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Abstract—There have been various algorithms designed for sim-
ulating natural evolution. This paper proposes a new simulated
evolutionary computation model called the abstract evolutionary
algorithm (AEA), which unifies most of the currently known evo-
lutionary algorithms and describes the evolution as an abstract sto-
chastic process composed of two fundamental operators: selection
and evolution operators. By axiomatically characterizing the prop-
erties of the fundamental selection and evolution operators, several
general convergence theorems and convergence rate estimations
for the AEA are established. The established theorems are applied
to a series of known evolutionary algorithms, directly yielding new
convergence conditions and convergence rate estimations of var-
ious specific genetic algorithms and evolutionary strategies. The
present work provides a significant step toward the establishment
of a unified theory of simulated evolutionary computation.

Index Terms—Aggregating and scattering rate, evolutionary
strategy, genetic algorithm, selection intensity, selection pressure,
stochastic process.

I. INTRODUCTION

T HERE has been a growing interest in algorithms that rely
on an analogy to the natural evolution. The best-known

examples of such simulated evolutionary algorithms (SEAs)
include genetic algorithms (GAs), evolutionary programming
(EP), and evolution strategies (ESs). These algorithms sim-
ulate the principle of evolution (survival of the fittest), and
maintain a population of potential solutions (individuals)
through repeated application of some “evolutionary” operators.
They yield individuals with successively improved fitness,
and converge, hopefully, to the fittest individuals representing
optimum solutions. As such, SEAs can be abstractly viewed as
general-purpose optimization solvers for “fitness” functions,
although they were originally developed for different purposes
(e.g., [1], [7], and [10]) and are now applied in different
areas. They all have been successfully applied to solve global
optimization problems related to some concrete multimodal,
nondifferentiable, or combinatorial functions.
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The most fundamental theoretical issue related to the research
and applications of SEAs is convergence, i.e., whether or not a
given implementation scheme of the SEAs will converge to the
global optimal solution, and how fast it will converge. This issue
has been studied recently [2], [17], [19], [25] for several specific
types of SEAs (such as GAs with elitist selection and ESs with
specific objective functions). The purpose of the present paper
is to extend these results and to establish a more general conver-
gence theory of SEAs by developing a new unified SEA model.

Such a study is motivated by the following observations. First,
the currently known SEAs such as GAs, EP, and ESs can all be
explained as global population-based random search algorithms
with several features in common: 1) all aim to maximize fitness
of individual; 2) they yield population sequences whose elitist
or average fitness is monotonically improved; and 3) they are
based on the same principle of natural evolution—applying a
“strive for survival” selection process and using “evolutionary”
operators. These common features make it direct and possible to
abstract a more general unified SEA model. Second, the conver-
gence of SEAs should be a natural consequence of implemen-
tation of “survival of the fittest.” This already has been justified
in some special cases of GAs, EP, and ESs (e.g., [15], [23]).
By identifying the core reason why these special implementa-
tion schemes converge, we expect to be able to find the intrinsic
mechanism (general conditions) of the evolution that implies
convergence of a general SEA. The present work seeks to char-
acterize such general conditions of convergence for a general
SEA, in terms of involved selection and evolution operators.

There have been several approaches to conduct convergence
analyzes of SEAs. These include the simulated annealing-like
(SA-like) approach, the Vose–Liepins model, and the stochastic
model approach.

In the SA-like approach, an SEA is treated as an instance of
the standard simulated annealing (SA) algorithm via viewing a
certain parameter of the SEA astemperature, and convergence
of the SEA is then deduced from a direct extrapolation of the
existing convergence theory of SAs [2]–[4], [9]. This approach
offers an important insight into SEAs in the sense that these
algorithms can be regarded as also simulating certain physical
principles (while simulating the biological evolution). However,
since the SEA looks rather like generalization than an instance
of SA algorithms, the convergence assertions that such an ap-
proach have deduced are very limited. Indeed, the existing re-
sults from this approach only pertain to several GA models
(see [4]), where the mutation rate is treated astemperature,and
therefore are required to tend to zero. Moreover, the obtained
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results are not only based on the strong ergodicity of the GA,
but also on the assumption that, for each fixed rate (tempera-
ture), the evolution of GA is an infinite stochastic process. The
latter assumption is clearly far from practical in modeling any
real implementations of GAs.

The approach based on the Vose–Liepins model is to cast
an SEA (particularly, a GA), a stochastic process, as a deter-
ministic (i.e., nonstochastic) dynamical system (more precisely,
a successive approximation iterative process determined by a
deterministic nonlinear mapping), then to make a correspon-
dence between the convergence of the SEA and the convergence
of the system to the equilibrium set (i.e., the fixed points of
the nonlinear mapping). Such an approach was developed by
Vose and Liepins [27], and then extended and applied in [12],
[29], and [16]. The most attractive feature of this approach is
that the model used to cast the SEA is exact and determin-
istic, so many functional and numerical analysis tools can be
applied directly. The difficulty is, however, that the precise ex-
pression of the related nonlinear mapping can only be obtained
for very few cases (e.g., a binary GA with proportional selec-
tion); even in these cases, it is not clear how the fixed-point set
of the mapping is related to the global optimum that we have
expected to look for. Thus, the approach may not be applied to
analysis of the GAs, for instance, when the encoding is real or
the selection operator is nonproportional. Even though conver-
gence of an SEA is concluded from this approach, it is still open
whether or not the algorithm converges to the expected global
optimum. It is noted also that most existing analyzes based on
the Vose–Liepins model, have an assumed infinite population
size [27], [12], [29]. An analysis based on the Vose–Liepins
model, but for finite population GAs, was developed by Nix and
Vose [16]. They obtained, in particular, the upper bound on the
number of iterations for several special implementation schemes
of a GA to traverse all states of the search space at a certain level
of confidence. The result derived was still based on ergodicity
analysis of the considered algorithms.

