. It is easy to show 
that @ is continuous, convex, and that its conjugate is given by G*(x) = 
(l/q) I/x* II q for every x* E X *. From the property (J5), it follows that 

J,,x = &D(x), Vx E X; J*x: = a@*(~*), Vx* E X*. 

By using the fact that x* E &Q(x) if and only if XE M*(x*) [2, p. 2031, we 
conclude that J;‘x* = J:x* for every x* E X*. This completes the proof. 

Proof of Theorem 2. (i) =s. (ii). It is known [16] that Jr is single-valued 
and that X* is uniformly convex. Let S;(E) be the modulus of convexity of 
X*. Then, by Theorem l(ii), the inequality 

(J,*x* -~y*Y*~x*-Y*Dwx*Il ” IIY*Ioq~x* 2(,l~*;,-“;;*l,l) 
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holds for every x*, y* E X*, where j,* is an arbitrary selection of the 
duality mapping .I,* : X* -+ 2x and K, is the constant given in (2.13). 
Hence, we have 

where 

Sx*(&) = hx*(E)/& v E &(0,2). 

In particular, putting x* = J,x and y* = Jp y in this inequality, which is 
always possible by Lemma 4, implies (by Lemma 4) that 

and in turn 

2/l=Yll - 

K,Wll ” Il~ll)~~“* 
IlJpx- J,A 

2(llxll ” llyll)p~’ 

By the property (~3) of the modulus of smoothness, we then obtain 

-( 8 lb- YII 
px Kq(llxll ” IIYII) 

)2px(45,*( Jpx-Jpyl’ 
Wlxll ” IIYIIY I 

)), 

where 

Px(7) = Px(7)/7 vz>o. 

On the other hand, by the property (p5), we have 

px(7) 2 $E - 6x*(E) V&E(0,2),7>0. 

This implies in particular that 

46x*(&) 
Px ---y ( > E 4dx*(&) 

L - ~- Bx*(&) = ax*(&) 
2 E 

V&E [O, 21. 

Hence 

Px(45x*(E)) z &4Sx*(&)) 
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namely, p,(4s,.(s)) 2 (l/4).2. From (3.4), it follows that 

px -( 
8 llx - Y II 

Kq(llxll ” IlYll) 

That is, 

IL+-Jpyll d WxlI ” IIYIl)p-lPx 
811x-YII 

Kqtllxl, v llyII~ 

=K (lbll ” /lYloppx w-Yll 
y II+Yll ~,(llxll ” IIYII) > . 

(3.5) 

We now consider the following cases: 

Case I. 8/K,< 1. Since pX( .) is convex (the property (pl)), we have 

IlJpx--Jpyll 68 
Wll ” IIYII)p 

IIx- y,l 

=8(IIxIl ” ll~lI)~-‘Px 

Case II. 8/K, > 1. Making use of the property (p6), we obtain 

,IJpx-J y,I <82(llxll ” Il~)~-~llx-~Y)l 
P ’ 

K4 

x px 
8 lb - YII 

Kllxll ” IIYII 

Consequently, (3.1) follows by taking q,(t) = max(8, 82cK;‘} px(t). 

(ii) * (iii). Since J, is single-valued, so is J. This implies that X is 
smooth (that is, the norm of X is Gateaux differentiable) and that Jp is 
continuous from the norm topology of Xinto weak-star topology of X* [7]. 
Thus, the function @i(t) = I/x + zyIIp, t E (0, 11, is continuously differentiable 
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with its derivative Q’(t) = p(J,(x + ty), y ). By the Newton-Leibnitz 
formula and (3.1), it then follows that 

lIx+YllP- llxllp-Pupx? Y> 

= @( 1) - Q(O) - W(O) 

=p{i (Jp(x+v)-J,x, Y)dl 

6P s I lIJ,(x+0+J,xll IlYll df 
0 

dPllYll ~‘(llx+Q4 ” IlxllY-’ ‘pp 
t llvll 

0 IIx+ VII ” 11x11 dt > 

=pj”;(I*+f?l;v “x”)pqp(l,x+;;;‘l ,lxll 

which establishes the inequality (3.2). 
(iii) * (iv). Obvious. 
(iv) * (i). For any XE S(X) and llyll < t, the inequality (3.3) implies 

Ilx+yllp~ llxllp+p(jpx, y)+oJx, y)= 1 +f~,(x, y)+p(j,x, y> 

and 

Il~-~/lp~II~I/p-~~~p~,~~+~p~~, -y)=l+a,(x, -y)-p<jpx,y) 

Let a = 1 +max{a,(x, y), a,(~, -y)}. It then follows that 

/lx + Yll + Ilx- yll < (u + p<j,x, y))“” + (c( - p(j,x, y))“P 

= @l/P 

[( 
1 +i <j,x, Y> 

llP 

) ( 
+ l-~(l,x,1:) 

IlP 
> 1 . 

