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Abstract

The neuron state modeling and the local field modeling provides two fundamental modeling approaches to neural network research, based

on which a neural network system can be called either as a static neural network model or as a local field neural network model. These two

models are theoretically compared in terms of their trajectory transformation property, equilibrium correspondence property, nontrivial

attractive manifold property, global convergence as well as stability in many different senses. The comparison reveals an important stability

invariance property of the two models in the sense that the stability (in any sense) of the static model is equivalent to that of a subsystem

deduced from the local field model when restricted to a specific manifold. Such stability invariance property lays a sound theoretical

foundation of validity of a useful, cross-fertilization type stability analysis methodology for various neural network models.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the current neural network research, two funda-

mental modeling approaches are commonly adopted:

either using the neuron states (the first approach) or

using the local field states of neurons (the second

approach) as basic variables to describe the dynamical

evolution rule of a neural network. The recurrent back-

propagation networks (Almeida, 1988; Pineda, 1987;

Rohwer & Forrest, 1987), for instance, provide a typical

example of the first approach. The networks, as in their

standard form and as a direct generalization of the well-

known back-propagation network (Hertz, Krogh, &

Palmer, 1994), are modeled by

t
dvi

dt
¼2vi þgi

XN
j¼1

wijvj þui

0
@

1
A; i¼ 1;2;…;N: ð1Þ

Here vi is the state of neuron i with

ui ¼
XN
j¼1

wijvj þui

being its local field, gi the activation function of neuron i;

ui the external input imposed on neuron i; wij the synaptic

connectivity value between neuron i and neuron j; and N

the number of neurons in the networks. On the other hand,

the famous Hopfield networks (Hopfield, 1982; Hopfield &

Tank, 1986)are examples of the second approach and can

be described in terms of the local field state ui; i¼

1;2;…;N; of neurons as

Ci

dui

dt
¼2

ui

Ri

þ
XN
j¼1

wijgjðujÞþ Ii; i¼ 1;2;…;N; ð2Þ

where vi ¼ giðuiÞ gives the state of neuron i; and Ci; Ri and

Ii are fixed physical parameters. We henceforth call the

first approach the static neural network modeling and the

second approach the local field neural network modeling.

Correspondingly, a neural network modeled in terms of

their neuron states such as Eq. (1) will be referred to as a

static neural network model, whilst a network modeled in
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terms of local field states such as Eq. (2) will be referred

to as a local field neural network model.

It is obvious that, given a neural network system, the two

modeling approaches may both be applied to describe the

system either from an external state point of view or from an

internal state point of view. The questions then arise: would

there exist any difference between these two modeling

approaches? Which model would be more beneficial when a

specific analysis purpose is concerned? Can these two

different modeling approaches be cross-fertilized and

complemented mutually (and if so how)? Answering such

questions is clearly of great importance both theoretically

and practically but, to the best of our knowledge, has not yet

been given. The purpose of this paper is to answer some of

these questions by establishing a comparison theory on

dynamics of the two related models. Precisely, we will

clarify the relationship between the dynamics of the static

neural network model and the local field neural network

model in terms of their trajectory transformation property,

equilibrium state correspondence property, global conver-

gence and stability in many different senses. The results

obtained will not only uncover the consistency and

inconsistency of the two modeling approaches, but also

lay a sound theoretical foundation for validity of a useful,

cross-fertilization type approach to neural network analysis

developed recently by the authors (Qiao, Peng, Xu, &

Zhang, 2003).

In this paper we consider the following generic static

neural network model

t
dx

dt
¼ 2x þ GðWx þ qÞ; xð0Þ ¼ x0 [ RN ð3Þ

and the local field neural network model

t
dy

dt
¼ 2y þ WGðyÞ þ q; yð0Þ ¼ y0 [ RN ð4Þ

where x ¼ ðx1; x;…; xNÞ is the neuron states, y ¼

ðy1; y2;…; yNÞ is the local fields, W ¼ ðwijÞN£N is the

synaptic weight matrix and G : RN !V # RN is the

nonlinear activation mapping with V being a convex subset

of RN : Depending on the specific application, the nonlinear

mapping G may be defined component wisely or otherwise.

In the former case, G is of the form:

GðyÞ ¼ ðg1ðy1Þ; g2ðy2Þ;…; gNðyNÞÞ
T
;

y ¼ ðy1; y2;…; yNÞ
T [ RN

with gi representing the activation function acted on neuron

i; where AT stands for the transpose of A:

It should be observed that the model (3) includes not only

the recurrent back-propagation networks (Almeida, 1988;

Pineda, 1987; Rohwer & Forrest, 1987), but also other

extensively studied neural networks such as the optimiz-

ation type networks proposed by Bouzerdoum and Pattison

(1993), Forti and Tesi (1995), Friesz, Bernstein, Mehta,

Tobin, and Ganjlizadeh (1994), Liang and Wang (2000a,b),

Xia (1996), Xia and Wang (1998) and Xia and Wang

(2000), the brain-state-in-a-box (BSB) type networks (Li,

Michel, & Porod, 1989; Varga, Elek, & Zak, 1996).

Similarly, the Eq. (4) models not only the Hopfield-type

networks (Hopfield, 1982; Hopfield & Tank, 1986), but also

the bidirectional associative memory (BAM) type networks

(Kosko, 1988) as well as the cellular neural networks

(CNNs) in Chua and Yang (1988), Park, Kim, Park, and Lee

(2001) and Roska and Vandewalle (1995).

It should also be noticed that the static neural network

model (3) and the local field model (4) can be correlated in a

straightforward way if the matrix W is invertible (i.e.

nonsingular). In this case, the two models can be transferred

equivalently from one to the other. This trivial situation will

not be considered here, so the nonsingularity of W will not

be assumed in this paper.

2. Relationship between dynamics of the two models

In this section the relationships between the dynamics of

the models (3) and (4) are systematically clarified in terms

of their trajectory transformation property, equilibrium

correspondence property, stability, superior nontrivial

attractive manifold property, asymptotic stability and

global convergence. From the relationships clarified, a

stability-invariance property of the models will be

concluded in a sense to be specified later. We also point

out some open questions related to the equivalence of the

stability between Eqs. (3) and (4).

2.1. Coherent systems

Besides the basic systems (3) and (4), we will also study

the following four closely related systems:

t
dx

dt
¼2xþGðWxþqÞ; xð0Þ ¼ x0 [CoRðGÞ ð3:1Þ

t
dx

dt
¼2xþGðWxþqÞ; xð0Þ ¼ x0 [CoRðGWqÞ ð3:2Þ

t
dy

dt
¼2yþWGðyÞþq; yð0Þ ¼ y0 [RðWqÞ ð4:1Þ

t
dy

dt
¼2yþWGðyÞþq; yð0Þ ¼ y0 [RðWGÞþq ð4:2Þ

where Wq is the affine transformation defined by Wqx¼

Wxþq: These four systems are exactly the Eqs. (3) and (4)

when restricted to the specific manifolds CoRðGÞ;

CoRðGWqÞ; RðWqÞ and RðWGÞþq; respectively, where

RðGÞ denotes the range of operator G and CoRðGÞ denotes

the closed, convex hull of RðGÞ (i.e. the smallest closed

convex set containing RðGÞÞ: We will show below that these

four systems can indeed be defined, in other words, CoRðGÞ;
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RðWqÞ and RðWGÞþq do form invariant sets or manifolds

of Eqs. (3) and (4), respectively.

We will assume throughout this paper the existence of a

unique solution xðt; x0Þ to Eq. (3) and a unique solution

yðt; y0Þ to Eq. (4) for any given initial states x0; y0 in RN

(which is the case, e.g. when G is locally Lipschitz

continuous). As usual, the solution xðt; x0Þ is also called a

trajectory of Eq. (3) through x0 denoted henceforth by

G1ðx0Þ (correspondingly, the trajectory yðt; y0Þ of Eq. (4)

through y0 is denoted by G2ðy0Þ). A subset D , RN is said to

be an invariant set of the system (3) if x0 [ D implies

G1ðx0Þ # D:

We first clarify the trajectory transformation relationship

between systems (3) and (4.1).

