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Let X be a real Banach space with dual X* and moduli of convexity and
smoothness dy(e) and py(t), respectively. For 1 < p<o0, J, denotes the duality
mapping from X into 2" with gauge function ¢”~' and j, denotes an arbitrary
selection for J,. Let o/ = {¢: R* = R*: $(0)=0, ¢(1) is strictly increasing and
there exists ¢ >0 such that ¢(1) 2 ¢d,(#/2)} and F ={¢p: RT > R*: ¢(0)=0, ¢ is
convex, nondecreasing and there exists K> 0 such that ¢(t) < Kpx(t)}. It is proved
that X is uniformly convex if and only if there is a ¢ € o/ such that

lx+ylI? 2 1xI”+ p{j,x ¥> +0a4(x, y)  Vx,yeX
and X is uniformly smooth if and only if there is a ¢ € # such that
Ix+ yll7 <X+ pljpx, ¥ +0,(x, ¥)  Vx, yelk|

where, for given function f, o,(x, y) is defined by

L [MUx ol vl )yl
or(x, ”“”L : f<|x+ty|| v 1xu>d"

These inequalities which have various applications can be regarded as general

Banach space versions of the well-known polarization identity occurring in Hilbert
spaces.  © 1991 Academic Press, Inc.

0. INTRODUCTION

Among all Banach spaces the Hilbert spaces are generally regarded as
the ones with the simplest and perhaps most immediately and clearly
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190 XU AND ROACH

discernible geometric structure. This observation is supported and indeed
characterised by the availability of the parallelogram law

x4+ y12 + llx = pI2 =201 + 1 ¥1?) (%)
or equivalently the polarisation identity
I+ yiI> = I1xII* + 2Re<x, y)> + % (%)

With this understanding we shall say that Hilbert spaces are spaces with
the best structure. The reason for saying this is that problems posed in such
spaces can be analysed in a comparatively straightforward and easy manner.
However, in applications many problems do not fall naturally into spaces
with this best structure. Therefore it is natural to ask what spaces are
nearest to spaces with the best structure in the sense that their geometric
structure can be characterised by similar relations to (x) and (xx).

Generalisations of () and (*x) to L” spaces are known [3, 12, 13, 24, 25].
The main results can be summarised as follows: Let A, ue[0,1] be
arbitrary real numbers such that A+ u=1. Then

(i) Lim inequalities [13, Theorem 1; 25, pp. 3-85].
IAx + uyll” + g llx — ylIl? < Allx” + pullpyll?, 2<p<oo
[Ax +uyll? + g llx — yII? = Alx|” + pullyl?,  1<p<2
for any x, ye L, where

_ 3 1+ x(A A p)y !
SO xG Ay

glu)

and x(u) for 0<< < 1/2 is the unique solution of

A’*’xpfl_'u_(lx_‘u)pflzo, ngl

>~

When 4= pu=1/2, these inequalities reduce to the Clarkson inequalities
I+ yl7 + lx = plII? <277 HlxI1” +pll7), 2<p<oo
Ix+plIl7 +llx = pl7 =277 1 (Ixl? + U pl?),  1<p<2.

(ii) Characteristic inequalities [24]. Let pe(l, o) and x, ye L’
Then

1Ax + pyll? + (p— 1) Aullx — plI> < Allx|?+ plyl?, x#y, iff p<2
[Ax + uyll? + (p = 1) Aulix — ylII? = AllxII> + ullyl3 iff p=2
Iix +pupl >+ (p—1) dullx — pI? > Alx| >+ plyl® x#yp, iff p>2
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or equivalently,

e+ p12> N+ 20x, p> +(p= DIyl Ixl vk #0, iff p<2
I+ w12 = lixl? +2{Jx, > + (p = DIyl iff p=2
I+ 12 <lxli? + 2<%, y> + (p=DIyiI%  Ixli iyl #0, iff p>2,

where (-, ) denotes the generalised duality pairing and J: L” —» L¥ is the
normalised duality mapping defined by

Jx={x*e L% (x* x)=Ix*| Ixll, [x*=fx[}, g=(p—-D""p.

These inequalities contain those developed by Kay [12], Bynum and
Drew [3], and Ishikawa [10], respectively, as special cases.

More generally, Reich in [19] established the following version of {xx)
b+ yI < NIxl? + 2<%, y> + o (Il yl)

in Banach spaces whose dual spaces are uniformiy convex, where J is again
the normalised duality mapping of the spaces and o .(| y|l) is given by

o (i) =max{fx{, 1}yl Byl

with
Bty =sup{t~'[llx +ty* — x> = 2<Jx, > 10 x| <1, [y <1}
Recently, Prus and Smarzewski [ 18] proved the inequality
1Ax +uy |+ dW,(u)llx — y1* < Al + plpll?

in uniformly convex Banach spaces with the moduli of convexity of power
type g = 2, where

W, (1) = Au* + pd”

and d is a positive constant. In these versions, no characteristic relation
between the inequality developed and the underlying Banach spaces
is reported. In particular, no explicit expression for o.(||y}) in Reich’s
inequality is given.

