1396

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO. 12, DECEMBER 2000

Clustering by Scale-Space Filtering

Yee Leung, Jiang-She Zhang, and Zong-Ben Xu

Abstract—In pattern recognition and image processing, the major application areas of cluster analysis, human eyes seem to possess
a singular aptitude to group objects and find important structures in an efficient and effective way. Thus, a clustering algorithm
simulating a visual system may solve some basic problems in these areas of research. From this point of view, we propose a new
approach to data clustering by modeling the blurring effect of lateral retinal interconnections based on scale space theory. In this
approach, a data set is considered as an image with each light point located at a datum position. As we blur this image, smaller light
blobs merge into larger ones until the whole image becomes one light blob at a low enough level of resolution. By identifying each blob
with a cluster, the blurring process generates a family of clusterings along the hierarchy. The advantages of the proposed approach
are: 1) The derived algorithms are computationally stable and insensitive to initialization and they are totally free from solving difficult
global optimization problems. 2) It facilitates the construction of new checks on cluster validity and provides the final clustering a
significant degree of robustness to noise in data and change in scale. 3) It is more robust in cases where hyperellipsoidal partitions may
not be assumed. 4) It is suitable for the task of preserving the structure and integrity of the outliers in the clustering process. 5) The
clustering is highly consistent with that perceived by human eyes. 6) The new approach provides a unified framework for scale-related

clustering algorithms recently derived from many different fields such as estimation theory, recurrent signal processing on self-
organization feature maps, information theory and statistical mechanics, and radial basis function neural networks.

Index Terms—Hierarchical clustering, scale space theory, cluster validity.

1 INTRODUCTION

DATA clustering aims at the partitioning of a given data
set with known or unknown distribution into homo-
geneous subgroups. Such a problem is rampant in various
applications such as pattern recognition, image processing,
data transmission, and data storage in physical and
biological systems. Literature on clustering techniques and
their applications, especially in pattern recognition, is
voluminous (see, for example, [1], [2], [3]).

Clustering algorithms in the literature can generally be
classified into two types: hierarchical clustering and
partitional clustering. The output of a hierarchical cluster-
ing algorithm is a dendrogram, which is a tree showing a
sequence of clusterings with each clustering being a
partition of the data set [4], [5], [6], [7], [8]. According to
the structure adopted, hierarchical clusterings may be
further categorized into nested hierarchical clustering and
nonnested hierarchical clustering. In nested hierarchical
clustering, each small cluster fits itself in whole inside a
larger cluster at the merging scale (or threshold) and every
datum is not permitted to change cluster membership once
assignment has been made. In nonnested hierarchical
clustering, a cluster obtained at small scale may divide
itself into several parts and fit these parts into different
clusters at the merging scale and, therefore, each datum is
allowed to change its cluster membership as scale varies.
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The algorithms proposed in [3], [9], [10], [11], [12], [13] all
generate nonnested hierarchical clusterings, while cluster-
ings generated by SLINK [4], [5], COMLINK [4], [5], [6], [7],
and MSTCLUS [4], [8], as well as those in [14], [15], are all
nested hierarchical clusterings.

The partitional clustering techniques partition the data
set into a small number of clusters. Unlike results obtained
by hierarchical techniques, output of a partitional clustering
algorithm is only a single partition of the data set. The
majority of partitional algorithms obtain the partition
though the minimization of some suitable measures such
as the cost functions. K-means clustering [4], [16], FORGY
[4], [16], ISODATA [4], [16], [17], WISH [4], [16], and fuzzy
ISODATA [18], for example, are essentially based on the
minimization of a square-error function. Since the mini-
mization problems involved are, in general, NP-hard and
combinatorial in nature, many techniques, such as simu-
lated annealing [19], deterministic annealing [20], and
EM algorithm [21], are often required to solve them with
lower computation overhead.

There are several commonly recognized deficiencies in
the existing clustering methods:

1. Clustering results are sensitive to initialization.
Different initial configurations may lead to different
partitions due to multimodality of the cost function.

2. Global optimum is not guaranteed when global
minimization problems are involved.

3. Perhaps most importantly, the algorithms do not
provide formal cluster validity checks (i.e., they do
not entertain questions such as:

a. Do the data exhibit a predisposition to cluster?
How many clusters are present in the data?

c. Are the clusters yielded real or merely artifacts
of algorithms?
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d. Which partition or which individual cluster is
valid?).

Cluster validity is a vexing but very important problem
in cluster analysis because each clustering algorithm always
finds clusters even if the data set is entirely random. While
many clustering algorithms can be applied to a given
problem, there is in general no guarantee that any two
algorithms will produce consistent answers. This should
make cluster validity check an essential requirement of any
algorithm. One widely used strategy is to employ visual
processing to examine distributions on each separate
variable by ways such as histograms and nonparametric
density estimates and plots of each pair of variables using
scattergram. However, visual processing is intuitively
employed in these techniques without any theoretical basis.
Another developed strategy out of this difficulty is to
produce clustering algorithms based directly on the laws of
psychology of form perception. Zahn [8] has proposed a
clustering algorithm based on the laws of Gestalt psychol-
ogy of form perception. The algorithm is a graphical one
which is based on the minimal spanning tree and attempts
to mechanize the Gestalt law of proximity, which says that
perceptual organization favors groupings representing
smaller interpoint distance. Zahn’s algorithm has a strong
influence on cluster analysis. Many algorithms have been
developed on the basis of similar ideas. However, Zahn's
algorithm is derived from Gestalt psychology laws in a
heuristic way since Gestalt laws cannot be represented in an
accurate computational model. This inaccuracy makes it
difficult to establish a formal and efficient cluster validity
check.

In recent years, physiological discoveries and researches
in computer-aided neuroanatomy have advanced several
quite accurate computational models of primary visual
system, each modeling some parts of the human visual
system at a particular level of details. Among them is scale
space theory, which models the blurring effect of lateral
retinal interconnection by applying Gaussian filtering to a
digital image [22], [23], [24], [25], [26], [27], [28]. In fact, the
theory sheds light on the way we cluster data, regardless of
whether they are digital images or raw data. It also renders
a biological perspective on data clustering. Through
evolution and training, our visual system has become
optimal in the clustering of images. Therefore, clustering of
nonimage or high-dimensional data should more or less
bear the blueprint of the visual system and is directly or
indirectly influenced by the way we cluster image data.
Hence, we may expect that psychovisual criteria provide
relevant guides to our clustering of nonimages or high-
dimensional data.