Since I(pl~)(j,x, y)l d Cl +max{a,(x, y), 0,(x, -y)}]-’ pz+O as 
T -+ 0, whenever z is small enough we have 

where 

=(l/P)(l/P-l)...(l/P-n+l) 
?Z! 
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In consequence, whenever z is small enough we obtain 

lb + Yll + IIX- yll d 2ct”P [z,(y~)(~(J.d)“‘1 

where 
< 2aLip d 2a d 2( 1 + IT(T)), 

(notice that ( \‘,P, < 0 for any n 2 1, and a > 1). By the definition of modulus 
of smoothness of X, it then follows that 

Px(T) 6 g(T) vT>o. 

From the expression of ~~(x, y), it is easy to see that O(T)/T + 0 as T ---f 0. 
Consequently, px(z)/ r + 0 as T + 0, namely, X is uniformly smooth. With 
this, the proof of Theorem 2 is complete. 

Remark 4. From the proof of Theorem 2, it is seen that the inequalities 
(3.1)-(3.2) can be rewritten in the form 

with 
Ilx+~ll~~ llxllp+~<Jpx> Y)+a,(x, Y) (3.2)’ 

tllvll np(x, Y) = PL j; (‘lx + “I; ” ‘lx’lY’ px ( ,Ix + tyll v l,xll) & 

where the constant L = max{ 8, 64cK; ’ }, K,, and c are defined respectively 
by (2.13) and by 

15T, 
l+- 

) 
with To= r 339 - 18 

4x2,’ 30 
(3.6) 

(cf. the proof of [16, Proposition l.e.51). 

Remark 5. The inequalities (3.1)’ and (3.2)’ imply that when X has 
modulus of smoothness s (S > 1) there exists a positive constant L, such 
that 

IIJsx-Jsyll bMx-VII”-’ (3.7) 

lI~~+yll”dll~ll”+s~J,~,~~+~,IIyII”. (3.8) 

Moreover, from the implication (iv) * (i) in the proof Theorem 2, it is easy 
to see that px(z)< (1/2)L,z” when the inequality (3.8) is satisfied. 
Accordingly, we know that the following statements are equivalent: 
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(i) X has modulus of smoothness of power type s (s > 1); 

(ii) J, is Holder continuous with order of continuity s- 1; 

(iii) the inequality (3.8) holds for every x, VEX. 

Remark 6. Recall that the modulus of continuity of Jp is defined by 

w,(t,=sup{/IJ,x-J,y/I: Ilx-yll Gt> vt>o. 

Hence (3.7) implies that 

(a) W,(t) d L, trm ‘, whenever X has modulus of smoothness of 
power tye s (S > 1). 

More generally, from (3.1) and by a similar argument to that following 
(3.5) in the proof of Theorem 2, we see that 

(b) W’,(t)<L(t)p,(t), where L(t)=Lmax{2t,cj is bounded on 
every bounded interval of R’. 

As stated in Remark 5 and the property (52) of duality mapping, these 
imply that a Banach space is uniformly smooth (respectively, has modulus 
of smoothness of power type s (s > 1)) if and only if the duality mapping J 
is uniformly continuous on every bounded subset of X (respectively, J, is 
Holder continuous). Therefore, Theorem 2 not only clarifies the quantitative 
relation between smoothness of X and continuity of duality mapping J,, but 
also provides a direct and constructive proof for the property (52) of duality 
mappings. In particular, Remark 5(i)-(ii) strengthens the property (52). 

Remark 7. The inequalities (3.1)’ and (3.7) improve that offered 
by Al’ber and Notik [ 1, Theorem 1 ] in the sense that here an estimate 
on the modulus of continuity of J,, rather than the semi-inner product 
(Jx- Jy, x - y), is given. Also, the inequalities (3.2) and (3.8) generalise 
and improve those developed by Reich [ 191 and Liu [ 173 in the sense that 
the term crP(x, y) here is explicitly specified by means of the modulus of 
smoothness of X and, what is more, it is shown here that these types of 
inequalities characterise the uniform smoothness of X. For applications 
of the inequalities (3.1)’ and (3.2)‘, see, for example, [21, 27, 281. 
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