In this paper we shall present a characteristic version of (*x) in Banach
spaces possessing the property of either uniform convexity or uniform
smoothness. More precisely, with J,: X — X* being an appropriate duality
mapping, 6,: Xx X - [0, c0) a definite functional, and pe(l, ), we
prove that an inequality of the form

fx+yI7 =17+ p<{J,x, y>+0,(x, y) (0.1)
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characterises a Banach space X of uniform convexity, and an inequality of
the form

I+ y[7 < Ix[7+ p<Jpx, v +0,(x, p) (02)

characterises a Banach space X of uniform smoothness. Unlike Reich’s
version, the functional ¢,(x, y) in our version can be expressed explicitly in
terms of either the moduli of convexity or the smoothness of the underlying
Banach spaces. Accordingly, obtaining a specialization of the characteristic
inequality to particular spaces reduces to computing the moduli of convexity
or smoothness of the space. The inequalities (0.1) and (0.2) presented here
provide a reasonable reflection of the well-known fact that there is a
complete duality between uniformly convex and uniformly smooth Banach
spaces (see, e.g., [ 16, Proposition l.e.27).

The inequalities developed here have applications in a number of different
fields. Examples of the use of particular forms of these inequalities can be
found, for instance, in [1, 3-5, 10-15, 17-21, 24-26]. Further applications
will be given in [27-29].

1. PRELIMINARY

Let X be a real Banach space and X* be its dual space. B(X) and S(X)
denote respectively the unit ball and the unit sphere in X. For any pair
xe X and x* e X*, x*(x) is denoted by {(x*, x).

Let

Sx(e)=inf{l—[I5(x+ y)l: x, ye S(X), Ix—yl = ¢}
and
px(t)=3sup{lx+ yl +llx— y| —2: xe S(X), Iy <t}

The functions d,:[0,2]—-[0,1] and p,: [0, 0)=R* - R™ are respec-
tively referred to as the moduli of convexity and smoothness of X. Recall
that X is said to be uniformly convex if d,(¢) >0 for any e€(0,2] and X
is uniformly smooth if lim, _, p,(z)/t=0. It is known [ 16, p. 63; 7; 9] that
all Hilbert spaces and the Banach spaces /7, L?, and W? (1< p< o) all
are both uniformly convex and uniformly smooth and

S,u(e)=1—1—(1/4)¢ (1.1)
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- —1
p8182+0(82)>p e, l<p<?
810(8) = 8,0() = Sypp (2) = TR (1.2)
—l1={= il >
=) ) e
pu(t)=(1 47321 (13)
(1+r”)””—1<lr", l<p<2
Pul)=pi(®)=pug(e) =4 i (14)
P 5 4 o(1?) < 2, p=2.

We will need the following basic properties of the functions é,(¢) and
px(t) [7,16]:
(01) 0x(0)=0, d,(e)<1 (<1 if X is uniformly convex);
(02) dx(e) is continuous and nondecreasing and, d,(¢) is strictly
increasing if and only if X is uniformly convex;
(83) Ox(e)<oyle)
(64) if X is uniformly convex, then d (&) =: 8, (g)/¢ is nondecreasing,

(p1) px(0)=0, py(r)< 15

(p2) px(7) is convex, continuous, and nondecreasing;

(p3) px(1)/7 is nondecreasing;

(p4) px(t)Zpy(t);

(p5) px+(t)=sup{re/2—-d,(e): 0<e<2};

(p6) py(1)is equivalent to a decreasing function, namely, there exists
a positive constant ¢ so that p,(n)/n> < cp,(1)/r*> whenever 1 =1 > 0.

Let ¢: R > R", (0)=0, be a continuous, strictly increasing function
(such a function is said to be a gauge function). The mapping J,,: X - 2%
defined by

Jo={x*eX*: {x* x)={x*| I, Ix*] = o(llx])}

is called the duality mapping with gauge function ¢. In particular, the
duality mapping with gauge function ¢(¢) =1, denoted by J, is referred to
as the normalised duality mapping. We will use the following properties
of duality mappings which are established in [67], [7], [8], and [23],
respectively:

(J1) J=I1if and only if X is a Hilbert space;

(J2) X is uniformly smooth if and only if J (and hence J,,) is single
valued and uniformly continuous on any bounded subset of X;
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(J3) J is surjective if and only if X is reflexive;
(J4) J,(Ax)=sign(Z)(@(14] lIx])/|x]) Jx, 2€ R;

(I5) J,x<=o®d(l|lx||), where 0D(]|x||) is the subgradient of &(f|-|f) at
x and @ is given by

t

qb(z):fo o(s) ds.