Theorem 1. Trajectory transformation relationship. If

G1ðx0Þ is the trajectory of Eq. (3) through x0 [ RN ; then

WG1ðx0Þ þ q is the trajectory of Eq. (4.1) through y0 ¼

Wx0 þ q; that is, G2ðWx0 þ qÞ ¼ WG1ðx0Þ þ q:

Conversely, if yðtÞ ¼ G2ðWx0 þ qÞ is the trajectory of Eq.

(4.1) through y0 ¼ Wx0 þ q for some x0 [ RN ; then xðt; x0Þ;

defined by

xðt; x0Þ ¼ e2t=tx0 þ
1

t
e2t=t

ðt

0
es=tGðyðsÞÞds; ð5Þ

is the trajectory of Eq. (3) through x0; that is, G1ðx0Þ ¼

xðt; x0Þ:

Proof. First, let G1ðx0Þ ¼ xðt; x0Þ: Then xðt; x0Þ solves the

Eq. (3), that is,

t
dxðt; x0Þ

dt
¼ 2xðt; x0Þ þ GðWxðt; x0Þ þ qÞ:

Multiplying both sides of this equation with W gives the

result

t
d½Wxðt;x0Þþq�

dt
¼2Wxðt;x0Þ2qþWGðWxðt;x0ÞþqÞþq;

which means that

t
dyðt;y0Þ

dt
¼2yðt;y0ÞþWGðyðt;y0ÞÞþq;

where yðt;y0Þ¼Wxðt;x0Þþq and y0 ¼Wx0þq: Thus

G2ðWx0þqÞ¼WG1ðx0Þþq is the trajectory of Eq. (4.1)

through Wx0þq:

Now if yðtÞ ¼ G2ðWx0 þ qÞ is the trajectory of Eq. (4.1)

through y0 ¼ Wx0 þ q; then we have

t
dyðtÞ

dt
¼ 2yðtÞ þ WGðyðtÞÞ þ q:

This leads to

yðtÞ ¼ e2t=tyð0Þ þ
1

t
e2t=t

ðt

0
es=tWGðyðsÞÞds þ ð1 2 e2t=tÞq

¼ e2t=t½yð0Þ2 q� þ
1

t
e2t=tW

ðt

0
es=tGðyðsÞÞds þ q

¼ W e2t=tx0 þ
1

t
e2t=t

ðt

0
es=tGðyðsÞÞds

� �
þ q

¼ Wxðt; x0Þ þ q; ð6Þ

where xðt; x0Þ is defined as in Eq. (5). On the other hand, a

direct calculation using Eq. (5) shows that

t
dxðt; x0Þ

dt
¼ 2e2t=tx0 þ GðyðtÞÞ2

1

t
e2t=t

ðt

0
es=tGðyðsÞÞds

¼ 2xðt; x0Þ þ GðyðtÞÞ:

From Eq. (6) it then follows that

t
dxðt; x0Þ

dt
¼ 2xðt; x0Þ þ GðWxðt; x0Þ þ qÞ:

That is, xðt; x0Þ is the trajectory of Eq. (3) through x0: The

Proof of Theorem 1 is thus complete. A

Theorem 1 implies that the trajectories of systems (3) and

(4.1) can be transferred from one to the other. However, it

does not mean that the trajectories of Eq. (3) and (4) can be

transferable unless W is invertible. This is because, in the

case when W is not invertible, RðWqÞ is a strict subset of RN

so any trajectory G2ðy0Þ of Eq. (4) may not be expressible in

terms of the solution of Eq. (3). This of course causes

difficulty in our subsequent discussion. However, it is

adequate for us to apply Theorem 1 to establish the

following result which implies that systems (3.1), (3.2),

(4.1) and (4.2) can indeed be well-defined.

Theorem 2. Invariance-manifold property

(i) Any closed convex manifold S; containing RðGWqÞ (or

RðGÞ), is an invariant manifold for system (3).

(ii) RðWqÞ is an invariant manifold for Eq. (4).

(iii) RðWGÞ þ q is an invariant manifold for Eq. (4) provide

RðGÞ is bounded and convex.

Proof. (i) Let x ¼ xðt; x0Þ be a solution of Eq. (3) starting

from x0 [ S and let LðxÞ ¼ Wx þ q: Then, by the theory of

differential equations (see, e.g. Verhulst, 1990), we have

xðt;x0Þ ¼ e2t=txð0Þþ
1

t
e2t=t

ðt

0
es=tGðLðxðsÞÞÞds

¼ e2t=tx0 þð12 e2t=tÞ

e2t=t
ðt

0
es=tGðLðxðsÞÞÞds

ð12 e2t=tÞt
ð7Þ
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Write

IðtÞ ¼

e2t=t
ðt

0
es=tGðLðxðsÞÞÞds

ð12 e2t=tÞt

Then Eq. (7) implies that, since e2t=t [ ð0;1Þ and S is a

convex set, xðt;x0Þ[S if IðtÞ[S: Thus in order to prove (i)

it is enough to prove that IðtÞ[S: Note that

ð12 e2t=tÞt¼
ðt

0
e2s=tds¼ lim

1!1

Xn

k¼1

e2jk =tDtk

and

e2t=t
ðt

0
es=tGðLðxðsÞÞÞds¼

ðt

0
e2ðt2sÞ=tGðLðxðsÞÞÞds

¼
ðt

0
e2r=tGðLðxðt2 rÞÞÞdr

¼ lim
n!1

Xn

k¼1

e2jk =tGðLðxðt2 jkÞÞÞDtk:

So IðtÞ ¼ limn!1 InðtÞ with

InðtÞ ¼

Xn

k¼1
ðe2jk =tDtkÞGðLðxðt2 jkÞÞÞXn

k¼1
e2jk =tDtk

:

Now let

lk ¼ e2jk =tDtk

	Xn

k¼1

e2jk =tDtk:

Then lk [ ½0;1� and
Pn

k¼1lk ¼ 1 so, InðtÞ[S for any n

since GðLðxðt2 jkÞÞÞ[RðGÞ#S by the assumption and S

is convex. Thus IðtÞ[S since S is closed, which completes

the proof of (i).

(ii) Let P ¼ RðWÞ þ q: Then for y0 [ P there is an x0 [
RN such that y0 ¼ Wx0 þ q: Let xðt; x0Þ be the solution of

Eq. (3) through x0: Then it is easy to verify that yðt; y0Þ :¼

Wxðt; x0Þ þ q is a solution of Eq. (4) through y0: Clearly,

yðt; y0Þ [ RðWÞ þ q: This proves (ii).

(iii) If RðGÞ is a bounded convex set, then CoRðGÞ ¼ RðGÞ:

Taking S ¼ RðGÞ and arguing as in the proof of (i) we

obtain that G2ðy0Þ [ WðRðGÞÞ þ q whenever y0 [
WðRðGÞÞ þ q: To complete the proof we need to show

that WðRðGÞÞ ¼ RðWGÞ by using the fact that W is linear

and RðGÞ is bounded. First, it is clear that WðRðGÞÞ #
RðWGÞ: Now if x [ RðWGÞ; then there is a sequence

{WGðxjÞ} such that limj!1 WGðxjÞ ¼ x: Since {GðxjÞ} is

bounded, we may assume without loss of generality that

limj!1 GðxjÞ ¼ xp for some xp [ RðGÞ: From the linearity

of W it follows that x ¼ limj!1 WGðxjÞ ¼ Wxp; which

implies that x [ WðRðGÞÞ: So RðWGÞ # WðRðGÞÞ: Conse-

quently, WðRðGÞÞ ¼ RðWGÞ; which completes the proof of

Theorem 2. A

Remark 1. (i) From the Proof of Theorem 2 it is easily seen

that Theorem 2 (i) is actually true for any generic nonlinear

operator L; not necessarily restricted to the affine transform-

ation case as defined in Eqs. (3) and (4). This may manifest an

exclusive feature of the static neural network model (3).

