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Abstract—There have been various algorithms designed forsim-  The most fundamental theoretical issue related to the research
ulating natural evolution. This paper proposes a new simulated and applications of SEAs is convergence, i.e., whether or not a
evolutionary computation model called the abstract evolutionary given implementation scheme of the SEAs will converge to the

algorithm (AEA), which unifies most of the currently known evo- lobal optimal soluti d how fast it will Thisi
lutionary algorithms and describes the evolution as an abstract sto- global optimal solution, and howtast it wilfconverge. Thisissue

chastic process composed of two fundamental operators: selectionhas been studied recently [2], [17], [19], [25] for several specific
and evolution operators. By axiomatically characterizing the prop- types of SEAs (such as GAs with elitist selection and ESs with

erties of the fundamental selection and evolution operators, several specific objective functions). The purpose of the present paper
general convergence theorems and convergence rate estimationgg 1 extend these results and to establish a more general conver-

for the AEA are established. The established theorems are applied . g
to a series of known evolutionary algorithms, directly yielding new gence theory of SEAs by developing a new unified SEA model.

convergence conditions and convergence rate estimations of var- Such astudy is motivated by the following observations. First,
ious specific genetic algorithms and evolutionary strategies. The the currently known SEAs such as GAs, EP, and ESs can all be
present work provides a significant step toward the establishment explained as global population-based random search algorithms
of a unified theory of simulated evolutionary computation. with several features in common: 1) all aim to maximize fitness
Index Terms—Aggregating and scattering rate, evolutionary of individual; 2) they yield population sequences whose elitist
strategy, genetic algorithm, selection intensity, selection pressure, or average fitness is monotonically improved; and 3) they are
stochastic process. based on the same principle of natural evolution—applying a
“strive for survival” selection process and using “evolutionary”
|. INTRODUCTION operators. These common features make it direct and possible to
bstract a more general unified SEA model. Second, the conver-
ence of SEAs should be a natural consequence of implemen-
tion of “survival of the fittest.” This already has been justified
some special cases of GAs, EP, and ESs (e.g., [15], [23]).
identifying the core reason why these special implementa-
n schemes converge, we expect to be able to find the intrinsic

o . ) . L echanism (general conditions) of the evolution that implies
maintain a populatlon qf potential squtpns (individuals onvergence of a general SEA. The present work seeks to char-
through. repe_atgq apphcau_on of some . evolq'uonary opgratorg,cterize such general conditions of convergence for a general
They yield individuals with suc_cesswely _|mproved f'tnes_sSEA, in terms of involved selection and evolution operators.
anq CcOonverge, hopefully, to the fittest individuals repre_sentmg.l.here have been several approaches to conduct convergence
optimum solutions. As such, SEAS can be absiractly viewed ﬁalyzes of SEAs. These include the simulated annealing-like

general-purpose optimization solvers for “fitness” funCtion%SA-like) approach, the Vose—Liepins model, and the stochastic
although they were originally developed for different purpos odel approach ' '

(e.g., [1l, [7]. and [10]) and are now appllied in_different n the SA-like approach, an SEA is treated as an instance of
areas. They all have been successfully applied to solve glo