The purpose of this paper is to develop a new approach
to data clustering based on scale space theory. In our
approach, a data set can be considered as an image with
each datum being a light point attached with a uniform
luminous flux. As we blur this image, each datum first
becomes a light blob. Throughout the blurring process,
smaller blobs merge into larger ones until the whole image
contains only one light blob at a low enough level of
resolution. If we equate each blob with a cluster, the above
blurring process will generate a hierarchical clustering with
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resolution being the height of a dendrogram. The blurring
process is described by scale-space filtering.
The proposed approach has several advantages:

1. The algorithms thus derived are computationally
stable and insensitive to initialization. They are
totally free from solving difficult global optimization
problems.

2. It facilitates the formulation of new cluster validity
checks and gives the final clustering a significant
degree of robustness to noise in the data and change
in scale.

3. It is more robust where hyperellipsoidal partitions
may not be assumed.

4. It is suitable for the task of preserving the structure
and integrity of the outliers in the clustering process.

5. The patterns of clustering are highly consistent with
the perception of human eyes.

6. It provides a unified generalization of the diversely
derived algorithms in [11], [12], [13], [14], [15].

In Section 2, we describe briefly the scale space theory
and show how we can relate this theory to data clustering.
Extended on the scale space theory, we construct in Section 3
the theory and algorithms of hierarchical clusterings.
Cluster validity checks and procedures for the selection of
“good” clusterings are presented in Section 4. In Section 5, a
numerical simulation and an application in multidimen-
sional clustering are used to illustrate the performance of
the algorithms. Relationships between the proposed algo-
rithms and other scale-based algorithms are discussed in
Section 6. To substantiate our theoretical arguments, some
applications of the theory are presented in Section 7. A
summary is given in the final section to conclude the paper.

2 ScALE SPACE THEORY

Let us first consider a two-dimensional image given by a
continuous mapping p(z) : R? — R. In scale space theory,
p(xz) is embedded into a continuous family P(z,0) of
gradually smoother versions of it. The original image
corresponds to the scale ¢ =0 and increasing the scale
should simplify the image without creating spurious
structures. If there are no prior assumptions that are
specific to the scene, then it is proven that one can blur
the image in a unique and sensible way in which P(z, o) is
the convolution of p(z) with the Gaussian kernel, i.e.,

1 _lw?
Pla.a) = pla) +o(w.0) = [ o =) gz Ty (1)
where g(z, o) is the Gaussian function g(z, o) = m e %,

o is the scale parameter, (z,0)-plane is the scale space, and
P(z,0)isthescale spaceimage. It should be noted that there is
a direct relation with neurophysiological findings in animals
and psychophysics in man supporting this theory [29].

For each maxima y & R? of p(z), we define the
corresponding light blob as being a region specified as
follows:

B, ={x) € R*: }H?Q z(t, x0) =y}, (2)
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where z(t,z9) is the solution of the gradient dynamic
system

i ®

In what follows, y is referred to as the blob center of B,. All
blobs in an image produce a partition of ?* with each point
belonging to a unique blob except the boundary points.

Remark 1. For a given function p(z), its magnitude scaling
is defined as f(p(z)) with f being a strictly increasing
function. By the fact that f(p(z1)) < f(p(x2)) if and only
if p(z1) < p(z2), we know that the blob and blob center
defined by (2) and (3) is invariant to this transformation.
This is consistent with the contrast invariance assump-
tion in visual processing [30]. In what follows, the
logarithmic scaling is often used in the implementation
so that the gradient vector can be computed more stably.

Let p(z) = g(z,0), which contains only one blob for
0>0. As 0 — 0, this blob concentrates on a light point
defined as

1 |2

(S(ZL') = (lfli% g(x, U) = me_ 2072, (4)

Mathematically, such a function is called a é function or a
generalized function.

A light point at ) € R? in an image is defined as a
6 function situated at xz, i.e., 6(z —xp), and 6(z — zo)
satisfies

g(z,0) % 6(x — o) = g(x — o, 0), (5)

where g is the Gaussian function. From (5), we can see that
if we blur a light point, it becomes a light blob again.

In our everyday visual experience, blurring of an image
leads to the erosion of structure: Small blobs always merge
into large ones and new ones are never created. Therefore,
the blobs obtained for images P(z,0) at different scales
form a hierarchical structure: Each blob has its own survival
range of scale; large blobs are made up of small blobs. The
survival range for a blob is characterized by the scale at
which the blob is formed and the scale at which the blob
merges with others. Each blob manifests itself purely as a
simple blob within its survival range of scale.

We now relate such a blurring process with the process
of clustering.

If p(z) is a probability density function from which the
data set is generated, then each blob is a connected region
containing a relatively high density probability, separated
from other blobs by a boundary with relatively low-density
probability. Therefore, each blob is a cluster as defined in
[31]. All blobs together produce a classification of a data
space which provides a clustering for the data set with
known distribution p(z).

For a given data set X ={z; € R*:i=1,...,N}, the
empirical distribution for the data set X can be expressed as

Bomp() = %Z 8z — ). (6)

=0
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The image corresponding to p.,,,(x) consists of a set of light
points situated at the data set, just like a scattergram of the
data set. When we blur this image, we get a family of
smooth images P(z, o) represented as follows:

llz—;

P 1 Y L = 7
(%@—N;me o (7)

The family P(z,0) can be considered as the Parzen
estimation with Gaussian window function. At each given
scale o, the scale space image P(z,0) is a smooth
distribution function so that the blobs and their centers
can be determined by analyzing the limit of the solution
x(t, o) of the following differential equation:

_ lla—ay)?

N
de __ _ (zi—x) -

= VeP@,0) = ax L mpe 7 (8)
x(0) = xy.

Il
—

When a distribution p(z) is known, but contains noise or
is indifferentiable, we can also use scale space filtering
method to erase the spurious maxima generated by the
noise. In this case, the scale-space image is

ply) e
P(x,0) =p(x)*xg(z,0) = | —==¢€ 2 d 9
@) =3e) volw0) = [ Dl Fay )
and the corresponding gradient dynamical system is given
by:

_ lz=yl?

e 22 dy

p(y) (y—z)
(ov2m)20?

{ &=, P(x,0)= (10)

z(0) = .

When the noise in p(z) is an independent white noise
process, (9) provides an optimal estimate of the real
distribution [13].

By considering the data points falling into the same blob as
acluster, theblobs of P(z, o) ata givenscale produce a pattern
of clustering. In this way, each data point is deterministically
assigned to a cluster via the differential gradient dynamical
equation in (8) or (10) and, thus, our proposed scheme is a
hard clustering method. As we change the scale, we get a
hierarchical clustering. In what follows, we give a detailed
description of the clustering procedure and the correspond-
ing numerical implementations.