(ii) Theorem 2 says that any solutions xðt; x0Þ and yðt; y0Þ

will remain in the manifolds CoRðGÞ; CoRðGWqÞ; RðWqÞ

and WðRðGÞÞ þ q if they are initialized from them. It says,

however, nothing about what would happen if the solutions

are not starting from the manifolds. Theorem 3 provides us

with some information in this case.

Theorem 3. Attractive manifold property

(i) For any x0 [ RN the trajectory G1ðx0Þ exponentially

approaches to CoRðGÞ (or CoRðGWqÞÞ in the sense that

dðxðt; x0Þ;CoRðGÞÞ # e2t=tdðx0;CoRðGÞÞ; ð8Þ

where dðx;SÞ ¼ infy[S kx 2 yk denotes the distance of x to

the set S:

(ii) For any y0 [ RN the trajectory G2ðy0Þ exponentially

approaches to RðWqÞ (or RðWGÞ þ q in the case when RðGÞ

is bounded and convex) in the sense that

dðyðt; y0Þ;RðWÞ þ qÞ # e2t=tdðy0;RðWÞ þ qÞ: ð9Þ

Proof. (i) It follows from Eq. (7) that for any x1 [ CoRðGÞ

(or CoRðGWqÞ),

xðt;x0Þ¼ e2t=tðx02x1Þþe2t=tx1þ
1

t
e2t=t

ðt

0
es=tGðLðxðsÞÞÞds:

Let

zðtÞ¼ e2t=tx1þ
1

t
e2t=t

ðt

0
es=tGðLðxðsÞÞÞds:

Then argue as in the Proof of Theorem 2 to obtain that

zðtÞ[CoRðGÞ (or CoRðGWqÞ) for all t$0: Thus,

dðxðt;x0Þ;CoRðGÞÞ# kxðt;x0Þ2zðtÞk# e2t=tkx12x0k

for any x1 [CoRðGÞ; which implies Eq. (8).

(ii) For any y1 [ RðWÞ þ q there is an x1 [ RN such that

y1 ¼ Wx1 þ q: Thus we have

yðt;x0Þ¼e2t=tðy02y1Þþe2t=ty1þ
1

t
e2t=t

ðt

0
es=tðWGðyðsÞÞþqÞds

¼e2t=tðy02Wx12qÞþe2t=tðWx1þqÞ

þ
1

t
e2t=t

ðt

0
es=tðWGðyðsÞÞþqÞds

Ve2t=tðy02Wx12qÞþzðtÞ:

Similar argument as in the Proof of Theorem 2 together with

the convexity and closedness of RðWqÞ (or RðWGÞ þ q)

gives that zðtÞ [ RðWqÞ (or RðWGÞ þ q). Thus it follows

Z.-B. Xu et al. / Neural Networks 17 (2004) 73–8576



that

dðyðt; y0Þ;RðWqÞÞ # kyðt; x0Þ2 zðtÞk # e2t=tky0 2 y1k:

This implies Eq. (9) since y1 [ RðWqÞ is arbitrary. The

Proof of Theorem 3 is thus complete. A

Remark 2. Theorem 3 implies that CoRðGÞ; CoRðGWqÞ

and RðWqÞ (or RðWGÞ þ q in the case when RðGÞ is

bounded and convex) are, respectively, the superior

nontrivial attractive manifold of systems (3) and (4).

2.2. Equilibrium relationships

In this section we will study the relationship among the

equilibria of systems (3), (4), (3.1), (3.2), (4.1) and (4.2).

Note first that xp is an equilibrium state of system (3) if

and only if it is an equilibrium state of Eqs. (3.1) and (3.2)

and that xp solves the equation F1ðxÞ ¼ 0; that is, xp is a zero

of F1; where F1 is defined by

F1ðxÞ ¼ 2x þ GðWx þ qÞ; ;x [ RN
: ð10Þ

Similarly, yp is an equilibrium state of Eq. (4) if and only

if it is an equilibrium state of Eqs. (4.1) and (4.2) and

further, yp is a zero of F2 with F2 being defined by

F2ðyÞ ¼ 2y þ WGðyÞ þ q; ;y [ RN
: ð11Þ

Denote by F21
1 ð0Þ the common equilibrium state set of

Eqs. (3), (3.1) and (3.2) and by F21
2 ð0Þ the equilibrium state

set of Eqs. (4), (4.1) and (4.2).

Theorem 4. Equilibrium relationship

xp [ F21
1 ð0Þ if and only if yp ¼ Wxp þ q [ F21

2 ð0Þ: Con-

versely, yp [ F21
2 ð0Þ if and only if xp ¼ GðypÞ [ F21

1 ð0Þ:

Proof. If xp [ F21
1 ð0Þ is an equilibrium state of Eq. (3), then

xp ¼ GðWxp þ qÞ ¼ GðypÞ: Multiplying both sides with W

then gives Wxp ¼ WGðypÞ: So yp ¼ WGðypÞ þ q; which

means that yp [ F21
2 ð0Þ and is an equilibrium state of Eq.

(4). On the other hand, if yp [ F21
2 ð0Þ is an equilibrium state

of Eq. (4), then yp ¼ WGðypÞ þ q: Let xp ¼ GðypÞ: Then

xp ¼ GðypÞ ¼ GðWGðypÞ þ qÞ ¼ GðWxp þ qÞ: So xp ¼

GðypÞ [ F21
1 ð0Þ and is an equilibrium state of Eq. (3). The

proof is thus complete. A

From Theorem 4 it seems that systems (3) and (4) should

have the same number of equilibria. This is, however, by no

means evident if W is singular and G is not invertible.

Theorem 5 ensures that such a conclusion is actually true

being independent of the nonsingularity of W and the

invertibility of G:

Theorem 5. Identical cardinal number of equilibria. The

numbers of equilibrium states of systems (3) and (4) are

identical.

Proof. Let CardðF21
1 ð0ÞÞ and CardðF21

2 ð0ÞÞ denote the

cardinal numbers of the equilibrium state sets F21
1 ð0Þ and

F21
2 ð0Þ; respectively. We will show that CardðF21

1 ð0ÞÞ ¼

CardðF21
2 ð0ÞÞ by proving that there exists a bijective

mapping between F21
1 ð0Þ and F21

2 ð0Þ: In fact, consider the

mapping P : F21
2 ð0Þ! F21

1 ð0Þ defined by

F21
2 ð0Þ ] yp 7! GðypÞ ¼ xp [ F21

1 ð0Þ:

By Theorem 4, G is well-defined. First, G is injective since,

if Pðyp1Þ ¼ Pðyp2Þ for some yp1; y
p
2 [ F21

2 ð0Þ then, by the

definition of equilibrium state of Eq. (4), ypi ¼ WGðypi Þ þ q

(i ¼ 1; 2) so that yp1 ¼ WGðyp1Þ þ q ¼ WGðyp2Þ þ q ¼ yp2:

Finally, P is surjective since, for any xp [ F21
1 ð0Þ; we

have xp ¼ GðWxp þ qÞ so, if yp ¼ Wxp þ q then, by

Theorem 4, yp [ F21
2 ð0Þ; that is, xp ¼ GðypÞ: This proves

the theorem. A

From the Proof of Theorem 5 it follows that the nonlinear

activation mapping G; when restricted to the equilibrium

state set F21
1 ð0Þ; is invertible no matter whether or not the

activation mapping G itself is invertible. In this case, the

inverse G21 can be given by

G21ðxpÞ ¼ Wxp þ q; ;xp [ F21
1 ð0Þ: ð12Þ

Similarly, we can conclude that W ; when restricted to

F21
2 ð0Þ2 q; is regular even though W itself may not be

regular. Thus, xp [ F21
1 ð0Þ if and only if yp ¼ G21ðxpÞ [

F21
2 ð0Þ: Conversely, yp [ F21

2 ð0Þ if and only if xp ¼

GðypÞ [ F21
1 ð0Þ: A pair of equilibria xp and yp possessing

such a property will be called as a pair of mutually mapped

equilibria of system (3) and (4), denoted henceforth by

ðxp; ypÞ: With such understanding, we state and prove a

series of stability–invariance properties of systems (3) and

(4.1) in Section 2.3.