Moreover, if X is reflexive, then J,x = 0@(jx|).

In what follows, the notation J, is used to denote the duality mapping
with gauge function ¢(r)=17"", j, denotes an arbitrary selection for J,
(namely j,x e J,x for every x € X). For arbitrarily real numbers a and b we
always let

a v b=max(a, b), a A b=min(a, b)
and further, 4, ue [0, 1], p,ge (1, o) are always assumed to be such that
1 1
Atu=1, -4+-=1
P 9

Also, given a multi-valued mapping F: X —2*", D(F), R(F), G(F), and
F~! will always denote its domain, range, graph, and inverse, which are
respectively defined by

D(F)={xeX: Fx#¢}

R(F)={x*e X* x*e Fx, xe D(F)}

G(F)={[x,x*]e XxX*:xe D(F), x*€ Fx}
F 'x*={xeD(F): x*e Fx}.

2. CHARACTERISTIC INEQUALITIES OF UNIFORMLY CONVEX BANACH SPACES

Let X be a real Banach space with modulus of convexity dy(¢), p>1 be
an arbitrarily real number, and

o/ ={¢:R* > R*: $(0)=0, ¢(z) is strictly increasing and there
18 positive constant K such that ¢(1) = K 5 (¢/2)}.

We now establish the main result of this section:
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THEOREM 1. The following statements are all equivalent:
(1) X is uniformly convex;

(ii) there exists a function ¢,€ s/ such that

o il > )
Gy x— 3= (xl v 191 ¢,,<—~—“x”v”y“ SRt

(ii1) there exists a function ¢,€ o/ such that
I[x+ yIl7 2 Ix[l” + p<{jpx, j> + 0,(x, )

for any x, y€ X, where

lx+oyl v IlX\I)”¢ < iyl
"\l

_ dr. 22
a,(x, y) Pfo [ X+l v IlyH) ' 22)

To prove this theorem we need the following lemmas which are also
interesting in their own right.
LEMMA 1. For every x, ye S(X) and te(0, 1), let ¢ =|x— y|| #0. Then
1A + eyl <A+ pt —2(4 A p)t b4 (e).

Proof. The inequality follows trivially when x and y are linearly
independent. Suppose that x and y are linearly dependent and denote by
E the subspace spanned by the elements x, y, and the zero element. Then
the element Ax + uty belongs to E. Let z be the intersection of the vector
x—y and the ray t(Ax+ uty), >0, in the subspace E. Then there exist
real numbers « and f such that

z=a(Ax + uty), =0 (2.3)
z=fx+ (1 —F)(Ax + ), 0<p<L (2.4)
Since x and y are linearly dependent, it follows that
aA=f+(1-p)A
aut = pu(1 —p).
Solve these equations and find
a=(A+ut)" and B=(A+u)" A1 -1).
Consequently, from (2.3) and (2.4), it follows that
IAx + peyl| =a = izl = (A+ pe) | Bx + (1 = B)(Ax + uy)|
S@A+un)[Blxl+(1=B) IAx + pyll]
=(1—1t) A+ t]lix+ uyl. (2.5)
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Furthermore, we observe that the function of the form f(s,w)=
s 1({lx +sw| —|lx]|), s> 0, is nondecreasing in s and for every fixed s and
w in X. Hence the definition of the modulus of convexity implies that

[Ax +pyll =1+ plllx+ p(y —x) = llx] J/u
=1+ y—x)<1+p4f(3, y—x)
=1-2u[1—5lx+y11<1~2udy(e)

whenever p < 1/2 and, similarly, that
llAx+ upll <1 =24 8,(¢) whenever A<3.
Combining these inequalities with (2.5), we have that
1Ax +ptyl S (1 =) A+ 1[1=2(u A 4) 8 (¢) ]
=A+ut—2(u A A)tox(e)
and the proof is complete.
LEMMA 2. X is uniformly convex if and only if, for each pe (1, ), there

exists a strictly increasing function 6,(J, pu,-): R* - R™, J,(4, 4,0)=0,
such that

x— ¥

><Auxnf'+uuyup (2.6)
TV Iy

x4y ? + (I v 1) 5,,(2, "

for every x, ye X.