3 HIERARCHICAL CLUSTERING IN SCALE SPACE

In scale-space clustering, we use the maxima of P(x, o) with
respect to « as the description primitives. Our discussion is
based on the following theorem whose proof is omitted here
due to space limitation (proof can be obtained from the
authors).

Theorem 1. For almost all data sets, we have: 1) zero is a regular
value of 7, P(x,0), 2) as 0 — 0, the clustering obtained for
P(x,0) with o > 0 induces a clustering at o =0 in which
each datum is a cluster and the corresponding partition is a
Voronoi tessellation, i.e., each point in the scale space belongs
to its nearest-neighbor datum, and 3) as o increases from
o =0, there are N maximal curves in the scale space with each
of them starting from a datum of the data set.
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We know that the maxima of P(x,0) are the points
satisfying:

7. P(z,0) = 0. (11)

Therefore, 0 being a regular value of v/, P(z, ) means that:
1) All maxima form simple curves in the scale space. 2) We
can follow these curves by numerical continuational
method [32]. 3) In terms of the criterion for cluster centers
(i.e., maximizing P(z, 0)), there is a unique solution at small
scale with IV centers and, hence, the method is independent
of initialization. In the following discussion, we always
assume that 0 is a regular value of v/, P(z,0).

3.1 Nested Hierarchical Clustering

For convenience purposes, we call each maximum the blob
center of the corresponding cluster (or blob) in the
following discussion.

The construction procedure of a nested hierarchical
clustering based on the scale-space image is as follows:

1. At scale o0 =0, each datum is considered as a blob
center whose associated data point is itself.

2. As o increases continuously, if the blob center of a
cluster moves continuously along the maximal curve
and no other blob center is siphoned into its blob,
then we consider that the cluster has not changed
and only its blob center moves along the maximal
curve. If an existing blob center disappears at a
singular scale and falls into another blob, then the
two blobs merge into one blob and a new cluster is
formed with the associated data points being the
union of those of the original clusters.

3. Increase the scale until the whole data set becomes
one single cluster. This stopping rule is well-defined
because we have only one blob in the data space
when scale is large enough.

In this way, a hierarchical clustering dendrogram is
constructed with scale as height. Such a hierarchical
clustering dendrogram may be viewed as a regional tree
with each of its nodes being a region so that data falling
within the same region form a cluster. Therefore, the nested
hierarchical clustering thus constructed provides a classifi-
cation of the data space. In the one-dimensional case, such a
regional tree is in fact an interval tree, as is shown in Fig. 4c.

3.2 Nonnested Hierarchical Clustering

Nested hierarchical clustering has been criticized for the
fact that, once a cluster is formed, its members cannot be
separated subsequently. Nevertheless, we can construct a
nonnested hierarchical clustering which removes such a
problem. In a nonnested hierarchical clustering, we parti-
tion the data set X = {z} at a given scale by assigning a
membership to each datum z; € X according to (2). This
process is similar to how we perceive the data set at a given
distance or a given resolution. Clusterings obtained at
different scales are related to each other by the cluster
center lines. As o changes, a nonnested hierarchical
clustering is obtained since each datum may change its
membership under such a scheme. The evolution of the
cluster centers in the scale-space image may be considered
as a form of dendrogram. By Theorem, 1 we know that O is a
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regular value of v/,P(z,0) for almost all data sets. This
means that cluster centers form simple curves in the scale
space which can be computed through the path that follows
the solutions of the equation v/,P(z,0) =0 by the con-
tinuational method [32].

Nonnested hierarchical clustering is more consistent
with that obtained by the human eye at different distance
or different resolution, while nested hierarchical clustering
has a more elegant hierarchical structure.

3.3 Numerical Solution for Gradient
Dynamic System

In the proposed clustering method, clusters are character-
ized by the maxima of P(z, o) and the membership of each
datum is determined by the gradient dynamical system in
(8) or (10). Since the solution of the initial value problem of
(8) or (10) cannot be found analytically, some numerical
methods must be used. If the Euler difference method is
used, the solution of (8) or (10), z(¢,z), is then approxi-
mated by the sequence {z(n)} generated in one of the
following difference equations:

z(n+1) =x(n) + h v, p(z(n), o)

B h SN (@ — 2(n)) - etz
=x(n) + 2N 2 We ” (12)
IE(O) = o,
or
{ pn+1) = o) + & [p)y - 2 a3,
z(0) = o,

where h is the step length.

If the magnitude of P is scaled by the logarithmic
function, i.e., lg(P), the corresponding gradient dynamical
system of (8) and (10) becomes:

N _ le—ayl?
dx_li;(zlfxe 22 y
dt - o2 N owl? ’ (14)
e 22
i=1
and
de 1 [ply)(y—o)e #d
_ 252
r 1L )Py —x)e 97 (15)

_ le=yl?

dt o2 A
T [py)e = dy

and the discrete approximations to (14) and (15) then
become:

N _latn) a1
b ;(x —x(n))e 27
I(TL =+ 1) = L‘(ﬂ) + g N J\,:(u)—_quZ ) (16)
e 202
i=1
or
L f (1) (n)) ,Hw@;.uu?d
a(n+1) = a(n) + LY Z B 7 W gy

o? _ latm ol
Ip(y)e” 27 "dy
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Setting the step length h = o2 in (17), we get

)=z 2
202

2

z(n+1)="

N
Tie
=1
N la(m)—a;]2 (18)
Z e 22
i=1

Such an iteration can be interpreted as an iterative local
centroid estimation [13], [33], [34], [35], [36].

When the size of the data set is large or the data are given
in a serial form, we can use the stochastic gradient descent
algorithm to search the blob center and determine the
memberships of the data. In fact, our aim is to find the
maximum of P(z,o) which can be represented as (see (9)):

2
= lz—yl*

P(z,0) = F{e 2

b (19)

where E{-} is the expectation of the density of the data set y.
By the theory of stochastic gradient descent algorithm, the
blob center of a datum x; can be obtained by the following
iteration initialized at xg:

|lz(n)—a() |2

z(n+1) =z(n) +h"W (@™ —z(n))e 2 (20)

where z( is the nth randomly chosen member of X or the
nth datum generated according to the distribution p(z) to
be presented to the algorithm and A" is the adaptive step
length chosen as

1

A" = .
14+n

(21)

Finally, we associate the datum x;, with a center z* if
z(n) initialized from xz, converges to z*. In practice, we
define xz(n+1) as a blob center if ||z(n+ 1) —z(n)| <e
or | v, p(z(n + 1)|| < ¢, where € is a small positive value
which may vary with problems. If two centers z; and
satisfy ||z; —z2|| <¢, we consider them as one blob
center.