2.3. Stability–invariance properties

We first recall some notion and notations from the theory

of dynamical systems (taking Eq. (3) as an example). A

point xp is said to be a v-limit point of G1ðx0Þ if there is a

subsequence {ti} such that xp ¼ limi!1 xðti; x0Þ: All the v-

limit points of G1ðx0Þ constitute the v-limit set of G1ðx0Þ;

denoted henceforth by vðG1ðx0ÞÞ: The v-limit set is

invariant under the dynamics. The equilibrium point xp is

said to be stable if any trajectory of Eq. (3) can stay within a

small neighborhood of xp whenever the initial state x0 is

close to xp: The equilibrium point xp is said to be attractive

if there is a neighborhood JðxpÞ; called the attraction basin

of xp; such that any trajectory of Eq. (3) initialized from a

state in JðxpÞ will approach to xp as time goes to infinity. An

equilibrium state is said to be asymptotically stable if it is

both stable and attractive. Further, the equilibrium state xp is

said to be exponentially stable if there exist a constant a .

0 and a strictly increasing function M such that

kxðt; x0Þ2 xpk # Mðkx0 2 xpkÞe2at
: ð13Þ
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If, in addition, MðsÞ ¼ Ks (i.e. M is linear) for an absolute

constant K in Eq. (13) then xp is said to be exponentially

stable in the sense of Liapunov. The equilibrium state xp is

globally asymptotically stable (globally exponentially

stable) if it is asymptotically stable (exponentially stable)

and JðxpÞ ¼ RN :

Correspondingly to the global stability notion, we say

that a system (say, Eq. (3)) is globally convergent if xðt; x0Þ

converges to an equilibrium state of Eq. (3) for every initial

point x0 [ RN : Note that the limit of xðt; x0Þ may be

different for different x0: The system (3) is said to be

exponentially convergent if it is globally convergent with

the limiting state xp satisfying Eq. (13). We need the

following two simple lemmas.

Lemma 1. Let W be an N £ N matrix and let B be the unit

open ball of RN centered at zero and with radius 1, i.e.

B ¼ {xlkxk , 1}: Set WðBÞ ¼ {Wxlx [ B}: Then there is a

constant d . 0 such that

d1B > RðWÞ # WðBÞ; whenever d1 # d:

Proof. It is clear that WðBÞ is a neighborhood of 0 in the

subspace RðWÞ , RN : Thus there is an open set U in the

space RðWÞ such that 0 [ U # WðBÞ: Since U is a

relatively open set of RN ; then there must be an open set

V in RN such that U ¼ V > RðWÞ: Clearly, V is a

neighborhood of 0 in RN : Thus there is a constant d . 0

such that, whenever d1 # d; we have d1B > RðWÞ #
V > RðWÞ # WðBÞ: This proves the lemma. A

Lemma 2. If RðGÞ is bounded and convex, then RðWGÞ þ

q ¼ WðRðGÞÞ þ q:

Proof. The inclusion WðRðGÞÞ þ q # RðWGÞ þ q is trivial.

To prove the inverse inclusion, take any fixed y [
RðWGÞ þ q and assume that {yi} # RN is a sequence such

that y ¼ limi!1 WGðyiÞ þ q: Let xi ¼ GðyiÞ: Then xi [
RðGÞ: Since RðGÞ is bounded, we may assume without

loss of generality that limi!1 xi ¼ limi!1 GðyiÞ ¼ x for

some x [ RðGÞ: It follows that y ¼ limi!1 WGðyiÞ þ q ¼

limi!1 Wxi þ q ¼ Wx þ q: This means that y [ WðRðGÞÞ

so RðWGÞ # WðRðGÞÞ: Consequently, WðRðGÞÞ þ q ¼

RðWGÞ þ q: The lemma is thus proved. A

With the above lemmas, we are now in a position to

examine the relationship among the stability of models (3),

(4), (3.1), (3.2), (4.1) and (4.2).

Theorem 6. Stability. Let ðxp; ypÞ [ F21
1 ð0Þ £ F21

2 ð0Þ be

any pair of mutually mapped equilibria of systems (3) and

(4). Assume that G is a Lipschitzian, that is, there is a

positive constant LðGÞ such that

kGðy1Þ2 Gðy2Þk # LðGÞky1 2 y2k; ;y1; y2 [ RN
:

Then xp; as an equilibrium state of Eq. (3), is stable if and

only if yp; as an equilibrium state of Eq. (4.1), is stable.

Proof. ‘ ) :’ If xp [ F21
1 ð0Þ is stable, then for any 1 . 0

there is d1ð1Þ . 0 such that, whenever kx0 2 xpk , d1ðeÞ ,

1; we have

kxðt; x0Þ2 xpk , kWk21
1 ;t $ 0: ð14Þ

Let d , d1ð1Þ be so small that dB > RðWÞ # d1ðeÞWðBÞ:

(By Lemma 1 this is possible.) We now prove that for y0 [
RðWÞ þ q;

kyðt; y0Þ2 ypk , 1

whenever ky0 2 ypk , dð1Þ; which together with Lemma 2

implies that yp; as an equilibrium state of system (4.1), is

stable.

For any y0 [ RðWÞ þ q and yp [ F21
2 ð0Þ we have y0 2

yp [ RðWÞ; so y0 2 yp [ d1ð1ÞWðBÞ whenever ky0 2 ypk ,
dð1Þ: Thus there is a z0 [ d1ð1ÞWðBÞ so that we can write

y0 2 yp ¼ Wz0 or equivalently, y0 ¼ Wðz0 þ xpÞ þ q: From

Theorem 1 it follows that if xðtÞ is the solution of system (3)

through x0 ¼ z0 þ xp then yðt; y0Þ ¼ WxðtÞ þ q is the unique

solution of Eq. (4.1) passing through y0: So, for any t . 0;

we have

kyðt; y0Þ2 ypk ¼ kWxðtÞ2 Wxpk # kWkkxðtÞ2 xpk:

This, together with Eq. (14), and on noting that kx0 2 xpk ¼
kz0k , d1ð1Þ; implies that kyðt; y0Þ2 ypk , 1; as expected.

‘ ( :’ Given any 1 . 0; by assumption there is a d1ð1Þ . 0

such that for y0 [ RðWÞ þ q; we have kyðt; y0Þ2 ypk ,
1=½2LðGÞ� for t $ 0 whenever ky0 2 ypk , d1ð1Þ: Letting

dð1Þ ¼ min
d1ð1Þ

kWk
;
1

2

� �
;

we can prove that for x0 [ RN ; kxðt; x0Þ2 xpk , e provided

kx0 2 xpk , dð1Þ: In fact, let y0 ¼ Wx0 þ q: Then y0 [
RðWÞ þ q and satisfies that ky0 2 ypk , d1ð1Þ whenever

kx0 2 xpk , dð1Þ: So, by Theorem 1, we can write yðt; y0Þ ¼

Wxðt; x0Þ þ q: Further, we have

kyðt; y0Þ2 ypk ,
1

2LðGÞ

whenever kx0 2 xpk , dð1Þ: From Eq. (5) it thus follows that

kxðt;x0Þ2 xpk# e2t=tkx0 2 xpk

þ
1

t
e2t=t

ðt

0
es=tGðyðsÞÞds2 ð12 e2t=tÞxp












¼ e2t=tkx0 2 xpkþ
1

t
e2t=t

ðt

0
es=t½GðyðsÞÞ2GðypÞ�ds












,
e

2
þ

e

2

1

t
e2t=t

ðt

0
es=tds, 1:

This implies the stability of xp since 1 is arbitrary. The

theorem is thus proved. A
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Theorem 7. Attractivity and global convergence

Let the conditions of Theorem 6 be satisfied.