The stochastic model analysis perhaps is the most natural and
widely used approach for convergence analysis of SEAs [4], [5],
[11], [18]–[20], [25]. Owing to the fact that most existing SEAs
can be modeled as Markov chains in a very natural way, this ap-
proach can be applied to SEAs with any finite population based
on any kind of selection mechanism and evolution operators.
The most difficult issue, however, is that it is impossible or at
least impractical in general to formulate the details of the re-
lated transition probability matrix and, therefore, analyzing the
properties of the matrix is difficult. Almost all existing Markov
chain analysis results are deduced based on the ergodicity anal-
ysis of the corresponding algorithms. Therefore, convergence
is directly derived for those algorithms with an elitist selection
strategy. For instances, Rudolph [18] proved that the canonical
GAs (CGAs) cannot converge to the global optimum if the mu-
tation rate is not zero, but any CGA with elitist selection con-
verges. These results were later extended by Suzuki [25] for
CGAs with a modified elitist strategy. Within an appropriate sto-
chastic process framework, models other than the Markov chain
approach for an SEA are also discussed. Rudolph applied the
theory of supermartingales to ESs, and obtained a rather gen-
eral convergence criterion for a class of convex fitness functions

in [19] and [20], which is valid for both elitist-type and noneli-
tist-type ESs.

From the above brief exposition, we can conclude that almost
all existing convergence results of SEAs are actually validated
only for their “elitist” versions and are based on ergodicity anal-
ysis of the algorithms. However, we remark that the convergence
of the elitist version of an SEA by no means implies the conver-
gence of the SEA itself since elitist selection is only a recording
strategy for search results of the algorithm, which has nothing
to do with the simulating evolution process. So the convergence
issue of a general SEA is still open (except for Miller [15],
Suzuki [25], and Peck and Dhawan [17]). Furthermore, it should
be noted that, although convergent, the elitist-type SEA does not
always deserve recommendation in use. Salomon [21] noted that
from a computational point of view, elitist selection, which is not
a local operator, requires global communication in each genera-
tion. This requires at least additional operations. This
additional runtime factor can cause low performance of algo-
rithms in distributed and parallel systems without global com-
munication or without a central processing unit. Thus, the study
of convergence of the nonelitist-type SEAs is important both
from the viewpoint of theoretical significance and from the per-
spective of parallel computation.

This paper focuses on the study of convergence for general
nonelitist-type SEAs using a completely new approach. The
main points behind this approach include the following.

• Any general evolution process is modeled as an abstract
stochastic process that is deduced from two fundamental
stochastic operators—selection and evolution operators.

• Through identifying key components of the existing
SEAs, the two fundamental stochastic operators are
modeled axiomatically and the functions of the operators
are characterized quantitatively, more precisely, through
specifying a set of six parameters describing notions
such as selection pressure, selection intensities, evolution
stability rate, evolution aggregating rate, and evolution
scattering rate.

• Based on mathematical estimations on the probability of
the population containing the global optimum (in terms
of the parameters mentioned above), the convergence and
convergence rate for general SEAs are treated simultane-
ously.

The proposed approach is not based on ergodicity analysis
of the related algorithms and, therefore, could be regarded as a
“nonergodicity-based” one. By this approach, we can develop
an abstract general SEA model (called an abstract evolutionary
algorithm—AEA), which unifies most of the currently known
SEAs. Also, we establish a unified convergence theory of the
nonelitist versions of various existing implementation schemes
of SEAs.

The paper is organized as follows. In Section II, we develop
the generalized SEA model—AEA—through describing the
fundamental stochastic operators and quantitatively charac-
terizing their functions axiomatically. Two types of useful
convergence definitions of SEAs are then introduced. Based
on the introduced abstract SEA model, several general con-
vergence theorems and convergence rate estimations are
established in Section III. In Section IV, a series of examples
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of selection and evolution operators are provided that show, in
particular, how the related parameters like selection pressure
and evolution aggregating rate can be specified precisely. We
also apply the established general convergence theorems to
various known SEAs, showing the utility of the proposed
approach. The paper is then concluded in Section V.

II. THE ABSTRACT EVOLUTIONARY ALGORITHM

This section presents an abstract model of the simulated
evolutionary algorithm (SEA), called the abstract evolutionary
algorithm (AEA). We first explain the optimization problem
studied in Section II-A. Then, in Section II-B, we formulate
the axioms of the fundamental evolutionary operators and
the abstract evolutionary algorithm (AEA). A set of related
characteristic parameters of the fundamental evolutionary
operators that characterizes their functions quantitatively is
also introduced here. In Section II-C, two kinds of global
convergence definitions that will be used later are presented.

A. Optimization Problem

Consider the optimization problem

(1)

where is the fitness function and is the feasible
region. Without loss of generality, assume that for
any and is a discrete space.