3.4 Implementation of Hierarchical Clustering

There are several ways to implement the proposed
hierarchical clustering. The first one uses the path-following
algorithm to trace the blob centers along the maximal
curves. When a singular scale at which a blob center
disappears is encountered, we find the new blob center by
solving the differential equation (8) or (10) with initial value
29 =" and follow the new blob center by the path-
following algorithm again.

Parallel to existing algorithms in [14], [15], the second
method uses the discretization of scale and an iterative
scheme which works as follows:

ALGORITHM I—Nested Hierarchical Algorithm

1. Given a sequence of scales oy, 01, --- with gy = 0. At
o9 = 0, each datum is a cluster and its blob center is
itself. Let 7 = 1.

2. Find the new blob center at o; for each blob center
obtained at scale o;_; by one of the iterative schemes
in (12), (13), (14), (15), (16), (17), (18). Merge the
clusters whose blob centers arrive at the same blob
center into a new cluster.
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3. If there are more than two clusters, let ¢ := ¢+ 1, go
to 2.
4. Stop when there is only one cluster.

ALGORITHM II—Nonested Hierarchical Algorithm

f—

Given a sequence of scales oy, 01, -+ with oy = 0.

2. At oy =0, each datum is a cluster and its blob center
is itself. Let i = 1.

3. Cluster the data at ¢;. Find the new blob center at o;
for each blob center obtained at scale 0;_; by one of
the iterative schemes in (12), (13), (14), (15), (16), (17),
(18). If two new blob centers arrive at the same point,
we consider that the old clusters disappear and a
new cluster is formed.

4. If there are more than two clusters, let i := i+ 1, go
to 2.

5. Stop when there is only one cluster.

When the size of the data set is very large, we can
substitute each datum in the iterative scheme in (12), (13),
(14), (15), (16), (17), (18) with its blob center and o; with
0; — 0;—1 in Step 2 to reduce the computational cost of the
above algorithm. For example, (18) becomes

N; llz(n) ;2
mn.e 2
lec]p]e 2
=
(n+1) Ni le-pyl2
kje 202
J=1

(22)

where p; is blob center j obtained at scale o;, N; is the
number of p;, k; is the number of data points in the blob
whose center is p; and o = 0; — 0;_;. Since N; is usually
much smaller than N, the computational cost can be
reduced significantly.

In practical applications, o; should increase according to

(23)

o; —oi_1 = koj_1.

This comes from the requirement of accuracy and stability of
the representation, as proven in [24]. In psychophysics,
Weber’s law says that the minimal size of the difference AI
in stimulus intensity which can be sensed is related to the
magnitude of standard stimulus intensity I by Al = kI,
where k£ is a constant called Weber fraction. Therefore,
psychophysical experimental results may be used to propose
alow bound for k& in the algorithms since we cannot sense the
difference between two images p(x, 0,_1) and p(z, 0;) when k
is less than its Weber fraction. For instance, k¥ = 0.029 in (23)
is enough in one-dimensional applications because scale o is
the window length in the scale space and the Weber fraction
for line length is 0.029 [30].

Other implementations of our proposed hierarchical
clustering may include the algorithms proposed in [11],
[12], [13], [14], [15] and are not elaborated here.

4 CLUSTER VALIDITY

For any given data set X, we can always construct
hierarchical clusterings by the algorithms previously
proposed, even though there is no structure inside the
data. Therefore, if we wish to successfully apply these
algorithms to practical problems, we should first answer the
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cluster validity questions raised in the introduction.
Literature trying to answer the validity questions for
various clustering algorithms is voluminous. In this paper,
we will tackle these questions on the basis of human visual
experience: The real cluster should be perceivable over a
wide range of scales. This leads us to adopt the notion of
“lifetime” of a cluster as its validity criterion: A cluster with
longer lifetime is preferred to a cluster with shorter lifetime.
Such a point of view is also supported by Witkin’s empirical
observation “that survive over a broad range of scale tend
to leap out at the eye,...” in [22], [23].

In what follows, we first define the notion of lifetime of a
cluster and lifetime of a clustering in the more general sense
by including nonnested hierarchical clustering. Then, the
lifetime of a cluster is used to test the “goodness” of a
cluster and the lifetime of a clustering is used to determine
the number of clusters in a specific pattern of clustering.

4.1 Lifetime, Compactness, Isolation, and

Outlierness
We first define the lifetime of a cluster and a clustering and
then show why logarithmic scale is used to measure
lifetime.

Definition 2. Lifetime of a cluster is defined as the range of
logarithmic scales over which the cluster survives, i.e., the
logarithmic difference between the point when the cluster is
formed and the point when the cluster is absorbed into or
merged with other clusters.

Each pattern of clustering in a nonnested hierarchical
clustering only consists of clusters which are formed at the
same scale. A pattern of clustering in a nested hierarchical
clustering, however, is a partition of the data set X which
may consist of clusters obtained at the same scale or at
different scales. In what follows, we define the lifetime for
these two kinds of clusterings, respectively.

Definition 3. Let 7(o) be the number of clusters in a clustering
achieved at a given scale o. Suppose C, is a clustering obtained
at o with w(o) = m. The o-lifetime of C, is defined as the
supremum of the logarithmic difference between two scales
within which ©(c) = m.

Definition 4. Suppose a clustering C' in a hierarchical clustering
contains K clusters {C\,- - -, Cx}. Denote the number of data
points in C; by |C;| and the lifetime of C; by l;. Then, the
mean lifetime of all clusters in clustering C' is defined as

300,
]

The lifetime of clustering C is the mean lifetime of all its
clusters. If a cluster C; is further divided into K; subclusters

(24)

{Ci,, -+, Ciy } and the lifetime of C;, is denoted by l;,, then the
mean lifetime of all its subclusters is defined as
X
A
Ly == (25)
j=1 ‘Cl‘

Now, we interpret why logarithmic scale is used in the
above definitions.
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The experimental tests in [11] show that (o) decays with
scale o according to:

(o) = ce™

(26)

if the data are uniformly distributed, where 3 is a positive
constant related to the dimensionality of the data space. If a
data structure exists, then 7(o) is a constant over a range of
scales. So, the stability of w(c) can be used as a criterion to test
whether the data tend to cluster, i.e., have a structure.
However, 3 is unknown and (o) is only allowed to take
integers and, from (26), we can see that, even for a uniformly
distributed data set, if 3is small, 7(o) will be a constant over a
wide range of scales for a small 0; if Fis large, 7(c) will also be
a constant over a wide range of scales for alarge . This makes
itdifficult to find the structure in the 7(o) plot. However, if the
data are uniformly distributed and we rescale ¢ by a new
parameter & such that the number of clusters in the clustering
obtained at the new parameter k, denoted by = (k), decays
linearly with respect to %, i.e.,

(k) = 7(0) — k, (27)

we can easily find the structure in the plot of m(k). The
reason is that it is much simpler to test whether 7(k) decays
linearly with respect to k than to test whether (o) decays
according to (26), in which an unknown parameter § is
involved.