(i) xp is globally attractive for the system (3) if and only if

yp is globally attractive (in the manifold R(Wq)) for the

system (4.1).

(ii) The system (3) is globally convergent if and only if the

system (4.1) is globally convergent.

Proof. Under the assumption of the theorem, systems (3)

and (4) have a unique solution, denoted by xðt; x0Þ and

yðt; y0Þ; respectively. Note that yðt; y0Þ is also the unique

solution of Eq. (4.1) when restricted to the manifold RðWqÞ:

If xðt; x0Þ converges to an equilibrium state xp of Eq. (3) for

x0 [ RN ; then yðt;Wx0 þ qÞ ¼ Wxðt; x0Þ þ q is the unique

solution of Eq. (4) through y0 ¼ Wx0 þ q (Theorem 1).

Since W is a matrix, it follows directly that yðt;Wx0 þ qÞ

converges to the state yp ¼ Wxp þ q (clearly, yp [ F21
2 ð0Þ

iff xp [ F21
1 ð0ÞÞ: We now prove that the convergence of

yðt;Wx0 þ qÞ to yp implies the convergence of xðt; x0Þ to xp:

Consider the unique solution xðt; x0Þ of Eq. (3) initialized

from x0: Let us assume that yðt; y0Þ converges to an

equilibrium state yp of Eq. (4) with y0 ¼ Wx0 þ q: Then, by

the uniqueness of solution to Eq. (4), yðt;Wx0 þ qÞ ¼

Wxðt; x0Þ þ q: It also follows by Theorem 4 that yp ¼

Wxp þ q: Thus, we have yðt;Wx0 þ qÞ2 yp ¼ Wðxðt; x0Þ2

xpÞ! 0 as t !1: So, for any given 1 . 0 there is a positive

constant T1 such that

kyðt;Wx0 þ qÞ2 ypk2 # 1=LðGÞ whenever t . T1:

On the other hand, we have from Eq. (3) that

t
dðkxðt; x0Þ2 xpkÞ

dt

# 2kxðt; x0Þ2 xpkþ kGðWxðt; x0Þ þ qÞ2 GðWxp þ qÞk

# 2kxðt; x0Þ2 xpkþ LðGÞkWðxðt; x0Þ2 xpÞk:

Solving this inequality gives

kxðt; x0Þ2 xpk # e2ðt2sÞ=tkxðs; x0Þ2 xpkþ
1

t
LðGÞe2t=t

�
ðt

s
er=tkyðr;Wx0 þ qÞ2 ypkdr;

which holds for any t . s . 0: Taking t . s . T1 in this

inequality, we then obtain that

kxðt; x0Þ2 xpk # e2ðt2sÞ=tkxðs; x0Þ2 xpkþ
1

t
e2t=t

ðt

s
er=t dr

¼ e2ðt2sÞ=tkxðs; x0Þ2 xpkþ 1ð1 2 e2ðt2sÞ=tÞ; ð15Þ

which gives that

lim
t!1

kxðt; x0Þ2 xpk # 1:

Since 1 is arbitrary, we conclude that limt!1 kxðt; x0Þ2

xpk ¼ 0:That is, xðt; x0Þ converges to the equilibrium state xp:

This completes the proof of the theorem. A

Theorem 8 extends the equivalence between the global

convergence of systems (3) and (4.1) to the case of

exponential convergence.

Theorem 8. Exponential convergence

Assume that the activation mapping G is a Lipschitzian.

Then Eq. (3) is exponentially convergent iff Eq. (4.1) is

exponentially convergent.

Proof. ‘ ) ’: If system (3) is exponentially convergent, then

there is an xp [ F21
1 ð0Þ such that the solution xðt; x0Þ

exponentially converges to xp in the sense of Eq. (13). Let

y0 ¼ Wx0 þ q: Then, by Theorems 1 and 4, yðt; y0Þ ¼

Wxðt; x0Þ þ q is the unique solution of Eq. (4) through y0 and

yp ¼ G21ðxpÞ ¼ Wxp þ q [ F21
2 ð0Þ: Since y0 2 yp ¼

Wðx0 2 xpÞ; then by making use of the generalize inverse

of W (say, the Moore–Penrose inverse Wþ (see, e.g. Rao &

Mitra, 1971) we can write x0 2 xp ¼ Wþðy0 2 ypÞ: Thus we

obtain from Eq. (13) that

kyðt;y0Þ2 ypk¼ kWðxðt;x0Þ2 xpÞk

# kWkMðkx0 2 xpkÞe2at # kWkMðkWþkky0 2 ypkÞe2at

¼M1ðky0 2 ypkÞe2at
; ð16Þ

where M1ðsÞ ¼ kWkMðkWþksÞ: That is, the system (4.1) is

exponentially convergent.

‘ ( ’: Suppose that for any fixed y0 [ RðWÞ þ q; the

solution yðt; y0Þ exponentially converges to yp in the sense

of Eq. (16), where yp [ F21
2 ð0Þ: Then it follows from

Theorem 4 that xp ¼ GðypÞ is an equilibrium state of Eq.

(3). Further we have from Eq. (12) that yp ¼ G21ðxpÞ ¼

Wxp þ q: Now if xðt; x0Þ is the unique solution of Eq. (3)

through x0 then yðt;Wx0 þ qÞ ¼ Wxðt; x0Þ þ q is the

solution of Eq. (4) through y0 ¼ Wx0 þ q: From Eq. (16)

it follows that

kWðxðt; x0Þ2 xpÞk ¼ kyðt;Wx0 þ qÞ2 ypk

# M1ðkWx0 þ q 2 ypkÞe2bt ¼ M1ðkWðx0 2 xpÞkÞe2bt

# M1ðkWkkx0 2 xpkÞe2bt
: ð17Þ

Let Vðt; x0Þ ¼ xðt; x0Þ2 xp: Then

t
dVðt; x0Þ

dt
¼ 2Vðt; x0Þ þ GðWxðt; x0Þ þ qÞ2 GðWxp þ qÞ;

from which we obtain that

t
dkVðt;x0Þk

dt
#2kVðt;x0ÞkþkGðWxðt;x0ÞþqÞ2GðWxpþqÞk

#2kVðt;x0ÞkþLðGÞkWðxðt;x0Þ2xpÞk
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This combined with Eq. (17) implies that

kVðt;x0Þk#e2t=tkVð0;x0Þkþ
1

t
LðGÞe2t=t

�
ðt

0
es=tkWðxðs;x0Þ2xpÞÞkds

#e2t=tkx02xpkþ
LðGÞ

t
e2t=t

�
ðt

0
eð1=t2bÞsM1ðkWkkx02xpkÞds

# f ðtÞmax{M1ðkWkkx02xpkÞ;kx02xpk}; ð18Þ

where

f ðtÞ¼e2t=tþ
1

t
LðGÞe2t=t

ðt

0
eð1=t2bÞsds:

We now estimate the function f ðtÞ: First, if tb¼1 then we

have

f ðtÞ¼e2t=tþ
t

t
LðGÞe2t=t# 1þ

LðGÞ

1

� �
e2ð121Þt=t

:

Now if tb–1 then it follows that

f ðtÞ¼e2t=tþLðGÞ
e2bt2e2t=t

12tb
# 1þ

LðGÞ

l12tbl

� �
e2min{1=t;b}t

Thus and from Eq. (18) we derive Eq. (13) with

Mðkx02xpkÞ¼K max{M1ðkWkkx02xpkÞ;kx02xpk};

where

K¼

1þ
LðGÞ

l12tbl
; tb–1

1þ
LðGÞ

1
; tb¼1

8>><
>>:

and

a¼

min
1

t
;b

� �
; tb–1

121

t
; tb¼1

8>><
>>:

This means that the system (3) is globally exponentially

convergent, which completes the proof of the theorem. A

As a direct consequence of Theorems 6 – 8, we

immediately arrive at the following basic stability–

invariance results on models (3) and (4.1).