The aim is to find the global optimum ofor, more precisely,
to find such such that .
Such a task is difficult or even impossible in general. Therefore,
instead of , we will focus on finding a satisfactory solution of
the problem (1).

Definition 2.1: A nonempty subset is called a satis-
factory set of the problem (1) if for any and

. The collection of all satisfactory sets of (1) is denoted
by .

A satisfactory set is clearly such a subset of whose ele-
ments have higher fitness than any others outside. The present
paper derives the conditions under which an SEA can converge
to a satisfactory set. It is evident that a satisfactory setis the
global optimum set if and only if for any .
Furthermore, an algorithm that converges to any satisfactory
sets must be convergent to the optimum set.

B. The Axiomatic Model of SEA: AEA

For simplicity, we treat each element ofas an individual.
Thus, is the individual space of SEA, and is the population
space whenever the population size is. For any stochastic
operator and two populations and , we use
to denote the probability of being .

To formulate SEAs axiomatically, we observe that for almost
all known SEAs, the algorithm’s mechanism of generating the
next population can be abstracted as two independent proce-
dures that can be represented by two operators: selection and
evolution. The selection operator works on the fitness value of
individuals in the current population, and assigns the proba-
bility of survival for each individual. Then, the evolution op-
erator, independent of the fitness function, manages the search

strategy and decides the sites of the next population based only
on the current population sites. For an effective SEA, the selec-
tion and evolution operators are both designed to improve the
fitness of populations generation by generation for all types of
fitness functions. Inspired by this observation, we will model
the general SEA as a stochastic process deduced from the two
independent stochastic operators: the abstract selection and evo-
lution operators, which are detailed, respectively, as follows.

Axiom 2.1 (Selection Operator): A stochastic function
is an abstract selection operator if

1) for any ;
2) there is a positive constantsuch that for each

with

;
3) for any fixed

where
for each , denotes the cardinality of the set, and

is the probability.1

Axiom 2.1 characterizes three fundamental features of the ab-
stract selection operator: 1) selection must be carried out within
the current population; 2) selection should, with a positive prob-
ability, increase the number of higher fitness individuals when-
ever the current population is not degenerate (i.e., consisting of
individuals of equal fitness); and 3) the more the fittest individ-
uals exist in the current population, the greater the number of
increased fittest individuals in the selected population.

Axiom 2.2 (Evolution Operator):A stochastic function
is an abstract evolution operator if, for each

and

a) whenever ;
b) whenever ;

furthermore, is an abstract strong evolution operator if
additionally satisfies

c) .
Property a) in Axiom 2.2 shows that the evolution is capable

of reaching any satisfactory set from anywhere in, whereas
b) shows that, once a satisfactory set is reached (by the current
search), then the evolution should, with probability 1, prevent
the individuals of the population from escaping it totally. c) in-
dicates that if is a strong evolution operator, then it can surely
increase the probability of a population to meet any fixed satis-
factory set.

Fogel [8] noted that all evolutionary optimization algorithms
can be described as a series of operators applied to a popula-
tion of candidate solutions. Particularly, in terms of the above-
introduced selection and evolution operators, an abstract SEA
model—abstract evolution algorithm (AEA)—can then be de-
fined as follows.

Axiom 2.3 (AEA):An AEA is a stochastic process, deduced
from a sequence of abstract selection operators

1Here and in what follows, the notationP (X; A) denotes the probability
P (X; Y ), whereA is an event. Whenever no confusion is caused, we

also often omit the subscriptS in P (X; A).
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and evolution operators , whose population at
time is defined by

where is the initial population randomly chosen from .
We will show in Section IV that almost all known SEAs are

concrete examples of the AEA introduced here.
To analyze such an axiomatically defined AEA, we need to

introduce the related characteristic parameters of the selection
and evolution operators.

Definition 2.2 (Selection Pressure and Selection Intensi-
ties): Let be an abstract selection operator; the selection
pressure , the selection intensity , and the uniform
selection intensity of are positive real numbers such that

The selection pressure provides a quantitative measure of the
maximal capability of in increasing the number of the fittest
individual (note that for fair comparison purposes, we have as-
sumed , which is obviously necessary). The selection
intensity provides a measure of the smallest probability of
maintaining the selection pressure. Likewise, the uniform se-
lection intensity measures the infimum probability ofuni-
formly increasing the number of the best individuals for any
nondegenerate populations (that is, any populationsuch that

).
Definition 2.3 (Aggregating Rate, Scattering Rate, and Sta-

bility Rate): Let be an abstract evolution operator; the ag-
gregating rate and the scattering rate of are positive
real numbers such that

Moreover, if is an abstract strong evolution operator, its sta-
bility rate is defined by

The parameters , and defined above provide
quantitative measures of global capability of from the as-
pects, respectively, specified by a)–c) of Axiom 2.2. In partic-
ular, measures the exploitation (convergence) capability of

in searching and aggregating to a fixed satisfactory set,
measures the exploration capability (diversity) offorcing a
population to leave a satisfactory set and scattering it around,
and then measures the stability degree ofpreserving the
satisfactory individuals found.

The significance of introducing the parameters
is not only that they provide

quantitative characterizations of the fundamental selection
and evolution operators of AEA, which makes it possible to

develop a unified convergence theory for SEAs, but also that
they offer a unified quantitative criterion for fairly comparing
existing (different) SEAs. We will present a series of concrete
examples to illustrate this point in Section IV.