Proof. When the inequality (2.6) is satisfied, for any x, yeS(X),
[x— y|l =&, we take A= pu=1/2 in the inequality and find

7 11
— - Sl
+5,,<2,2,6>

Sy(e)21—[1-06,(5,3¢6]17%>0

xX+y
2

which implies that

namely, X is uniformly convex. Conversely, suppose that X is uniformly
convex. We then construct a function J,(4, u, -) so that the inequality (2.6)
is fulfilled. For this purpose, we first define a function ¢,: [0, 1]x
[0,1]xR* by

@p(4 &) =min{ f (4, u, &), [P (4 . &)}, (2.7)
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where

f;l)(;taua8)=)v+ﬂ(1—§>p_(]_#§>p (28)

[, ue)
= A[1—pd? =Y = — [ —2(u A A) Sy (g/2)]70 711 P,
(2.9)

We show that with the function ¢, so defined the inequality
14X + uyll” + @, (4, p, €) < Alxl)”+ plipl” (2.10)

holds for every xeS(X) and ye B(X). Indeed, let to=|yl, j=1t,"y,
e=|x—yl, and £= ||x — y|. We consider the function g defined by

g)=A+ut? —[A4+pt—2(p A A)tox(8)]7, 0l
Form Lemma 1, we then have

glto) S A+ ptf — | Ax + puto Y17 = A+ ptf — |l Ax + pyil”
=Alx[? 4+ pllyl? = llAx + pyl 7. (2.11)
We now distinguish two possible cases:

Case 1. t,<1—¢/2. Then the strictly decreasing monotonicity of the
function (4 + ut”)— (4 + pt)” implies that

8lt0) = At ptf — (4 puto)” > £, 1, €).
From (2.11), therefore, (2.10) follows directly.

Case 1. to>1-¢/2. Then e=|x—J| = lx—yp| —~ ly—Jy| =
e— (1 —1,) = &2. By the property (52), it follows that

o\ )2
glto) = A+ utf— I:),+/.t10—~2(,u A At dy <%>] =:h(ty).

We find that the function A(z,), 0 <, < 1, attains its minimum at

ly=4 [H—Z(#/\i) Ox <§>]P—n /{um—n I”[u—Z(uAi)5X<§>}MP_”}
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which is the unique solution of the equation

e\ !
e = p Juag = 2 uto =20~ D10 1 (3|

x [#_m AA)S, (%)]} -0
or equivalently

I:ft Futg— 2 A W)ty Sy G)JP

_ g At pto—2(u A A) 15 0x(¢/2)]
h p—=2(p A A)ox(e/2)

Hence
. ptl LA+ e, —2(u A A)e, 04(g/2)]
f h(ty)=nh(t,)= P X x
ol | Alto) =hlty) =2+ ut} L—2(u A 1) 0,(22)

=A—2uty T p=2u A 1) dx(e/2)17 = fP(4, s, €).
Consequently, (2.10) follows.

It is easy to see that the function 0,(4, u, €) is strictly increasing in e.
Therefore, (2.10) implies that the inequality (2.6) is fulfilled for

0,(4 u, &) =min{@,(4, u, &), ¢,(1, 4, &) }. (2.12)

With this, the proof is completed.
LEMMA 3. Let 0,(4, pu, €) be given as in (2.12). Then

hm Sup 5;,(}\', ﬂ’ 8)/[1 + llm Sup (Sp(;v, H, 8)/)\. 2 Kp 5)( <_;—>5

=90 A—0Q

where K, is a positive constant defined by

Kp=4(2+\/§)min{%p(p——l)A 1, (%,;A 1)(1)—1),

(p—D[1—(/3—1) V77, 1—[1 +Q;:[#Tp}. (2.13)

Proof. Since J,(4, y, £) is symmetric with respect to A and , it is seen
that
lim sup J,(4, i, &)/p + lim sup 8 ,,(4, p, €)/4

u—0 10

>2min{lim fO(4 g, &)/p, lim 90, g, e)/A:i=1,2}.
u—0 A=0
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From (2.8) and (2.9), we calculate

lim fm(A e /'u=<1_%>p—<1—[—7£>=1g1(8)

uw—0

tim 7502 =1-[ 142 (1-8) " i

2
im 20w o= -0 1-(1=20, (2 |

I—p
lim f (4, u,a)//l:l—[l—{—-—zL(S <8>:| =1 hy(0),
PR P 2

where 0 = § 4 (¢/2). Then, using the fact that the property (33) implies

s=ns)<an)--[=6) T

2
(%) >46Q2-0)>(4+2./3)5 and 5< (2—/3) forany ee(0,2],

which yields

we consequently obtain

a2 @+2/5) it @)/ (5) =6+20n0-n0(5a1)

0<ex2

§:(e)/5>(4+2./3) inf 82(8)/<§> =(4+2\/§)<p(p2—1)m>

O0<exg?2

h(6)/d = inf hy(8)/6

0<8<(1/2)2—/3)

_(4+2\/> y[1—( \/__1)p(p—1)~x]
I—p
h(8)/6 > R ROTE 4+2\/[ ( (2;:/13)17) ]

0so=s(1/2)(2 -3

From these inequalities, Lemma 3 readily follows.