Now, we derive the relationship of k¥ and ¢ under the
assumption that 7(k) decays linearly with respect to k.

Suppose o relates to k through a function o(k). Then, we
have

(k) = m(o(k)) = ce P7W. (28)

Under the assumption that = (k) decays linearly with respect
to k, see (27), we know that
dm(k)
dk

=1 (29)

From (26), we get

dm(k)
dk

Equations (29) and (30) imply that the new parameter k
should satisfy

(30)

do 1 3

—=—e". 1
k.~ " 3D
Solving this differential equation, we get

k=c(l—e ). (32)

Such a scaling is an ideal one, but it contains a parameter
which is usually unknown. In practice, we take the
%:ﬁ%% in (30), which does not
contain the unknown parameter 3, and this leads to the

approximation

logarithmic scale
(33)

k= clogg7
€

where ¢ is a positive constant.
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The term k defined in (33) is called the sensation intensity
under Fechner’s Law [30].

In terms of the new parameter k, lifetime should be
measured by the logarithmic scale of o. While such a scaling
is used in [14], [15], no explanation such as the one
furnished above is provided in these papers.

Once a partition has been established to be valid, a
natural question that follows is how good are the individual
clusters.

The first suggested measure of “goodness” of a cluster is
naturally its lifetime: A good cluster should have a long
lifetime. The other suggested measures are compactness
and isolation.

Intuitively, a cluster is good if the distance between the
data inside the cluster are small and those outside are large.
To make this idea operational, we define two measures for
the identification of good clusters. They are the compactness
and isolation of a cluster, parallel to similar notions in [14],
[15]. For a cluster C;, they are defined as follows:

—llz—pil* /20*
Z,’I?GC[ € '

isolation = —
3, e llanill*/202

; (34)

—llz—pi)* /20
ZZL'EC, € '
20 2"
—|lx—pj||” /20
> :xea > :je lz=pill°/

where p; is the blob center of cluster C;. For a good cluster,
the compactness and isolation are close to one. This
measure is dependent on the scale and will be used to find
the optimal scale at which the clustering achieved by
nonnested hierarchical clustering is good.

A data setinvariably contains noisy data points or outliers.
How to detect them is an important problem in many
diagnostic or monitoring systems. In the proposed scale-
based clustering algorithms, we can use the number of data
points in a cluster C; and the lifetime of C; to decide whether
C; is an outlier. If C; contains a small number of data and
survives a long time, then we say that C; is an outlier,
otherwise, C; is a normal cluster. Therefore, we can use

compactness = (35)

lifetime of C;

number of data in C;

outlierness; = (36)
as a test criterion for outliers, which means that an outlier is
a well-isolated group with a small number of data in a large
scale range. Since the method treats the data point as a light
point, each outlier (usually with small number of data)
should be a stable cluster in quite a large scale range. That is
to say, an outlier in general exhibits a high degree of
“outlierness” (whose threshold usually depends on the
applications) and this fact may be used to exclude the
outlier from estimated partition.

4.2 Clustering Selection Rules

Hierarchical clustering provides us with a sequence of
clusterings. The problem is which clustering is really good?
Now, we give several selection rules to choose a good
clustering from the sequence of clusterings in the hierarchy.
Our first rule is based on the o-lifetime of clustering and
try to find a scale at which the clustering achieved has long
lifetime and high degree of compactness or isolation.
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Rule I

1. Find the integer m such that the clustering obtained
at o with 7(o) = m has the longest o-lifetime.

2. a) In nested hierarchical clustering, clusterings

which satisfy 7(c) =m are identical to each other,
so we can get a unique clustering when m is
obtained.
b) In nonnested hierarchical clusterings, clusterings
obtained at two scales o) and o3 are usually different
from each other, even if 7(oy) = w(02) = m. There-
fore, we still need a method to find the right scale at
which a good clustering can be achieved when m is
fixed. In the present paper, we propose a method
based on the maximization of overall isolation and
overall compactness, which are defined for a
clustering achieved at o with 7(c) = m as follows:

Fi(g) = <Z ith isolation — m) (37)

F9(0) = (Z 1th compactness — m) , (38)
i

where the ith isolation and ith compactness are the
isolation and compactness of the ith cluster, respec-
tively. By maximizing F) or F© under the
condition that 7(c) = m, we can get a o at which a
partition with maximal isolation or maximal com-
pactness is achieved. In the general case, 7(0) = m is
held in an interval [0, 09], therefore, we can use the
gradient descent method to optimize F") or F(©). The
gradient is given by

m

dF /do = 74 Fdz;/do,

=1

(39)

where F is O or F(©, z; is the center of the ith
cluster. The term dz;/do can be obtained as follows:
We know that each cluster center z; is a maximal
point of P(z,0) which satisfies

Vi P(z,0) =0. (40)
Differentiating the above equation, we get
dx
Vaz P(xaa)di""va(xaa) =0. (41)
g

By the definition that each cluster center z is a
maximal point and under the condition that 0 is a
regular value of </, P(x,0), we can prove that the
matrix ¥/, P(z,0) is nonsingular. Solving (41), we
obtain

d

di':_ = _[V.L.LP(‘E7 U)]_l Vo P(CL: U)~
Finally, we obtain a ¢ which is a minimal point of
F® or F© and we consider that the clustering
obtained at this scale is good.

(42)

We have indicated that a clustering in a nested
hierarchical clustering may consist of clusters obtained at
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different scales. Our second selection rule is used to search
a clustering with the longest lifetime in the nested
clusterings. In what follows, we use 2 to denote the set of
all clusterings in a nested hierarchical clustering. For each
clustering P; € Q, its lifetime is denoted by [p. With these
notations, the aim of our second rule can be stated as
finding a clustering P; such that

lpj = mamgeglg. (43)

Since such a problem is usually difficult to solve, several
heuristic procedures may be used to solve it. Here, we
propose two greedy methods, Rule 1.1 and Rule I1.2: One is
to find the local maxima by a “depth-first search” and the
other is by a “breadth-first search.”

The first procedure is similar to Witkin’s “top-level
description.” It works as follows:

Rule II.1 (maximization with depth-first search).

1. Initially, let P be a clustering with the whole data set
as a cluster. Assign 0 as the lifetime of this unique
cluster.