C. Convergence Definitions

We will study two types of global convergence of AEA. The
definitions are given as follows.

Definition 2.4: An AEA is said to be quasi-convergent if
for each satisfactory set .

The AEA is said to be convergent if
for each satisfactory set .

By this definition, an AEA is quasi-convergent if and only if
with probability 1 its population eventually intersects each sat-
isfactory set. That is, the probability of a global maximum ap-
pearing in the population will tend to 1. By comparison, an AEA
being convergent means that its population will be included in
any satisfactory set in the end, so that the population must evolve
gradually to be the degenerate one consisting of only global
maximum. A convergent AEA is naturally quasi-convergent, but
the reverse is not true in general.

There are other convergence notions used in litera-
ture. For instance,almost sure convergence[19] reads
as follows. An AEA is almost surely convergent if

, where is the
optimal solution of (1) and is the Hausdorff distance
of sets on . This convergence notion is slightly stronger
than ours in the general case, but in the situations that either

is discrete or and both are continuous, it can be shown
that this notion is equivalent to ours. For other convergence
definitions, see [17].

III. GLOBAL CONVERGENCE FORAEAS

This section presents a detailed convergence analysis of AEA.
We will particularly formulate general convergence conditions,
and provide convergence speed estimations of AEA in terms
of the introduced characteristic parameters of the selection and
evolution operators. The specifications of the results will be pre-
sented in the next section.

Let denote the population generated by AEA at time
through application of the selection operator and evolution
operator according to Axiom 2.3. The selection pressure,
the selection intensity, and the uniform selection intensity of

are denoted, respectively, by , and . The evolution
aggregating rate, the evolution scattering rate, and the evolution
stability rate of are then denoted by , , and ,
respectively.

A. Quasi-Convergence

We first characterize the quasi-convergence conditions of
AEA. We need the following lemma.

Lemma 3.1:Let , and
be three nonnegative real sequences such that:

a) for each and

b)
c) .
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Then, . Furthermore, for every
where and are integers such that

and for every .
Proof: Since , for any ,

there exists an integer such that, whenever ,

Therefore, from condition a), we have

That is

This implies that, for any ,

Note that condition c) implies , which shows that
and, hence, . As is

arbitrary and , therefore .
If for every and ,

replacing and in the preceding inequality by and ,
respectively, we have

. It follows from that
whenever . This finishes the proof.

By making use of the above lemma, we now can prove the
following basic theorem.

Theorem 3.1 (Quasi-convergence):An AEA is quasi-con-
vergent if it satisfies the following conditions:

1) there is an such that for each
2)
3) .

In this case, for any , the AEA obeys the following con-
vergence speed estimation:

for any , where are integers such that
and

whenever .
Proof: For any fixed satisfactory set , let denote the

probability at which there areindividuals in the intersection of
and , that is

(2)

Clearly, it suffices to show that as .
By Bayesian formula, we first can express

Consequently

(3)

Let . Then, by Axiom 2.1, ,
and hence

. It then follows from the definition of
evolution aggregating rate (Definition 2.3) that

(4)

Also, let and
. Then, according to the Bayesian formula, we

have

(5)

Since and , the condition
implies . From the definition of the evolution
scattering rate of , we have

(6)
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Moreover, from the definitions of and conditional probability,
we have

(7)

which implies

(8)

because of the fact that

By using Axiom 2.1c), the definitions of selection pressure and
selection intensity (Definition 2.2) and the assumption a), the
above inequality then further shows

(9)

Bringing (6) and the foregoing estimation (9) into (5), we obtain

that is

(10)

Combining the estimations (4) and (10) with (3) yields

(11)

By applying Lemma 3.1 to the above estimation (11), it then fol-
lows that , and the convergence speed estimation
is established. This completes the proof of Theorem 3.1.

Remark 3.1:The quasi-convergence conditions formulated
in Theorem 3.1 are quite intuitive: a) says that for a quasi-con-
vergent AEA, its selection pressure must be positive; c) says that

its evolution aggregating rate may be very small (even asymp-
toctically tending to zero), but should not be too small or tend
to zero too fast; and b) then shows that, once the selection in-
tensity is near one (which is the case in most applications), the
scattering rate should be a higher order infinitesimal of the ag-
gregating rate. Properties b) and c) provide us with a quantitative
strategy for balancing the exploration/exploitation dilemma that
exists in SEAs. All of these explanations reveal that conditions
a)–c) are indeed very natural.

B. Convergence

Now, we further show when a quasi-convergent AEA be-
comes convergent.

Theorem 3.2 (Convergence):A quasi-convergent AEA
is convergent if, for each , is an abstract strong
evolution operator and . In this case, for
any satisfactory set , the convergent speed can be estimated as

Proof: As in the proof of Theorem 3.1, we let
for any satisfactory set .

It is observed first that the quasi-convergence of the AEA
implies that and, therefore,

. We now proceed by showing that for any
, the following equality holds:

(12)

which then yields the convergence of the AEA. Equation (9) is
trivially true for since and
. If we suppose that (9) holds for any integer up to ,

then, by the definitions of the uniform selection intensity and
the evolution stability rate, we find

and
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where, as before, . This then implies

(13)

By the assumptions, it then follows that
. That is, the equality (12) holds for

any as claimed.
From (9) and (10), we have

which yields and the estimation
required. This finishes the proof of Theorem 3.2.