Proof of Theorem 1. (i) =-(ii). Since the duality mapping J, is positively
homogeneous from (J4), we can assume |x|| v ||y =1 without loss of
generality. Thus, applying Lemma 2, we have

[Ax + ol ? +0,(4 u, [Ix — yID<AIx|? + pulyl?  VYx, yeX
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which in particular implies

Ix+p(y = )7 = lixi? < p(ivll” = ixit?) = 0,(4, w, ix— yi) (2.14)
1y + 4=y = 17 < AUx0” = 117 = 6,(4, w, [ix = yl). (2.15)

Since X is uniformly convex, X is also reflexive [ 16, Proposition 1.e.3]. It
follows from the property (J5) that J,x=0((1/p)ilx{?) for every xeX.
Accordingly, the inequalities (2.14)} and (2.15) further imply

pljpX y— x> <|yI7 - Ix||” —lim sup 6 (4, p, |x— yll)/u

w0
and

P<lJp ¥, x=y> <|Ix|7 — [ ¥]? —lim sup 6,,(4, g, |x— yl)/A.

A0
Combining these two inequalities then yeilds

. . 1.
{JpX=Jpy-x—=y> 2; [lim sup 6,(4, p, [[x — yl)/u

w—0

+lim sup 6,(4, u, | x — y[)/A].

i—0
From Lemma 3, we thus obtain

<jpx_jpy’x_y>>Kp5X(”x_y“/2)a

that is, (ii) is established for ¢,(1)= K, 8, (#/2).
(il) = (iii). Let @(t)=(l/p)|x+ty*and O=1t,<t, < --- <ty=1an
arbitrary partition of the interval [0, 1]. By the property (J5), we have

HESE ||x|ip=¢(1)—¢(0)=§ ({1, 1) — B(1,))
>:i; Cplx + 1 ) 93 (t6 01— 1),
It follows from (ii) that
o+ 317 = 137 = p s 3
>p Z 1) = % 73ty — 1)
ZPNZ Werol v 0P, (uil Y,
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Since ¢, is strictly increasing and |ix + ¢y|| v (x| is continuous in ¢, the
function

S(1) = (Ilx + 2yl v ItXII)”¢ ( iyl )

t e+ ayll v [l

is integrable (in the sense of Riemann). We therefore have
—1

N
e+ yI7 = lxl” = pljpx, y> = lim p Y St — 1)

k=0

1
= j S(1) dt
0
which establishes (ii1).
(iii) = (i). For any x, y € S(X), the inequality in (iii) implies that
=[x+ (y—x)*—ix|?

(x+ 1y — )| v f1x])?
t

=2{Jx, y—x>+2f

ty—x|
x4 (ux+r(y—x>|| v ux||> a

>2Gn y=x>+2[ 1 gty —xl) d

I\Y*l\i

=2{jx, y— X>+2f (1m)/n dn.

Hence, from the increasing monotonicity of ¢,, we find

L= G yy2 [ danndn  whenever fx—yl >

This, combined with the property (62) and the fact ¢,(#) € o/ implies that
there exists a strictly increasing function Y(e) (for example, Y(¢)=
K, jg dx(n/2)ndn) such that {jx, y>=1—7Y(¢) for any x, yeS(X),
|x — yll =& Consequently, [20, Lemma 2.4] implies that X is uniformly
convex. This completes the proof.

Remark 1. 1t is seen from the proof of Theorem 1 that we have the
specific inequalities

o x—
k= v = v 3 Ko (x] v ||yu)ﬂéx( Y

2(Ixt v Iyl
lx+ ylI? 2 lxI”+ pl{j,x, y>+0,(x, ¥)

> (2.16)
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with

v (il
oste )= piy [ B (i o )

which hold for every x, y in a uniformly convex Banach space, where K,
is as defined in Lemma 3. In particular, when X has modulus of convexity
of power type m (m>1), (2.16) and (2.17) imply that for some positive
constant K

X = Jm ¥y X =y Z K[ x— p|I” (2.16)
Ix+ piI™ = 1xI™ + mjmx, y> + Kl y|™ (2.17y

These inequalities, together with (3.2) and (3.8), generalise the L?
(1 < p< o0) characteristic inequalities in [24], which in turn extend the
well-known polarisation identity in Hilbert spaces. We notice that the
inequalities (2.16)" and (2.17)’ are homogeneous in the sense that all terms
in the expression have the same power ({j,,x, y ) is naturally regarded as
having power m, because <{j,,x, x> =|x||”). This favourable feature plays
an important role similar to the L” characteristic inequalities (see, e.g.,
[4, 5, 11, 17, 21, 24]). This also explains the advantage of using the
generalised duality mappings J, rather than the normalised one. For
example, (2.16) and (2.16)’ extend and improve the results in [ 1, Theorem 1;
22, Proposition 2.117].