2. Find a cluster C}, in P whose lifetime is shorter than
the mean lifetime of its children and delete the
cluster C) from P and add all children clusters of Cj,
into P, ie., the new clustering P consists of the
children clusters of C}, and other clusters except Cj,.
Repeat this process until the lifetime of each cluster
in P is longer than the mean lifetime of its own
children.

Clustering obtained by this procedure is usually less

complex, i.e., with small number of clusters.

The second procedure can also considered as a “longest-

lifetime-first” procedure [14]. It works as follows:

Rule II.2 (maximization with breadth-first search).

1. Initialize U to be an empty set. Let C=
{C1,Cy,---,Ck} be the set of all clusters in the
hierarchical clustering.

2. Pick the element Cj in C with the longest lifetime
and put it into U. Remove C}, and the clusters in C
that are either contained in or contain Cj. until C is
empty. The number of elements in U is the number
of clusters and U is the corresponding clustering.

To recapitulate, in scale-space clustering, we can tackle
the cluster validity issues as follows:

1. If n(o) takes a constant over a wide range of the
scale, we say that a valid structure exists in the data,
otherwise, no structure exists in the data.

2. If the data do have a predisposition to cluster, the
cluster lifetime can then be used to determine the
number of clusters present in the data and the
corresponding clustering by selection Rule I,
Rule I1.1, or Rule II.2.

3. Assuggested in Rule I, we could determine the scale
o at which the clustering achieved is “real” or
“good” by finding a clustering with maximal
o-lifetime and maximal overall compactness or
isolation.
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4. The validity of an individual cluster may be
measured by its lifetime, compactness, and isolation.

5. The measure of outlierness could be used to delete
noisy data points or detect outliers in a data set.

5 SoME EXPERIMENTAL ILLUSTRATIONS

A large number of experiments have been performed and,
due to the limitation of space, we only use two examples to
illustrate the performance of the proposed algorithms.

The first is a two-dimensional data set with 150 data
points which was generated using the five cluster Gaussian
mixture model with different shapes. Fig. 1a is the data plot
and Fig. 1b is the w(k) plot. From Fig. 1b, we can see that
n(k) has an approximately linear decrease, with scale k
between 0 < k < 60, where k = clog(c/e) with e =0.1 and
¢ =1/log(1.05). For k> 60, the hidden data structure
appears and 7(k) =5 has the longest o-lifetime. Fig. 1c
and Fig. 1d are, respectively, the overall isolation and
overall compactness plots. F() and F© achieve their
maxima at about k= 67(c =2.628). At this scale, the
clustering obtained by the nonnested hierarchical clustering
algorithm is consistent with that obtained by the nested-
hierarchical clustering algorithm (the corresponding clus-
tering is shown in Fig. 2b).

Fig. 2a is the evolutionary plot of the blob centers
obtained by Algorithm I. Fig. 2b is the data partition
obtained at different scales. In this example, the clusterings
obtained by Rule I and Rule II.1 and Rule IL2 are all
identical. In the general cases, such a consistency may not
hold and we should select a rule in accordance with the
application.

In the second example, we apply the scale-space
clustering algorithm to an actual Landsat TM image with
bands to show that this algorithm is capable of effective
clustering of multidimensional data.

It should be noted that if the data set X = {z; € R" : i =
1,---,N} is in the space R", its empirical distribution is
expressed as Pemy(z) = L3N 8(z — 2;).The scale space
image of Pemp(z), P(z,0), can be written as

Pu(z,0) 1&( 1 ) - legt?
2\ L,0) = — e 207
4 N <= \ov2r

which is the convolution of pgn,(z) with the Gaussian
kernel

2

Gloo) = (752) ¥

Each maxima of P(z, o) is considered as a cluster center and
a point in X is assigned to a cluster via gradient dynamic
equation for P(z,0). Since Theorem 1 holds in any
dimension, then our algorithms can straightforwardly be
extended to n-dimensional data with slight adaptation.
The study area is located in the northwest of Hong Kong,
Yeun Long, corresponding to an area of 230K M? on the
Hong Kong topographic maps with geographical coordi-
nates (113°58'F — 114°%07'E to 22°21' N — 22°31'N). The main
land covers include forest, grass, rock, water, built-up area,
trees, marshland, shoals, etc. They are distributed in a
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Fig. 1. (a) Plot of the data set. (b) Logarithmic-scale plot of the cluster number (k). (c) Logarithmic-scale plot of overall isolation. (d) Logarithmic-

scale plot of overall compactness.

complex way. The Landsat TM10 image used is from
3 March 1996 with fine weather. The image size is
455 x 568 pixels. In our experiment, six bands, TM1, 2, 3,
4, 5, and 7, are utilized, i.e., the clustering is done in six
dimensions.

In the test, we first cluster a data set consisting of
800 pixels randomly sampled from the image and then
assign each pixel to its nearest cluster center. Fig. 3a is the
Landsat image of Yuen Long, Hong Kong, and Fig. 3b
shows the 15-cluster solution obtained by applying the scale
space clustering algorithm to this image. The 15 clusters are
obtained from Rule IL.2 and the outliers are deleted
according to their outlierness defined in (36). Compared
with the ground truth, we find that the scale space
clustering is capable of finding the fine land covers. For
example, three classes of water bodies corresponding to
deep sea water, shallow seawater, and freshwater of the

studied area have respectively been identified (Fig. 3b),
while they cannot be distinguished by ISODATA method.
In our experiments, we also find that 150 to 1,000 sample
points are usually large enough to find the land covers
contained in the image.

6 THE RELATIONSHIPS WITH OTHER SCALE-BASED
ALGORITHMS

Several scale-based clustering algorithms have been pro-
posed in recent years [3], [9], [10], [11], [12], [13], [14], [15].
The scale-based algorithms in [11], [12], [13], [14], [15] are
derived from very different approaches, such as estimation
theory, self-organization feature mapping, information
theory, and statistical mechanics, as well as radial basis
function networks. Based on the algorithms developed in
the present paper, we can show that these algorithms are
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Fig. 2. (a) Evolutionary tree of cluster centers obtained by algorithm. (b) The partition of the data space obtained by the nested hierarchical clustering
algorithm at scales oy = 0, 01 = 0.99, 0y = 2.38, and o3 = 2.628 (from bottom to top).

closely related to each other and, in fact, each of these
algorithms is equivalent to a special implementation of our

proposed algorithm.
The iterative algorithm proposed by Wilson and

Spann [13] is based on the estimation theory. This algorithm
is equivalent to using the iterative procedure in (13) with
h = o? to find the cluster center and assign membership to
the data. The idea in [13] was further developed by Roberts
[11], which is based directly on the computation of maxima
of P(z,0) and the stability of m(o) is used to check the

cluster validity [11]. Therefore, both of these algorithms are
the implementations of the nonnested hierarchical cluster-

ing algorithm discussed in Section 3.1.
The algorithm proposed Taven et al. [12] is derived from

self-organization feature mapping and is equivalent to
using (22) in the algorithm with k; = 1. Since each blob may
contain different number of data points, then (22) should be

more reasonable for clustering.
Wong’s algorithm [14], on the other hand, is based on

information theory and statistical mechanics. This algorithm
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(a)

Fig. 3. (a) 455 x 568 Landsat image of Yuen Long, Hong Kong. (b) Clustering result of multispectral Ladsat image shown by the scale-space

clustering algorithm.

constructs a nested hierarchical clustering through the use of
a special iterative scheme, (18), in Algorithm I and selects the
number of clusters by Rule I1.2. Therefore, our method can be
considered as a generalization of Wong’s algorithm.