Remark 3.2:Theorem 3.2 can be also explained very intu-
itively: since the AEA is quasi-convergent, there is at least one
individual in the AEA population which is in any given satis-
factory set from a sufficiently large onwards. The selection
operator gradually increases the number of these satisfactory in-
dividuals, and the strong evolution operator then ensures that
these individuals become more and more stable (i.e., it becomes
more and more difficult for them to leave the population). As a
result, as the AEA population evolves, it must be totally con-
tained in the satisfactory set and, hence, the convergence of the
AEA follows.

IV. EXAMPLES AND APPLICATIONS

This section is devoted to specifications of the theories
developed in previous sections to various known SEAs. In
Sections IV-A and B, the characteristic parameters of various
widely used selection operators and evolution operators are
evaluated, respectively. The evaluation results obtained are then
used in Section IV-C to derive the convergence and conver-
gence speed estimations of genetic algorithms. In Section IV-D,
Theorems 3.1 and 3.2 are specified to a class of evolutionary
strategies.

A. Selection Operators

Assume that is a population, , , ,
with each being an individual. Given
a selection operator , we denote and
write .

Example 4.1 (Proportional Selection [14]):By this selection
rule, the selected population is created from independent
random experiments. In theth experiment, the individual

is selected according to the probability

where is the fitness (or objective) function and is
a gauge (namely, a strictly increasing positive function). Let

(14)

Then the selection pressure , the selection intensity , and
the uniform selection intensity of are as follows:

Proof: We can assume that , and is the
unique fittest individual. Since is created from indepen-
dent random experiments, we have

where

Therefore, . Noting that (14) implies

we obtain . To estimate the uniform
selection intensity , we let and assume that is
the probability of that an individual in is selected in one
independent experiment. Then it follows that

(15)

(16)

By Newton’s formula, this then implies that, in the indepen-
dent experiments, the probability of more than individuals
in being selected into is

That is

(17)
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TABLE I
THE CHARACTERISTICPARAMETERS OFSELECTIONOPERATORS; P : SELECTIONPRESSURE, I : SELECTION INTENSITY, AND U : UNIFORM SELECTIONINTENSITY

From (11) and (13), attains its infimum .
Consequently, (17) implies

There are many different selection operators that are similar
to proportional selection in the sense that they all generate the
selected population by independent random experiments
and in each experiment, the fittest individual in is chosen
with a fixed positive probability. Consequently, selection pres-
sures and selection intensities of these selection operators can be
computed in the same way as that in the above example. Some
results, for instance, are listed as follows.

Example 4.2 (Linear Ranking Selection [14]):The selected
population is generated from independent random exper-
iments. Suppose which is ranked so that

whenever . Then, in each experiment, is
selected from with probability

where are the adjustable parameters such that
. The operator has the charac-

teristics

Example 4.3 (Nonlinear Ranking Selection [14]):Different
from the linear ranking selection, the nonlinear ranking selec-
tion selects from with probability . The op-
erator then has the characteristics

The subsequent examples will be other types of selection op-
erators: they all generate the selected populationin the way
that the individual of is selected (with a certain positive prob-
ability) successively from the best one of several adjacent indi-
viduals in .

Example 4.4 (Tournament Selection [15]):In this selection
mechanism, for each is selected as the fittest

individual among individuals adjacent to (where is the
so-called tournament size). The operator has the characteristics

Proof: Without loss of generality, we assume thatis the
unique fittest individual in . Then, by the tournament selection
rule, and since, for any

, the individuals adjacent to
must contain . Thus, .
That is, and follow. It is obvious that

. So we have .
Analogously, we have the following.
Example 4.5 (Elitist Selection [14]):Suppose that is the

best individual in . The selection forces the fittest individual
into the selected population to replace the worst individual in
. So its characteristic parameters are

Example 4.6 (Boltzmann Selection [13]):In this rule, for
each , is selected from two individuals in , say,
and , which are adjacent to . Suppose that is more than

. The probability of selecting is then given by

where is a temperature parameter. Let
. This operator has the following

characteristics:

The above listed characteristic parameter evaluation results
of the selection operators are summarized in Table I.

B. Evolution Operators

We first briefly review the notions of mutation, crossover, and
combination operators used in canonical GAs.

Let be a population with each
. The mutation is an

operator from to , which satisfies

for any

where, for a givenmutation rate , will take its
th component with probability , and

with probability .
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The crossover operator is defined as follows.
For any , is created by

independent experiments. For each , two parent
individuals, say, and , are first randomly sampled from
and then the probability of being a random sample between

and equals to , where is calledcrossover rate.With
the probability , is created from and through a more
complicated implementation such as the following.

• One-Point Crossover:If is a random sample from
. Then the th component of is taken

as the th bit of when is more than ; otherwise, it is
taken as theth component of .

• Two-Point Crossover:If are two random samples from
, then the th component of is taken

as the corresponding component ofwhen is located
between and ; otherwise, it is taken as the corresponding
component of .

• Uniform Crossover:The th component of is a random
sample from the corresponding components ofand .

The combination operator is the composition of the
mutation and the crossover . It generates a population
through two successive steps: first, an intermediate population
is created by the crossover and then, the mutation is
applied to the intermediate population, yielding the final
population.