Theorem 9. Stability–invariance between Eqs. (3) and (4.1)

Assume that G is a Lipschitz continuous mapping and that

(xp; yp) is a pair of mutually mapped equilibrium states of

Eqs. (3) and (4). Then the stability of systems (3) and (4.1) is

invariant in the following sense.

(i) xp is stable (asymptotically stable/exponentially stable)

iff yp is stable (asymptotically stable/exponentially

stable).

(ii) xp is globally asymptotically stable (globally exponen-

tially stable) iff yp is globally asymptotically stable

(globally exponentially stable).

(iii) System (3) is globally convergent (globally exponen-

tially convergent) iff system (4.1) is globally conver-

gent (globally exponentially convergent).

Remark 3. The stability–invariance property stated in

Theorem 9 should be precisely understood. It means that xp

is stable in a sense (say, globally or asymptotically) iff yp is

so in exactly the same sense (namely, globally or

asymptotically). However, it should be carefully discrimi-

nated that ‘xp is stable in system (3)’ makes sense in the

topology of RN since Eq. (3) is a dynamical system defined

on the whole space RN ; whereas ‘xp is stable in system (3.1)’

then makes sense in the topology of CoRðGÞ; which is, of

course, a relative topology of RN ; since Eq. (3.1) is a

dynamical system defined on the manifold CoRðGÞ:

It is natural to ask the question: can such types of stability–

invariance be extended to other pair of systems such as Eqs.

(3) and (4), (3.1) and (4.1), (3.1) and (4.2), or (3.2) and

(4.2)?. We cannot answer such a question in general, but an

easy observation shows that such stability invariance

property can indeed be extended to Eqs. (3.1) and (4.2), as

stated in Theorem 10.

Theorem 10. Stability–invariance between Eqs. (3.1) and

(4.2)

Assume that G is a Lipschitz continuous mapping and that

(xp; ypÞ is any pair of mutually mapped equilibrium states of

Eqs. (3.1) and (4.2). Then the stability of systems (3.1) and

(4.2) is invariant in the sense that

(i) xp is stable (asymptotically stable or exponentially

stable) iff yp is stable (asymptotically stable or

exponentially stable);

(ii) xp is globally asymptotically stable (globally exponen-

tially stable) iff yp is globally asymptotically stable

(globally exponentially stable);

(iii) system (3.1) is globally convergent (globally exponen-

tially convergent) iff system (4.2) is globally conver-

gent (globally exponentially convergent).

Proof. From the Proof of Theorems 7–8 we know that to

prove the theorem it suffices to prove RðWGÞ þ q ¼

WRðGÞ þ q in the case when RðGÞ is bounded and convex.

This is, however, the result of Lemma 2. So the theorem is

thus proved. A

2.4. An inequitable relation

We now go further with an attempt to explore the

relationship between the stability of the original systems (3)

and (4).
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Theorem 11. Assume that G is a Lipschitz continuous

mapping and that ðxp; ypÞ is any pair of mutually mapped

equilibrium states of Eqs. (3) and (4). Then

(i) yp is exponentially attractive (globally exponentially

attractive) if xp is exponentially stable (globally

exponentially stable) in the sense of Liapunov;

(ii) system (4) is globally convergent if system (3) is

globally exponentially convergent in the sense of

Liapunov.

Proof. We only prove (i). The proof of (ii) is similar.

Denote by Bðx; rÞ the open ball in RN centered at x and with

radius r. Assume that xp is an exponentially stable

equilibrium state of system (3). Then there exist positive

constants C; a; r such that, whenever x0 [ Bðxp; rÞ;

kxðt; x0Þ2 xpk # Ce2atkx0 2 xpk; ;t $ 0: ð19Þ

We now verify that there exist two positive constants d; b

and a function MðsÞ . 0 such that for any y0 [ Bðyp; dÞ;

kyðt; y0Þ2 ypk # Mðky0 2 ypkÞe2bt
; ;t $ 0: ð20Þ

To this end, let FðyÞ ¼ Gðy þ ypÞ2 GðypÞ and take the

transformations uðtÞ ¼ xðt; x0Þ2 xp and vðtÞ ¼ yðt; y0Þ2 yp

to transform systems (3) and (4) into

t
duðtÞ

dt
¼ 2uðtÞ þ FðWuðtÞÞ; uð0Þ ¼ x0 2 xp ð21Þ

t
dvðtÞ

dt
¼ 2vðtÞ þ WFðvðtÞÞ; vð0Þ ¼ y0 2 yp ð22Þ

Under such transformations, the equilibria pair ðxp; ypÞ of

Eqs. (3) and (4) is changed into the equilibria pair ðup; vpÞ ¼

ð0; 0Þ of systems (21) and (22). Further, up ¼ 0 is

exponentially stable in the sense that for any u0 [ Bð0; rÞ;

kuðtÞk # Ce2atku0k; t $ 0; ð23Þ

where uðtÞ is the unique solution of Eq. (21) with the initial

state uð0Þ ¼ x0 2 xp: This standard global stability property

of system (21) ensures the validity of an in-depth inverse

Liapunov function theorem (see, e.g. Theorem 4.5 in

(Khalil, 1992, pp. 180)). This theorem implies that for

system (21) there is an energy function

E : Bð0; rÞ! RN ð24Þ

such that

(P1) E is equivalent to the norm of RN ; that is, there are

positive constants C1 and C2 such that

C1kuk
2
# EðuÞ # C2kuk

2
;

(P2) E is differentiable (almost everywhere) and k7EðuÞk #
C3kuk for some positive constant C3; and

(P3) E is a strict energy function of Eq. (21) in the sense that

k7EðuÞ;2u þ FðWuÞl # 2C4kuk
2

for some positive constant C4ð– 2C2Þ:

We are now in a position to prove the exponential

attractivity of the equilibrium state vp ¼ 0 for system (22).

This we do in the following four steps.

Step 1. Note first that using the matrix W ; RN can be

decomposed into the direct sum RN ¼ RðWÞ%KerðWTÞ;

where KerðWTÞ is the kernel space of WT (i.e.

KerðWTÞ ¼ {x : WTx ¼ 0}) which is orthogonal to RðWÞ:

Thus there are two orthogonal projections P1 (from RN onto

RðWÞ) and P2 (from RN onto KerðWTÞ) such that for any

x [ RN ; we can write x ¼ P1x þ P2x: In view of the

orthogonal property of the two projections, the system (22)

can be rewritten as

t
dðP1vðtÞÞ

dt
¼ 2P1vðtÞ þ WFðvðtÞÞ;

t
dðP2vðtÞÞ

dt
¼ 2P2vðtÞ; vð0Þ ¼ y0 2 yp

8>><
>>:
or in the integral form as

P1vðtÞ ¼ e2t=tP1vð0Þ þ
1

t
e2t=t

ðt

0
es=tWFðvðsÞÞds

P2vðtÞ ¼ e2t=tP2vð0Þ; vð0Þ ¼ y0 2 yp:

8><
>: ð25Þ

Now P1vð0Þ [ RðWÞ so P1vð0Þ ¼ Wx0 for some x0 [ RN : It

then follows from Eq. (25) that

P1vðtÞ ¼ W e2t=tx0 þ
1

t
e2t=t

ðt

0
es=tFðvðsÞÞds

� �
:

Let

zðtÞ ¼ e2t=tx0 þ
1

t
e2t=t

ðt

0
es=tFðvðsÞÞds: ð26Þ

Then Eq. (25) can be written in the form

P1vðtÞ ¼WzðtÞ

t
dzðtÞ

dt
¼2zðtÞþFðvðtÞÞ ¼2zðtÞþFðWzðtÞþ e2t=tP2vð0ÞÞ:

8><
>:

ð27Þ

Step 2. To prove that there is a T . 0 such that zðtÞ[Bð0;rÞ

for t[ ½0;TÞ (so E in Eq. (24) can be applied to zðtÞ) and

further that for t [ ð0;TÞ;

kzðtÞk# e2k1t=t

ffiffiffiffiffi
C2

C1

s
kx0kþ

k2

l12 k1l
ffiffiffiffi
C1

p

" #
, re2k1t=t ð28Þ

whenever vð0Þ[Bð0;dÞ for some sufficiently small d. 0;

where k1 and k2 are positive constants to be specified later.