The algorithm proposed by Chakravarthy and Ghosh
[15] is derived from the radial basis function neural
network. This algorithm constructs a hierarchical clustering
in a way very similar to Wong’s method, but the stochastic
gradient descent procedure in (20) is used.

The above discussion shows that the proposed algo-
rithms are the natural extensions of these algorithms, but
they at the same time provide a unified framework. It
appears that scale-space clustering can be applied to diverse
fields of research. Several other scale-based algorithms have
also been proposed recently. In the adaptive K-means
algorithm introduced in [10], a scale parameter r is used in
the K-means algorithm as a limit to when a new cluster
should start. Another scale-based algorithm called tree-
structured deterministic annealing method is proposed in
[9]. This probabilistic algorithm uses the minimum cross-
entropy inference to solve the clustering problem subject to
a tree structure. The third scale-based algorithm is based on
the physical properties of an inhomogeneous ferromagnet.
Both algorithms use temperature as the scale parameter.
Except for the use of an explicit scale parameter, these
works, in fact, have little relevance not only to each other,
but also to the other scale-based algorithms in [11], [12],
[13], [14], [15] and our proposed algorithms.

7 SEVERAL THEORETIC APPLICATIONS

In this paper, we have derived a clustering method directly
from one of the computational vision models: the scale-
space filtering theory. Thus, many theoretical results
developed in this theory and visual systems can be used
as tools to devise new algorithms and analyze related
clustering algorithms. In this section, we will show, as a
demonstration how, to

1. construct an interval tree for one-dimensional data
set based on the simplicity of maximal curves which
can be derived from Theorem 1 (Section 7.1);

2. interpret why a pitchfork merging is seldom
observed in scale-space clustering [14], [15] based
on the conclusion of Theorem 1 (Section 7.2);

3. correct a theoretical result obtained by Roberts [11]
through a counter example given in [36], [37]
(Section 7.3);

4. determine the discrete schedule of scale parameter
based on a psychophysical law (Section 7.4).

7.1 Construction of Interval Clustering Tree

in One-Dimensional Case

Parallel to Witkin’s work [22], [23], we can construct an
interval clustering tree for a one-dimensional data set based
on scale space theory. Without loss of generality, we assume
that the data set is the whole x-axis and the scale-space
image is p(x, o). From the theory of scale space filtering, the
minima of p(z,o) form simple curves in the (z,o-plane).
Each curve is rooted at o =0, grows monotonically to
infinity, or disappears at some scale. This result can be
obtained under the assumption that 0 is a regular value of
dp/dzx. At a given scale, there is an unique maximum to
which every datum between two neighboring minima
converges. This allow us to form a clustering at each given
scale by one of the following rules: 1) The points fall into the
interval bounded by the roots of two neighboring minima is
a cluster and 2) the points fall into the interval bounded by
two neighboring minima is a cluster.

Based on the simplicity of the minimal curves, the first
rule results in a nested interval hierarchical clustering (see
Fig. 4c), while the second rule generates a nonnested
hierarchical clustering (see Fig. 4d). We call such a
hierarchical clustering a clustering interval tree. The
clustering interval tree differs from the interval tree
proposed by Witkin in purpose and substance. While
Witkin’s interval tree is used to describe the signal, the
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Fig. 4. (a) Histogram of Fisher’s Iris petal width data. (b) Zero-crossings of dp/dxz with p being the scale space image generated from Fisher’s Iris
petal width data. The dotted lines are the minimal curves and the solid lines are the maximal curves, i.e., blob centers at different scales. (c) Nested
hierarchical clustering interval tree for Fisher’s Iris petal width data. (d) Nonnested hierarchical clustering interval tree for Fisher’s Iris petal width

data.

purpose of the proposed clustering interval tree is to
partition the data space according to the probability
distribution. We use the minimal curve of distribution
P(z,0) to construct the binary clustering tree; Witkin, on the
other hand, uses the contour of extrema in the signal to
construct the ternary interval tree.

As an illustration, we construct a clustering interval tree
for the petal width data coming from the well-known Fisher
Iris data. Fig. 4a is the histogram of this data set, and Fig. 4b
is the plot of zero-crossings of dp/dz. The dotted curves in
Fig. 4b are the minimal curves and the solid curves are the
maximal curves. Fig. 4c is the clustering interval tree of
Fisher’s Iris pedal width data. Fig. 4d is a plot of the

nonnested hierarchical clustering interval tree for Fisher’s
Iris petal width data.

The original Fisher Iris data contains measurements of
three species of iris with four features (petal length, petal
width, sepal length, and sepal width) in each pattern. From
Fig. 4c, we can see that, at o = 0.12, three clusters are
obtained and the resulting clustering only commits six
mistakes, but the standard clustering algorithms usually
commit 16 to 17 mistakes [15]. A perfect classification can be
obtained by the scale-space clustering algorithms (see [15])
if four features are considered and one rescaling scheme is
used. The algorithms using Iris data as a benchmark
example can be found in [38], [39].
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7.2 Interpretation of Why Pitchfork Merging Is
Seldom Observed

In hierarchical clustering based on scale-space filtering,
there are two possible types of mergings as o increases:
1) pitchfork merging and 2) saddle-node merging. In a
pitchfork merging, two cluster centers smoothly merge into
one supercluster center, while, in a saddle-node merging, a
cluster center suddenly disappears and is siphoned into
another cluster center. It has been observed that saddle-
node merging is most frequent, but so far no theoretical
result has been proposed to interpret this phenomenon [14],
[15]. From Theorem 1, we know that, for almost all data
sets, 0 is a regular value of 5/, P(x, o). This implies that, for
almost all data sets, we can only observe saddle-node
merging since a pitchfork merging means that 0 is not a
regular value of v/, P(z, o). Therefore, Theorem 1 provides a
theoretical interpretation of this observation.