Example 4.7 (Mutation Operator):If is a mutation oper-
ator with mutation rate , then its evolution aggregating
rate, the scattering rate, and the stability rate are given, respec-
tively, by

(Note: by complicated calculation, we can also prove that the
stability rate in this case is given by

Proof: By the definition,
. This infimum will be attained at

the most diffcult case when “00 0” and each indi-
vidual in is “ .” In this case, is equal to the proba-
bility of at least one individual “ ” becoming “ .”
Since the probability of one individual “ ” becoming
“ ” is , we find .

To compute
, we let and notice that this

supremum will occur in the easiest case: “00 0” , and
contains individuals “00 0” and individuals

“11 1.” In this case, is the probability of: 1) at least one
bit of each individual “00 0” is transformed into 1 and 2) no
individual “11 1” is converted to “ .” Consequently,

. This function is
monotonically decreasing in whenever . So we
obtain .

The stability rate of is defined as
.

Despite the fact that it can be computed precisely, we only

notice here that this value is clearly more than the probability
that every individual in remains unchanged under the
mutation that is given by . Consequently,

.
Example 4.8 (Combination Operator):The combination op-

erator composed of crossover and mutation has the character-
istic parameters

Proof: We obtain the aggregating rate and the stability rate
by the same arguments as that used in the mutation case. The
scattering rate will be attained in the easiest case when

“00 0” and all individuals of are “00 0.” Let
and be two random samples from (therefore, “00

0”). Thus, , the intermediate individual created fromand
under crossover, is “00 0” also. Consequently, the probability
of the final individual not being “00 0” is the probability of
the individual “00 0” not preserving itself under mutation,
which is given by . Therefore,

.
Remark 4.1:The precise evaluation of the evolution scat-

tering rate of the combination operators is
also possible, but it is extremely complicated. The presentation
of such a general scattering rate expression is, therefore, omitted
here. Any reader interested in the expression can, however, cal-
culate it by carefully distinguishing among different crossover
manners (say, one-point, two-point, or uniform crossover).

C. Convergence of Typical Genetic Algorithms

The examples presented in the last two subsections now can
be combined directly with Theorems 3.1 and 3.2 to yield conver-
gence and convergence speed estimations of various canonical
GAs.

Theorem 4.1:Assume that the GAs are defined by a series
of the proportional selections (with the gauge function

) and the combination operators (with the mu-
tation rate and the crossover rate ). Corresponding to
(11), define

If

1)
2)
3)

then the genetic algorithms are quasi-convergent and for any

Proof: According to Examples 4.1 and 4.8, the GAs in
this case are special AEAs, with the selection pressure

and the selection intensity
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for each . We also know that
and

, which implies
that and

According to Theorem 3.1, the algorithms are quasi-conver-
gent. Moreover, let ; we then have

and
. By Theorem

3.1, the convergence speed estimation of follows also.
Theorem 4.1 can be applied directly to the simulated

annealing-like genetic algorithms. For instance, the global
annealing selection introduced in [32] corresponds to the pro-
portional selection operator with time-variable guage function

, where is the annealing temperature.
Such a selection operator combined with the combination
operator defines the GA which is called the global annealing
genetic algorithm. In this case

with and
obviously, amounts to . Thus,
Theorem 4.1 implies the following corollary.

Corollary 4.1: If: a) , b) ,
and c) , then the global annealing genetic algorithm is
quasi-convergent and, moreover, for any

Analogously to Theorem 4.1, the following convergence of
GAs can be verified.

Theorem 4.2:The AEA made of a series of the nonlinear se-
lection and the combination operators is quasi-convergent if: 1)

, where is the parameter involved in nonlinear
ranking selection operator at time; 2) ; and
3) .

Theorem 4.3:An AEA deduced by the tournament selections
and the mutation is convergent if the mutation rate at time
satisfies and the tournament size .

Proof: We can prove the quasi-convergence by using a
similar argument as that in Theorem 4.1. Moreover, according
to Example 4.7, the evolution stability rate of the AEA at time
is more than
and the uniform selection rate of the AEA at timeis one. So,
by Theorem 3.2, the algorithm is convergent also.

Remark 4.2:As remarked in the introduction of Section I,
the convergence of GAs has been studied in recent years. Nev-
ertheless, most of the results are established for the “elitist-type”

(that is, with the strategy of recording the elitist individual up to
the current population and showing the convergence of the elitist
individuals) and the time-independent genetic operators, and are
based on ergodicity analysis. The convergence of GAs derived
in this subsection are clearly all for the “nonelitist type” and the
time-dependent genetic operators, and are based on nonergod-
icity analysis. Therefore, the results obtained provide not only
new findings on convergent conditions, but also a new method-
ology of convergence analysis of GAs.

For GAs composed of proportional selection and combi-
nation operators, their “nonelitist” versions are known not
to converge [18] when the operators are time independent.
Theorem 4.1 reveals the convergent conditions of such GAs
when the time-varying genetic operators are used. As a special
case, Zhanget al. [32] showed that the global annealing GA is
convergent if the “temperature” and the selection takes
from the “parent–children” mixed populations. Corollary 4.1
in this section, however, shows that if the selection is natural
[that is, only from the parent population), the algorithm will
also be convergent provided the temperature declines as low
as ]. This result coincides surprisingly with the
standard requirement on the declining rate of temperature in
the simulated annealing algorithms. For GAs with tournament
selection, Miller and Goldberg [15] proved convergence of the
algorithm, but under the assumption that each generation of
population obeys the normal distribution. This assumption is
obviously impractical. Theorem 4.3 in this section establishes
the convergence of such GAs without supposing such an
impractical condition.