First, by Lemma 1 we can take a positive constant d ,

l2C2 2 C4lC1r=ð2C2C3LðGÞÞ such that dBð0; 1Þ> RðWÞ #
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gWBð0; 1Þ; where LðGÞ is the Lipschitz constant of G and

g ¼ min
r

2

ffiffiffiffiffi
C1

C2

s
; r

( )
:

For any v [ dBð0; 1Þ ¼ Bð0; dÞ one has P1v [ Bð0; dÞ so

there exists an x [ Bð0;gÞ such that P1v ¼ Wx andffiffiffiffiffi
C2

C1

s
kxkþ

C2C3LðGÞ

l2C2 2 C4lC1

d , r:

Thus, for v0 ¼ vð0Þ [ Bð0; dÞ we have v0 ¼ P1v0 þ P2v0 ¼

Wx0 þ P2v0 with x0 [ Bð0; gÞ satisfying the above inequal-

ity. Since, from Eq. (26), we have zð0Þ ¼ x0 [ Bð0; rÞ; then

the openness of Bð0; rÞ together with the continuity of G

ensure that there is a T . 0 such that zðtÞ [ Bð0; rÞ for all

t [ ð0; TÞ:

Now differentiate E along the curve zðtÞ in the interval ð0;TÞ

and make use of Eq. (27) and ðP1Þ– ðP3Þ to obtain that

t
dEðzðtÞÞ

dt
¼ k7EðzðtÞÞ; t

dzðtÞ

dt
l ¼ k7EðzðtÞÞ;2zðtÞ

þ FðWzðtÞÞlþ k7EðzðtÞÞ;FðWzðtÞ þ e2t=tP2v0Þ

2 FðWzðtÞÞl

# 2C4kzðtÞk
2
þ LðGÞkP2v0kC3kzðtÞke2t=t

# 2
C4

C2

EðzðtÞÞ þ
C3LðGÞdffiffiffiffi

C1

p
ffiffiffiffiffiffiffiffi
EðzðtÞÞ

p
e2t=t

:

Let VðtÞ ¼
ffiffiffiffiffiffiffiffi
EðzðtÞÞ

p
: Then the above inequality implies that

t
dVðtÞ

dt
# 2

C4

2C2

VðtÞ þ
C3LðGÞd

2
ffiffiffiffi
C1

p e2t=t

¼ 2k1VðtÞ þ k2e2t=t
; ð29Þ

where

k1 ¼
C4

2C2

; k2 ¼
C3LðGÞd

2
ffiffiffiffi
C1

p :

We may assume without loss of generality that k1 , 1:

From Eq. (29) it follows that

VðtÞ # e2k1t=tVð0Þ þ
k2

1 2 k1

ðe2k1t=t 2 e2t=tÞ

# e2k1t=t Vð0Þ þ
k2

l1 2 k1l

� �
:

This together with (P2) and Eq. (29) implies Eq. (28).

Step 3. We show that zðtÞ [ Bð0; rÞ and satisfies Eq. (28) for

all t $ 0:

Suppose this is not true. Then there would be a T1 such that

zðtÞ [ Bð0; rÞ; ;t [ ½0; T1Þ; but zðT1Þ � Bð0; rÞ:

Then the same argument as in deriving Eq. (28) gives

kzðtÞk , re2k1t=t for t [ ½0; T1Þ: Letting t ! T1 leads to

kzðT1Þk # re2k1T1=t , r; which contradicts to the fact that

zðT1Þ � Bð0; rÞ: The claim is thus true.

Step 4. It follows from Eqs. (27) and (28) that, whenever

v0 [ Bð0; dÞ;

kvðtÞk ¼ kP1vðtÞkþ kP2vðtÞk ¼ kWzðtÞkþ ke2t=tP2ðv0Þk

# kWkkzðtÞkþ e2t=tkP2ðv0Þk

# kWkre2k1t=t þ e2t=tkP2ðy0 2 ypÞk

# Mðky0 2 ypkÞe2bt=t
;

where MðsÞ ¼ s þ kWkr and b ¼ min{k1; 1}: Since vðtÞ ¼

yðt; y0Þ2 yp then this implies that

kyðt; y0Þ2 ypk # Mðky0 2 ypkÞe2bt=t

for all t . 0 as long as y0 [ Bðyp; dÞ: This means that yp; as

an equilibrium state of Eq. (4), is exponentially attractive.

The theorem is thus proved. A

2.5. Open questions

From Theorems 7–11 the relationship among dynamics

of the six models (3), (4), (3.1), (3.2), (4.1) and (4.2) can be

summarized in Fig. 1.

From Fig. 1 it is seen that, as far as stability is concerned,

the models (3) and (4.1) as well as (3.1) and (4.2) are

equivalent. This may be of great benefit in conducting

stability analysis of various dynamical neural networks.

However, the relationship between stability of the models

(3) and (4) may not be equivalent, as hinted in Theorem 11.

In particular, the following open questions may deserve

further investigation:

(Q1)Is there any equivalent stability property (P) between

the models (3) and (4)? Precisely, is the stability,

asymptotical stability or exponential stability of the

equilibrium state xp of Eq. (3) equivalent to the

stability, asymptotical stability or exponential stability

of the equilibrium state yp of Eq. (4)?

(Q2)In the statement (i) of Theorem 11 can the exponential

(or globally exponential) attractivity of yp be replaced

Fig. 1. Relationships among dynamics of the six models (3), (3.1), (3.2), (4),

(4.1), and (4.2). Here ‘ ) ’ means that if the former model has the property

(P) then the latter model has the same property, ‘ , ’ means that the former

model has the property (P) iff the latter model has the property (P). The

property (P) may be any stability concept such as local stability, asymptotic

stability, exponential stability, attractivity, convergence, or any of their

global counterparts.
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by the exponential (or globally exponential) stability of

yp in the Liapunov sense? or can the exponential (or

globally exponential) stability of xp in the Liapunov

sense be replaced with the exponential (or globally

exponential) stability of xp in the normal sense as in Eq.

(13)? (Note that in the Proof of Theorem 11, we have

actually verified every fact of the exponential stability

of yp except that MðsÞ is linear.)

(Q3) Is the stability condition of system (4.1) intrinsically

weaker than that of system (4)? Or to be more specific,

does there exist a set of conditions that guarantees the

stability for system (4.1) in certain sense but not for

Eq. (4)?

We strongly believe that any positive solution to one of

these questions will yield significant impact on the stability

analysis of nonlinear dynamical systems in general and of

neural networks in particular.

3. An application example

In this section we give an example to illustrate how the

comparison theory developed in Section 2 can be efficiently

applied to derive new results on stability of neural networks.

A more extensive and systematical application of the theory

will be presented in (Qiao et al., 2003).

Consider the following BCOp-type neural networks:

dxi

dt
¼ 2xi þ gi xi 2 ai

XN
j¼1

Qijxj þ qi

0
@

1
A;

i ¼ 1; 2;…;N;

ð30Þ

where x ¼ ðx1; x2;…; xNÞ
T; q ¼ ðq1; q2;…; qNÞ

T with con-

stant qi (i ¼ 1;…;N), and Q ¼ ðQijÞN£N and L ¼

diag{a1;a2;…;aN} are N £ N matrices with ai

(i ¼ 1;…;N) being positive parameters. The function gi in

Eq. (30) is the one-dimensional nearest point projection

defined by

giðsÞ ¼

ai s # ai;

s s [ ½ai; bi�;

bi s $ bi:

8>><
>>: ð31Þ

The BCOp-type neural networks (30) have been studied

in recent years by many authors (see, e.g. Arik &

Tavsanoglu, 2000; Bouzerdoum & Pattison, 1993; Forti &

Tesi, 1995; Friesz et al., 1994; Liang & Wang, 2000a,b; Xia,

1996; Xia & Wang, 1998; Xia & Wang, 2000 and the

references quoted there). The application aim of such

networks is to solve a bound-constraint quadratic optimiz-

ation problem:

min EðxÞ ¼ xTQx þ xTq þ c s:t: ai # xi # bi;

i ¼ 1; 2;…N

ð32Þ

For such an application it is known that the global

convergence of the networks is a prerequisite. The latest

result on global convergence of the networks states that the

trajectory of Eq. (30) will globally and exponentially

converge to the unique solution of Eq. (30) when Q is

positive definite and ðI 2 LQÞ is invertible (Liang & Si,

2001; Liang & Wang, 2000a,b). We now apply the

comparison theory established in Section 2 to improve

and generalize this convergence result of Eq. (30).