7.3 Decrease of the Number of Clusters

From the theoretical point of view, in order to guarantee
that we can obtain a meaningful hierarchy, we should
require that the number of cluster centers (i.e., the maxima
of P(z,0)), m(0), decreases as ¢ increases. Roberts [11] has
recently attempted to prove that n(oy) < 7(02) for all oy <
o1 in any dimensions. However, one simple example has
been given in [36], also see [37], which shows that this does
not hold, even in the two-dimensional case. Based on
Theorem 1, we can prove that, in the one-dimensional case
and for almost all data sets, m(0) decreases as o increases.
Nevertheless, we cannot extend our proof to higher
dimensions.

It should be noted that such a problem does not exist in
the nested hierarchical clustering algorithm.

7.4 The Increasing Schedule of the Scale Sequence
Used in [14], [15]

In both algorithms proposed in [14] and [15], the scale

sequence o; is given by

i=1,2,---, (44)

oir1 = hoy,

where h > 1 is a constant. However, no interpretation is
provided to explain why such a schedule should be
adopted. In scale-space theory, this can be explained as
the requirement of accuracy and stability of the representa-
tion, as proven in [24]. It is because (44) is equivalent to
Oi+1 — O;

=h-1 (45)

i
and this corresponds to the “natural scale” in the resolution
axis [24]. Based on Weber’s law, we can suggest a low-
bound for h in practical applications, as detailed in
Section 3.5.

8 REMARKS AND CONCLUSION

We have proposed in this paper a new approach to data
clustering based on scale space theory. By mimicking how
human eyes unravel intrinsic structures in images, cluster-
ing by scale-space filtering performs clustering through a
blurring process which treats a data set as an image with
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each datum being a light point attached with a uniform
luminous flux. Blobs (clusters) form throughout the blurring
process, with smaller ones merging to larger ones along the
merging scale until the whole image contains only one light
blob (cluster) at a low enough resolution. A hierarchical tree
of clustering which gives a family of realistic data clustering
is thus obtained. The approach advances a method of
clustering with a psychophysiological basis and interpreta-
tion. It also provides a way to solve the vexing problem of
cluster validity checks and establishes a unifying framework
for other scale-based algorithms.

From the proposed approach, we can get a family of
clustering algorithms by employing different numerical
difference methods to solve the gradient differential
equation in (8) or (10). We can also use other high order
optimization methods, such as conjugate gradient and
quasi-Newton-like methods, to construct new clustering
algorithms. If the data consist of long and thin clusters, we
can make use of Mahalanobis distance instead of Euclidean
distance in the algorithms and the covariance matrices can
be estimated iteratively with a particular regulation
technique if too few data is contained in a given cluster.
In this paper, several illustrative examples and a test on
remote sensing images have been given with convincing
results. We have also tested different implementations of
scale-space clustering on the generated data sets and the
remotely sensed images and the results will be reported in
another paper. These results in brief show that:

1. Lifetime is a suitable cluster-validity criterion. This
can also be observed in Fig. 2.

2. The algorithms are robust to the variation of cluster
shapes, it can even be non-Gaussian. This is mainly
because the objective function in (7) is the density
distribution estimate and the algorithm is a “mode-
seeking” one which tries to find the dense regions.
This phenomenon can also be seen in Fig. 1, where
data are of different shapes.

3. The algorithms are insensitive to outliers because

outliers can easily be detected in these algorithms.
From (7) and (8), we can see that the influence of one
point on a given cluster center is proportional to
O(de” n]T), with d being the distance between them.
When d is large, O(de™ 57) is very small. An outlier is
usually very far from the cluster centers, so it has
little influence on the estimation of the cluster center.
On the other hand, the normal data points are
usually far away from the outlier, so they have little
influence on an outlier. That is to say, an outlier can
survive for a long time as a cluster, therefore, it has
large outlierness (see (36)) and can easily be
detected. This technique has been successfully used
to process data related to Fig. 3. Since outlier
detection is theoretically predictable, we then need
not to provide an empirical study for illustration.

4. Since the proposed algorithm allows cluster in a
partition to be obtained at different scales, more
subtle clustering, such as the classification of land
covers, can be obtained.
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5. The algorithms work equally well in small and large

data sets with low and high dimensions.

Some main concepts and ideas discussed in this paper
are not entirely new. For example, the scale-space theory is
developed in image and signal processing [22], [23], [24],
[25], [26], [27], [28]. The “mode-seeking” or “peak-seeing”
idea has been widely used to define clusters and construct
clustering algorithms in pattern recognition and image
processing for quite a long time and it has been used in
scale-related clustering in [11], [15]. The stability of 7(c) as a
measure of clustering validity is also used in [11], [12], [13],
[14], [15], the lifetime for a cluster in a nested hierarchical
clustering is suggested in [14] in the terminology of
“robustness of a good cluster,” and the lifetime of a
partition at a given scale in a nested hierarchical clustering
is introduced in [12]. Furthermore, the logarithmic dis-
cretization scheme for the scale parameter is also used in
[12], [14], and [15].

The main contribution of this paper is that we bring all
these ideas together into a unified whole, provide a
thorough consolidation of such related works, and then
formulate a generalized framework for scale-space cluster-
ing algorithms by showing how this extends to or differs
from those in [11], [12], [13], [14], [15]. We have derived the
algorithms directly from scale-space filtering theory and
this allows us to use the theory developed for scale-space
filtering to analyze scale-space clustering algorithms and
explain the clustering process and results from the
psychophysiological perspective. Based on this point of
view, we manage to explain: 1) Why scale parameter should
be increased by a constant factor in practice. 2) Why lifetime
should be measured on a logarithmic scale. 3) Why pitch-
fork merging are seldom. The proposed clustering method
can also be applied to the classification of data with known
distribution containing noise or being indifferentiable.

For further research, mechanism should be devised to
separate clusters which are close to each other. Further-
more, since Gaussian scale space theory is designed to be
totally noncommittal, then it cannot take into account any
a priori information on structures which are worthy of
preserving. Such a deficiency may be improved by employ-
ing more sophisticated nonlinear scale space filters.

It should also be noted that scale-space filtering theory is
concerned with the simple conscious experience associated
with a stimulus (low-level processing), i.e., the first eye
contact between an organism and the environment. There-
fore, it is a theoretical model of front-end visual system and
is not suitable for processing directly clustering problems
related to high-level perception, such as clusters in an image
with texture background or clusters with meaningful
shapes. If we want to solve these problems in a biological
setting, high-level theoretical and computational perception
models might be employed. This does not mean that scale-
space clustering algorithms cannot be applied to these
problem indirectly. They may be quite useful to cluster
feature vectors retrieved from images, as shown in [11], [13].
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