In all of the convergence conditions listed in Theorems
4.1–4.3, the mutation rates are all asked to decrease in order
of . When the encoding length is sufficiently
large, . This suggests that, in this case, the constant
mutation rate can actually be applied. This explains why the
GAs with a constant mutation rate often are also convergent in
practical applications.

It is worthwhile to note the condition “ ” listed in The-
orems 4.1–4.3. In our developed methodology of convergence
analysis, this condition seems crucial and necessary. Note that
it is a long-standing problem how the involved genetic parame-
ters (like population size , encoding length , crossover rate

, mutation rate , etc.) are reasonably set in a GA so as to
yield optimal performance. Although the present research is by
no means tackling this difficult problem, the condition “ ”
found in this paper can, however, shed some light on the final
solution of this problem.

D. Evolution Strategies

We now consider the applications of the general theories de-
veloped in this paper to evolution strategies (ESs).

As a typical example, let us consider the -ESs, which
consist of a selection operator and an evolution operator. The
initial population contains individuals. To generate the next
population, the best individuals are first chosen from
these individuals, and each chosen individual will create
offspring. The resultant offspring consist of the
selected population . The next population is then
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generated from by adding to each selected individual a
random perturbation, say, as in [30] and [31]

where is the normal distribution or, as in [19]

(18)

where is a uniform distribution on , is the
uniform distribution on and are adjustable
parameters.

Example 4.9 ( -ES Selection):The -ES has a se-
lection pressure , a selection intensity ,
and a uniform selection intensity .

Proof: Let and
(without loss of generality, we assume that is the fittest).
Then, by the definition, , and it gets copies. All
of these copies are clearly the fittest individuals in . This
implies that

This means that and . It is noted
that, if must contain at least

elements. So since
. Thus, follows.

Evolution strategies are known to work on a continuous fea-
sible region (as usual, a bounded subset of), so they are
mainly used on optimization problems of continuous functions.
To apply our theory to this case, we need to discretilize the con-
tinuous region and, instead of yielding exact solutions, we
consider convergence of the algorithm to any-approximate so-
lutions. Thus, we first introduce the following definition.

Definition 4.1: A subset of the form
(where is real number and is

an integer) is called a cell with mesh. set of cells
is said to be an -covering of if

1) if
2)
3) any has a uniform mesh.

Given an -covering of , the intersection set

there is such that

is called an -discretization of .
Our purpose is to analyze how -ES evolves from one

cell in into another cell, and if it eventually stabilizes into
the cell containing an optimal solution of the problem (1). To
simplify the exposition, we assume that the fitness function has
a unique global maximum. Under the assumption, the optimal
set is a cell in ; hence, without any loss of generality, we can
only consider the satisfactory set, which is identical to a cell
in . However, the following propositions hold for any fitness
function. We will give the full proof in another paper.

Example 4.10 ( -ES Evolution Operator):Let
be the componentwise defined -ES evolution operator

and define

(19)

(20)

If , then the evolution aggregating rate and the scat-
tering rate of , respectively, satisfy the following estimations:

Proof: For a satisfactory set , to evaluate

, we can let and
. Then, in this case

This implies that . If, in this case, con-
tains individuals in and other individuals are
outside (that is, ), then each individual out-
side remains unchanged with the probability less than .
Consequently, we find

where we have used the assumption to deduce the
last inequality. This justifies Example 4.10.

Applying Theorem 3.1 and Examples 4.9 and 4.10, we can
directly get the convergence of -ESs. Assume that the

-ESs employ the time-dependent evolution operatorat
time . Correspondingly, the probability boundsand can
be defined as in (19) and (20).

Theorem 4.4:Assume that the AEA is specialized by the
-ESs. Then the AEA is quasi-convergent to an-approx-

imate solution of (1) if

a)
b) .
The proof of Theorem 4.4 follows directly from Theorem 3.1

and, therefore, is omitted.
Theorem 4.4 can be applied to derive the convergence of var-

ious specific -ESs. As an illustration, let us consider the
-ESs, where the time-dependent evolution operators

are defined as in (15).
Corollary 4.2: For the -ES specified in (15), it will be

quasi-convergent to an-approximation solution of (1) if

1)
2)
3) with some .

Proof: We need to compute the probability boundsand
defined by (19) and (20) [with specified as in (18)]. To

this end, we take to
be the discretization of , where is assumed to
be an integer [i.e., ] and denotes the integer set.
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For any two disjoint cells from the def-
inition (15), we calculate as shown in (21). Assumptions a)–c)
imply . We can assume

without loss of generality. From (18),
this then yields

inf

if

otherwise
(22)

and

sup

if

otherwise.
(23)

Since is fixed and (19) and (20) imply
that there is a such that, as long as

and

By the assumptions, it then follows that

and

(note that ). Thus, conditions a)–b) of Theorem
4.4 are satisfied; consequently, the conclusion of Corollary 4.2
follows from Theorem 4.4.

Remark 4.3:Rudolph [19], [20] has proved the convergence
of the -ESs for a class of convex fitness functions. Corol-
lary 4.2 here provides a significant extension of these results in
the sense that the convergence now has been proved for every
fitness function. In addition, it should be observed that Theorem
4.4 can also be applied directly to study convergence of other
specific -ESs (say, those defined in [31] and [30]). This is
omitted because of the limitation of length of the paper.