Remark 2. Recall that a possibly multi-valued mapping 4 from X into
X* is said to be strictly monotone (respectively, strongly monotone) if,
{(f—g x—y>>0Tforevery [x, /], [y, g]1€G(A4) and x # y (respectively,
there exists a strictly increasing function ¢: R— R*, ¢(0)=0, such that
=g x—yyzdlix—yDix—yl for any [x f1 [y gleG(A))
Furthermore, a strongly monotone operator is said to be uniformly
monotone if ¢(z)= Kt for some positive constant K. It is shown in
[23, Lemma 2.12; 25, Theorem 3.4.2] that the strict monotonicity of the
normalised duality mapping J on B(X) characterises the strict convexity of
X (where X is said to be strictly convex if any x, y € S(X), x # y, imply that
(1/2)|x + y| < 1). We observe that (2.16) implies

o 2 M)
=y x— > = Ko(lxl v Iy1) 5x(2(|1xllvl,y,,) :

By using the fact that the function &, (c) =sup{et/2 — py«(1): =0} is the
maximal convex function majorised by 8 (¢) and &, (¢)/e? is equivalent to
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an increasing function (see [16, Proposition 1.e.6]), we get (noticing that
lxlh v Iyl <1)

o s (x=vl /( Ix— 1 )
=iy x=y> 2 Kllx =yl 5"<2(ux||vnyn)> R

Ix—yl

> cK, EX( ) Vx, y e B(X) (2.18)
here ¢ is the positive constant such that § X(tl)tfgcg «(£,)/t3 whenever
0<1,<t,. Since 8,(¢) is convex, the function @(1)=cK,d(4/2)/t is
positive and nondecreasing. Thus, (2.18) implies that

x—=jyx—y>2zo(lx—yllx—yl vx, y e B(X),

where ¢(1)=(1+1)"'td(r) is a strictly increasing function from R* into
R* such that ¢(0)=0. As a result, Theorem 1 then says that a Banach
space X is uniformly convex if and only if J is strongly monotone in B(X),
which provides a uniform version of the result given in [23, Lemma 2.12].
Also, from (2.16) it is seen that a Banach space X has modulus of convexity
of power tye 2 if and only if J is uniformly monotone, which is a slight
extension of [22, Proposition 2.11]. Corresponding to the well-known fact
that the continuity of J characterizes the smoothness of X, we now can
conclude that the monotonicity of J characterizes the convexity of X. This
presents a link between the theory of monotone operators and geometry of
Banach spaces, which is very useful in tackling problems in these two areas
(see [22, 27, 28], for instance).

Remark 3. We emphasize that the inequality developed in Lemma 2
also is of practical and theoretical importance although this is not our
main concern here. Some interesting applications of this type of inequalities
do exist, see, for example, [10, 11, 13, 15, 18, 247]. However, we remark
that not only does the inequality in Lemma 2 generalise that given in
[18, Lemma 2.1] to general uniformly convex Banach spaces, but also the
method used for proving the inequality is completely elementary and also
constructive (in particular, it is not necessary to apply Martingle theory
like Prus and Smarzewski in [18]).

3. CHARACTERISTIC INEQUALITIES OF UNIFORMLY SMOOTH BANACH SPACES

Let X be a real Banach space with modulus of smoothness p ,(t) and
F={p:R* > R*:(0)=0, ¢ convex, nondecreasing and there exists
a constant K> 0 such that ¢(1) < Kp,(7)}.

In this section we prove the following duality results of Theorem 1:
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THEOREM 2. For any 1 < p < o0, the following statements are equivalent :
(i) X is uniformly smooth;
(i) J, is single-valued and there is ¢ ,€ F such that

lx— yl

——) Vx, ye X, (3.1)
[xIl v [yl

Ipx =T, yli<(lxl v Iy~ ' @, <

where @,(t) =@ ,(1)/t;
(iii) there exists a ¢, F such that

lx+ ylIl? <Ux1”+ p{Jpx, p> +0,(x,¥)  Vx, yeX, (32)

where

Cllx 4ol v olixl) ( iyl )dt'

o,(x, y)=
oX y Pf lx+ty] v [Ix|

0 t

(iv) there exists a j,eJ, such that
lx+ yI? < xlI”+ pljpx, y> +0,(x, ¥)  Vx, peX. (33)

To prove this theorem, we need the following lemma.

LEMMA 4. Let X be a uniformly smooth Banach space, J,: X — X* and
JF X* > X be the duality mappings with gauge function ¢(t)=1t"""' and
¢(s)=s"", respectively. Then J ' =J¥.