The BCOp-type neural network (30) is clearly of the

type of static neural network model (3). So, by the

stability invariance between systems (3) and (4.1)

(Theorem 9), the network (30) is globally (or globally

exponentially) convergent iff the following system, when

restricted to the invariant manifold RðWqÞ with W ¼

I 2 LQ; is so:

dyi

dt
¼ 2yi þ giðyiÞ2 ai

XN
j¼1

QijgjðyjÞ

0
@

1
Aþ qi;

i ¼ 1; 2;…;N:

ð33Þ

The system (33) is a special case of the Hopfield-type

neural networks (4) of which the stability and conver-

gence have been throughly studied (see, e.g. Chen &

Amari, 2001a; Fang & Kincaid, 1996; Forti & Tesi,

1995; Guan, Chen, & Qin, 2000; Liang & Si, 2001;

Matsuoka, 1991; Qiao, Peng, & Xu, 2001; Yang &

Dillon, 1994; Zhang, Heng, & Fu, 1999). The funda-

mental results on globally exponential stability and

convergence for Eq. (4) can be summarized, for instance,

in Theorem 12.

Theorem 12. Assume that G ¼ ðg1; g2;…; gNÞ
T in Eq. (4) is

diagonally nonlinear with each gi being Lipschitz continu-

ous (that is, lgiðsÞ2 giðtÞl # Lils 2 tl for any s; t [ R). For

any diagonal matrix G ¼ diag{j1; j2;…; jN} we write

M ¼ L21 2 W

MðGÞ ¼ L21G2
GW þ WTG

2
;

where L ¼ diag{L1;L2;…;LN}: Then the system (4) has a

unique equilibrium state yp: Further, yp is globally

exponentially stable if there is a positive definite diagonal

matrix G such that, for any i [ {1; 2; · · ·;N}; one of the

following conditions (C) and (C1)–(C4) is satisfied:

(C) MðGÞ is positive definite,

(C1) L21
i ji 2 jiwii .

PN
j–i jjlwijl;

(C2) L21
i ji 2 jiwii .

PN
j–i jjlwjil;

(C3) L21
i ji 2 jiwii .

1
2

PN
j–i ljjwji þ jiwijl;

(C4)lminðMðGÞÞ . 0 (i.e. the matrix measure

mð2GMÞ , 0), where lminðAÞ stands for the smallest

eigenvalue of the matrix A:
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Applying Theorem 12 to the system (33) with W ¼

I 2 LQ and gi being defined as in Eq. (31) (so Li ¼ 1 in this

case) and then making use of Theorem 9 we obtain the

following result on the exponential convergence of the

system (30), where V ¼ ½a1; b1� £ ½a2; b2� £ · · · £ ½aN ; bN�:

Theorem 13. Convergence of BCOp-type NNs

For any x0 [ V there is a unique solution xðt; x0Þ to the

BCOp-type neural networks (30). The solution converges

exponentially to the unique equilibrium state of Eq. (30) if

there is a positive definite diagonal matrix G ¼

diag{j1; j2;…; jN} such that GQ þ QTG is positive definite.

In particular, this is true when one of the following

conditions (D1)–(D4) is satisfied:

(D1)jiQii .
PN

j–i jjlQijl;
(D2)jiQii .

PN
j–i jjlQjil;

(D3)jiQii .
1
2

PN
j–i ljjQji þ jiQijl;

(D4)lminðGQÞ . 0:

Theorem 13 improved and generalized the latest-known

convergence result for the BCOp-type neural networks in

the sense that the invertibility of (I 2 LQÞ as well as the

positive definiteness of Q itself are no longer required. This

application example illustrates the potential usefulness of

the comparsion theory developed in the present paper.

4. Concluding remarks

We have developed a comparison theory for two

fundamental modeling approaches, the neuron state

modeling and the local field modeling approaches, in the

current neural network research. Two representative

models (3) and (4), as well as their coherent models

(3.1), (3.2), (4.1) and (4.2), have been studied in detail in

terms of their dynamics including the trajectory transfer

property, the equilibrium state correspondence property,

the nontrivial attractive manifold property, the global

convergence and stability in various senses. From the

analysis it has been concluded that (i) the trajectories of

systems (3) and (4.1) can be transferred from one to the

other (Theorem 1), (ii) the equilibria of systems (3) and (4)

are mutually corresponded in a specific one-to-one manner

(more precisely, via the nonlinear mapping G) (Theorems 4

and 5), (iii) the nontrivial attractive manifolds of systems

(3) and (4) are CoRðGÞ; CoRðGWqÞ; RðWqÞ and RðWGÞ þ

q; respectively (Theorem 3), and (iv) the stability of

systems (3) and (4.1), as well as (3.1) and (4.2), is exactly

the same in the local, global, asymptotic or exponential

sense. However, such an equivalent stability property is not

yet clear for the models (3) and (4) though some

preliminary result is available (Theorem 11). The com-

parison theory has been applied to a BCOp-type neural

network to illustrate its usefulness.

Our results obtained have shed light on consistency and

inconsistency of the neuron state and local field modeling

approaches. Further, it is observed that in the current neural

network research, the neuron state and local field modeling

are applied very often in a mutually irrelated manner so that

the two approaches have hardly ever been cross-fertilized.

Certain types of neural networks such as the Hopfield-type

models have been studied extensively, and thus many deep

results have been obtained for the models so far (see, e.g.

Arik & Tavsanoglu, 2000; Chen & Amari, 2001a,b; Cohen

& Grossberg, 1983; Guan et al., 2000; Hirsch, 1989; Juang,

1999; Liang & Si, 2001; Liang & Wu, 1999; Qiao et al.,

2001; Zhang et al., 1999). In contrast, some other types of

neural networks such as the recurrent back-propagation type

networks have attracted only little attention and thus fall

short of a systematic and in-depth theoretical analysis

(Almeida, 1988; Haykin, 1994; Hertz et al., 1994; Pineda,

1987; Rohwer & Forrest, 1987). The relationships obtained

in this paper among the dynamics of Eqs. (3), (3.1), (3.2),

(4), (4.1), and (4.2) may contribute to the formalization of

certain new, powerful, cross-fertilizing type approaches for

neural network analysis, leading to new and deep stability

results for less studied networks, as demonstrated in Section

3 for BCOp-type neural networks. Moreover, for example,

based on the stability invariance property of Eqs. (3) and

(4.1) (Theorem 9) as well as the implication relation

between Eqs. (4) and (4.1) (see Fig. 1 in Section 2.5), we can

naturally propose to study the recurrent back-propagation

networks (1) by means of the Hopfield-type neural networks

(2). This may form a new methodology for stability analysis

of the recurrent back-propagation type neural networks.

Such a cross-fertilizing approach will be explored in detail

in (Qiao et al., 2003).

Finally, we would like to call for a positive or negative

solution to any of the open questions proposed in Section

2.5. Answering these questions is by no means only for the

purpose of clarifying models (3) and (4). It can also make a

significant impact on the general dynamical system theory.

In view of Theorem 11 as well as the stability equivalence

between Eqs. (3) and (4.1) (note that Eq. (4.1) may be

viewed as a subsystem of Eq. (4)), we conjecture that

models (3) and (4) may not be equivalent as far as the

stability is concerned. If so, some counterexamples have to

be constructed.
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