We have verified the quasi-convergence of the -ESs via
discretization approximation of. This makes it direct and easy
to follow the same argument as that in the analysis of GAs. How-
ever, this discretization procedure is by no means imperative
for application of the developed theories to the -ESs. The
quasi-convergence of the -ESs can actually be deduced
by applying the theories without such discretization procedure
but with some more sophisticated mathematical estimations.

V. CONCLUSION

We have proposed an axiomatic model of simulated evolu-
tionary computation to unify various known evolutionary algo-
rithms like GAs, ESs, and EP. With the new model, a novel con-
vergence analysis and convergence rate estimation methodology
is developed, which is not based on the usual ergodicity anal-
ysis, and could be regarded as a nonergodicity approach. The
effectiveness and usefulness of the new model and the method-
ology are demonstrated through establishment of a generic con-
vergence theory of the model and successful applications of the
theory to various concrete GAs and ESs.

The main thread of the introduced axiomatic model is to cast
the complicated evolution procedure from one generation to an-
other generation as a composition of two independent operators:
the selection, and the evolution operators. Each of these opera-
tors models an independent mechanism of evolution at a level
of abstraction. The selection operator simulates natural selec-
tion and the evolution operator mimics the reproduction of the
natural populations. The main benefit of such an abstraction is
that with this, most of the currently known GAs, ESs, and EP
can be unified and expressed as a stochastic process composed
of the two operators, with each taking a specific form, which
then makes it possible to develop a unified theory of the various
evolutionary algorithms. Moreover, there is no complex inter-
action between the evolutionary operators, unlike that in many
analyses on some specific evolutionary algorithms, which also
makes it easier to conduct a precise and detailed analysis of the
algorithms.

With the proposed model, an evolutionary algorithm differs
from another only in the selection and evolution operators in-
volved. This provides a mathematical basis for unifying the field
of evolutionary computation. We have introduced the related
characteristic parameters of the selection and evolution oper-
ators—selection pressure, selection intensity, evolution aggre-
gating rate, evolution scattering rate, and evolution stability rate,
which quantitatively measure their functions and properties. In
terms of these introduced characteristic parameters, several gen-
eral convergence (or quasi-convergence) conditions are formu-
lated, and the corresponding convergence speeds are estimated.

if

if

otherwise

(21)
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The current approach is based on a direct and precise analysis of
the evolutionary operators, but not on the ergodicity analysis of
the algorithms as is commonly adopted in the literature. There-
fore, the major advantage of this approach is that the theories so
deduced are not only of generality (particularly, they are valid
for the “nonelitist” type and the “time-dependent” evolutionary
algorithms), but also very convenient to specify for any concrete
algorithms (which only needs to calculate the related charac-
teristic parameters of the selection and evolution operators). A
large set of specification examples in GAs and ESs presented in
Section IV has justified this advantage.

There exist many opportunities of further research. For in-
stance, we have the following.

• To refine the established theories for specific types of fit-
ness functions. The convergence results we have devel-
oped are all based on the worst case analysis, and for all
fitness functions. This makes the results very general, but
on the other hand, these general results have not explored
thoroughly and characterized completely the performance
of SEAs for certain specific types of fitness functions (e.g.,
the nondeceptive functions, convex functions, etc.). It is of
significance to further refine the application of Theorems
3.1 and 3.2 to such specific types of fitness functions.

• To abstract more general mechanism of selection and evo-
lution operators and to integrate them into a more universal
evolution computational model. Particularly, it should be
observed that the introduced AEA model in the present
paper requires essentially a certain kind of full connec-
tivity (i.e., the evolution should, with a positive proba-
bility, carry each individual to every state of the feasible
region). This is an implicit limitation of the present devel-
oped theory. How this implicit limitation can be resolved
or relaxed deserves further investigation.

• To apply the developed AEA model in the prediction of
the convergence of SEAs with noisy fitness evaluation.
In most challanging and practical cases, SEAs are always
implemented in a noisy environment (in particular, with
noisy or inexact fitness evaluation). An elitist-type SEA in
a noisy environment may report an incorrect maximum fit-
ness if it happens that a fitness value that is extremely dis-
torted by noise is assigned to some individuals. Similarly,
the known theories based on an ergodicity analysis of SEA
cannot predict the convergence of an SEA in a noisy envi-
ronment correctly because they have not taken the effects
of noise into consideration. The developed AEA model
and convergence theories in this paper can, however, apply
directly to analysis of the SEAs with such noisy environ-
ment.

• To devise more efficient new SEAs based on the the-
oretical inspiration of the developed AEA framework.
The known SEA implementation schemes are almost
all based on simulation of certain natural, biological
evolution mechanism. While useful and fundamental,
such a pure biological simulation approach has been
subjected to the thorough understanding of natural evo-
lution, of which many fundamental matters still need to
be clarified. On the other hand, the proposed AEA model
in this paper is an attempt at modeling SEAs in a pure

mathematical axiomization approach, which provides not
only a unifying mathematical model of various biological
simulation-based SEA schemes, but also the possibility
of devising SEA implementation schemes beyond pure
biological simulation. It can be expected, in particular,
that some more efficient new SEA schemes can be
developed through constructing more promising selection
and evolution operators (at least in a mathematical sense)
based on the developed axiomization framework.
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