Proof. The uniform smoothness of X implies that X is reflexive and that
X* is uniformly convex and reflexive [16, Proposition 1.e.3]). Therefore,
from the properties (J2) and (J3), J, is single-valued and surjective. This
implies that the inverse J;’ (X*=D(J, ") — X = X** exists and is given by

Jolx*={xeX:jx=x*  Vx*eX*.
On the other hand, let ¢(x) = (1/p)| x| ? for every x in X. It is easy to show

that @ is continuous, convex, and that its conjugate is given by ®*(x)=
(1/g) | x*||¥ for every x* € X*. From the property (J5), it follows that

J,x=0P(x), VxeX; J*x} =0D*(x*), Vx*eX*

By using the fact that x* € 0&(x) if and only if x € 0P*(x*) [2, p. 203], we
conclude that J - 'x*=J¥x* for every x* e X*. This completes the proof.

Proof of Theorem 2. (i)= (ii). It is known [16] that J, is single-valued
and that X* is uniformly convex. Let J ¥(¢) be the modulus of convexity of
X* Then, by Theorem 1(ii), the inequality

lx* — y*|| )
JH¥x* — j* pk x¥ kNS K ([x*]| v *1)4 5 *<_________
e e e T R e A e e
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holds for every x*, y*e X*, where j* is an arbitrary selection of the
duality mapping J}: X* -2% and K, is the constant given in (2.13).
Hence, we have

, , 1 L Ix*— y*| >
b S L VL) iy ¢ * *| )4 5x* _
L= v =5 Ky 1) (2(nx*n T

where
3 yu(€) =8 yu()/e Vee(0,2)

In particular, putting x*=J,x and y*=J,y in this inequality, which is
always possible by Lemma 4, implies (by Lemma 4) that

! Jx—J
= s> 5 Kyl v 151 85 (el

2(1xl v 2=t

and in turn

2lx—yl s ( px—J, ¥ )
K, v Iy ™ 720l v iy ')

By the property (p3) of the modulus of smoothness, we then obtain

[ 8lx—y] ) ] <45. < Jx—J, | >>
""(Kq(nxnvuyu) ZP\ o v 7))

where
Px(t)=px(t)t V>0
On the other hand, by the property (p5), we have
py(t)=11e— 8 yul(e) Vee(0,2), 1>0.

This implies in particular that

px (4——‘%(8_’) S8l 5 =) Veelo,2]
€ 2 e

Hence

P x (40 4(£)) = 56(45 4+ (¢))

409/157/1-14



206 XU AND ROACH

namely, p (48 y«(¢)) = (1/4)e. From (3.4), it follows that

A Y ) ) (45 ( Wox—d, 7] )) U W,x—J, vl
”"(K,,(uxuv||yu) ZPe\ O\ Fxv o)) T8l v )

That is,
1% =, vl <8(Ix] v IIyII)”‘IﬁX<M—>
> K, (=l ~ 171
(Ul v Iy ( 8 )x— i >
=K X . 35
x= P& Y oD (33)

We now consider the following cases:

Case 1. 8/K,<1. Since py(-) is convex (the property (pl)), we have

(Ul v [171)” ( lx = i )
Jox—J,yI <8
I, x—=J,yl < Ix=yll "X \xl v iyl
3 -1z M)
=8(|Ix|| v Iy1)? "X<|(xu MTIA

Case 11. 8/K,> 1. Making use of the property (p6), we obtain

82(llx v 1y)” 2 llx — yll
K

q

‘. < 8x— yli )/( 8x— yl >
AK, Ixl v vl K Ix] v iyl
< 82UV D? lx -] ( Ix— yl )/( Ix— i )
= Px
K A ANEIRAE]

_8c(lixl v ilyl” < llx— ¥l >
K lx=yl - " \lixl v il

,x—J, ) <

=826K;1(“X|| vy <I|—JC\TT;—T])‘)"_“>

Consequently, (3.1) follows by taking ¢,(f) =max{8, 8°cK '} px(¢).

(ii)= (iii). Since J, is single-valued, so is J. This implies that X" is
smooth (that is, the norm of X is Gateaux differentiable) and that J, is
continuous from the norm topology of X into weak-star topology of X* [7].
Thus, the function &(¢t) = ||x + ty||?, t€ (0, 1], is continuously differentiable
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with its derivative @'(1)=p{J,(x+1y), y>. By the Newton-Leibnitz
formula and (3.1), it then follows that

Ix+ p1? = Ix|I7 — p{Jpx, ¥
= &(1)— ¢(0) — &(0)

=p jol (x4 1p)=J,x, p di
<p | Wylrt i) =Tpxl Iyl d

<p||y||f (lx+ ol v [x1)? " ¢ <ﬂ§%ﬂ>d’

o Uxt ol v ) Ml
ad! z <ux+ry|| v nxn)d’

which establishes the inequality (3.2).
(iii)= (iv). Obvious.
(iv)=(i). For any xe S(X) and || y| <7, the inequality (3.3) implies

[x+ pI7< x4 plJj,x, y>+0,(x, y)=1+0,(x, y)+ p{J,X, y)
and
l|-x"y“p< ||x|1p_p<jp'x’ y>+o-p(x, —)’):1+¢7p(X, ~y)_p<jpx9 y>

Let =1+ max{c,(x, ¥), g,(x, —y)}. It then follows that

Ix+ pll+ Ix =yl < (a4 p{j,x, y))P+ (0= plj,x, y )7

1/p l/p
=a1/p[<1+‘—’<j,,x,y>) +<1—’—’<jpx,y>) }
o o

Since I(p/a)<jpx’ y>|<[l+max{0p(xa y)a Gp(x’ _,V)}]_l pT-’O as
7 -» 0, whenever t is small enough we have

<1+§ {Jps y>>/ - ; (1/1)) ({;’ <j,,x,y>>n
(1—§<jpx,y>> g(””)<—§<j,,x,y>>",

(1/17):(l/p)(l/p—l)--~(1/17—n+1).

n n!

where
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In consequence, whenever 7 is small enough we obtain

el 1 2n
et s+ lx=st <2 5 (07 (Een )]

n=0
<207 <20 < 2(1 4 6(1)),
where
a(r):sup{o',,(x, y)’ Up(x’ _J’)' XES(X)a Hy“ <‘C}

(notice that (7)< 0 for any n> 1, and a > 1). By the definition of modulus
of smoothness of X, it then follows that

py(t)<ao(r) V>0,

From the expression of g,(x, y), it is easy to see that o(z)/r -0 as t — 0.
Consequently, py(t)/t =0 as t — 0, namely, X is uniformly smooth. With
this, the proof of Theorem 2 is complete.

Remark 4. From the proof of Theorem 2, it is seen that the inequalities
(3.1)-(3.2) can be rewritten in the form

o k=
Jx—J, <L P (——) 3.1y
=9y o < LU 11 o (o (3.1)
e+ y17 < 1317 + p<T,x, ¥+, (x, ) 3.2y
with
el v ) yl
o5 1) =pL| t X<nx+ vl v |rx||> .

where the constant L = max{8, 64cK;l }, K,, and ¢ are defined respectively
by (2.13) and by

i 33918
c= 4t H<1+L510—-) with 1o=Y—0w— (3.6)

pulTo) o 4x2 30

(cf. the proof of [16, Proposition 1.e.5]).

Remark 5. The inequalities (3.1)" and (3.2)' imply that when X has
modulus of smoothness s (s> 1) there exists a positive constant L, such
that

IJox =Tyl S Lylix—pl* ! (3.7)
x4+ yIF < xil®+s<Jox, p> + Lyl yl* (3.8)
Moreover, from the implication (iv) = (i) in the proof Theorem 2, it is easy

to see that p,(t)<(1/2)L,r° when the inequality (3.8) is satisfied.
Accordingly, we know that the following statements are equivalent:
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(i) X has modulus of smoothness of power type s (s> 1);
(ii) J, is Holder continuous with order of continuity s — 1;
(iii) the inequality (3.8) holds for every x, ye X.

Remark 6. Recall that the modulus of continuity of J, is defined by
W, (t)=sup{|J,x—J, yll: |x =yl <t} V>0,

Hence (3.7) implies that

(a) W,()<L,t*" ', whenever X has modulus of smoothness of
power tye s (s> 1).

More generally, from (3.1) and by a similar argument to that following
(3.5) in the proof of Theorem 2, we see that

(b) W,(r)< L(t) px(t), where L(r)=L max{2s, ¢} is bounded on
every bounded interval of R'.

As stated in Remark 5 and the property (J2) of duality mapping, these
imply that a Banach space is uniformly smooth (respectively, has modulus
of smoothness of power type s (s> 1)) if and only if the duality mapping J
is uniformly continuous on every bounded subset of X (respectively, J, is
Holder continuous). Therefore, Theorem 2 not only clarifies the quantitative
relation between smoothness of X and continuity of duality mapping J/,,, but
also provides a direct and constructive proof for the property (J2) of duality
mappings. In particular, Remark 5(i)-(ii) strengthens the property (J2).

Remark 7. The inequalities (3.1)" and (3.7) improve that offered
by Al'ber and Notik [1, Theorem 1] in the sense that here an estimate
on the modulus of continuity of J,, rather than the semi-inner product
{Jx—Jy, x—y>, is given. Also, the inequalities (3.2) and (3.8) generalise
and improve those developed by Reich [19] and Liu [17] in the sense that
the term o,(x, y) here is explicitly specified by means of the modulus of
smoothness of X and, what is more, it is shown here that these types of
inequalities characterise the uniform smoothness of X. For applications
of the inequalities (3.1)" and (3.2)", see, for example, [21, 27, 287].
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