NP . standard simulated annealing (SA) algorithm via viewing a
optlm_lzanon_ problems re"?‘ted t_o some concrete mUIt'mOd%lertain parameter of the SEA tmmperatureand convergence
nondifierentiable, or combinatarial unctions. of the SEA is then deduced from a direct extrapolation of the
existing convergence theory of SAs [2]-[4], [9]. This approach
, , _ _offers an important insight into SEAs in the sense that these
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results are not only based on the strong ergodicity of the Gify,[19] and [20], which is valid for both elitist-type and noneli-
but also on the assumption that, for each fixed ré&genpera- tist-type ESs.
ture), the evolution of GA is an infinite stochastic process. The From the above brief exposition, we can conclude that almost
latter assumption is clearly far from practical in modeling angll existing convergence results of SEAs are actually validated
real implementations of GAs. only for their “elitist” versions and are based on ergodicity anal-
The approach based on the Vose—Liepins model is to cysts of the algorithms. However, we remark that the convergence
an SEA (particularly, a GA), a stochastic process, as a detefthe elitist version of an SEA by no means implies the conver-
ministic (i.e., nonstochastic) dynamical system (more precisefjgnce of the SEA itself since elitist selection is only a recording
a successive approximation iterative process determined bgteategy for search results of the algorithm, which has nothing
deterministic nonlinear mapping), then to make a correspde-do with the simulating evolution process. So the convergence
dence between the convergence of the SEA and the convergegfgge of a general SEA is still open (except for Miller [15],
of the system to the equilibrium set (i.e., the fixed points dduzuki[25], and Peck and Dhawan [17]). Furthermore, it should
the nonlinear mapping). Such an approach was developedtgynoted that, although convergent, the elitist-type SEA does not
Vose and Liepins [27], and then extended and applied in [12Jlways deserve recommendation in use. Salomon [21] noted that
[29], and [16]. The most attractive feature of this approach fgom a computational point of view, elitist selection, which is not
that the model used to cast the SEA is exact and determ#nlocal operator, requires global communication in each genera-
istic, so many functional and numerical analysis tools can ien. This requires at least(ln V) additional operations. This
applied directly. The difficulty is, however, that the precise exadditional runtime factor can cause low performance of algo-
pression of the related nonlinear mapping can only be obtaingthms in distributed and parallel systems without global com-
for very few cases (e.g., a binary GA with proportional sele¢nunication or without a central processing unit. Thus, the study
tion); even in these cases, it is not clear how the fixed-point gt convergence of the nonelitist-type SEAs is important both
of the mapping is related to the global optimum that we haf&m the viewpoint of theoretical significance and from the per-
expected to look for. Thus, the approach may not be appliedspective of parallel computation.
analysis of the GAs, for instance, when the encoding is real orThis paper focuses on the study of convergence for general
the selection operator is nonproportional. Even though conveenelitist-type SEAs using a completely new approach. The
gence of an SEA is concluded from this approach, it is still opgmain points behind this approach include the following.
whether or not the algorithm converges to the expected global « Any general evolution process is modeled as an abstract
optimum. It is noted also that most existing analyzes based on stochastic process that is deduced from two fundamental
the Vose—Liepins model, have an assumed infinite population  stochastic operators—selection and evolution operators.
size [27], [12], [29]. An analysis based on the Vose—Liepins « Through identifying key components of the existing
model, but for finite population GAs, was developed by Nixand ~ SEAs, the two fundamental stochastic operators are
Vose [16]. They obtained, in particular, the upper bound on the  modeled axiomatically and the functions of the operators
number of iterations for several special implementation schemes are characterized quantitatively, more precisely, through
of a GAto traverse all states of the search space at a certain level specifying a set of six parameters describing notions
of confidence. The result derived was still based on ergodicity  such as selection pressure, selection intensities, evolution
analysis of the considered algorithms. stability rate, evolution aggregating rate, and evolution
The stochastic model analysis perhaps is the most natural and scattering rate.
widely used approach for convergence analysis of SEAs [4], [5], « Based on mathematical estimations on the probability of
[11], [18]-[20], [25]. Owing to the fact that most existing SEAs the population containing the global optimum (in terms
can be modeled as Markov chains in a very natural way, this ap- of the parameters mentioned above), the convergence and
proach can be applied to SEAs with any finite population based convergence rate for general SEAs are treated simultane-
on any kind of selection mechanism and evolution operators. ously.
The most difficult issue, however, is that it is impossible or at The proposed approach is not based on ergodicity analysis
least impractical in general to formulate the details of the ref the related algorithms and, therefore, could be regarded as a
lated transition probability matrix and, therefore, analyzing tHaonergodicity-based” one. By this approach, we can develop
properties of the matrix is difficult. Almost all existing Markovan abstract general SEA model (called an abstract evolutionary
chain analysis results are deduced based on the ergodicity aalgerithm—AEA), which unifies most of the currently known
ysis of the corresponding algorithms. Therefore, convergens&As. Also, we establish a unified convergence theory of the
is directly derived for those algorithms with an elitist selectiononelitist versions of various existing implementation schemes
strategy. For instances, Rudolph [18] proved that the canonicalSEAS.
GAs (CGAs) cannot converge to the global optimum if the mu- The paper is organized as follows. In Section Il, we develop
tation rate is not zero, but any CGA with elitist selection corthe generalized SEA model—AEA—through describing the
verges. These results were later extended by Suzuki [25] fandamental stochastic operators and quantitatively charac-
CGAs with a modified elitist strategy. Within an appropriate stderizing their functions axiomatically. Two types of useful
chastic process framework, models other than the Markov chaimnvergence definitions of SEAs are then introduced. Based
approach for an SEA are also discussed. Rudolph applied threthe introduced abstract SEA model, several general con-
theory of supermartingales to ESs, and obtained a rather geargence theorems and convergence rate estimations are
eral convergence criterion for a class of convex fithess functioastablished in Section lIll. In Section IV, a series of examples
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of selection and evolution operators are provided that show,strategy and decides the sites of the next population based only
particular, how the related parameters like selection pressorethe current population sites. For an effective SEA, the selec-
and evolution aggregating rate can be specified precisely. Yitn and evolution operators are both designed to improve the
also apply the established general convergence theoremditteess of populations generation by generation for all types of
various known SEAs, showing the utility of the proposefitness functions. Inspired by this observation, we will model

approach. The paper is then concluded in Section V. the general SEA as a stochastic process deduced from the two
independent stochastic operators: the abstract selection and evo-
Il. THE ABSTRACT EVOLUTIONARY ALGORITHM lution operators, which are detailed, respectively, as follows.

This section presents an abstract model of the simulat cf‘lefm 2]% '(Select|on Operator):A StOChaS.t'C function
r‘g/‘: Q8 — QY is an abstract selection operator if

evolutionary algorithm (SEA), called the abstract evolutional .
algorithm (AEA). We first explain the optimization problem 1) S(X) C X forany X e Qv )
studied in Section IIl-A. Then, in Section 1I-B, we formulate 2) there is a positive constapisuch that for eactk’ € on
the axioms of the fundamental evolutionary operators and with | Xp| <N
the abstract evolutionary algorithm (AEA). A set of related
characteristic parameters of the fundamental evolutionary P_S(X? 1S(X)ml > p+[Xul) # 0;
operators that characterizes their functions quantitatively is3) for any fixedp > 0
also introduced here. In Section II-C, two kinds of global - .
convergence definitions that will be used later are presented. Ps(X; [S(X)m] > p)

> inf{Ps(X; [S(X)m| > p); | Xn| =1}

A. Optimization Problem

whereM = max{g(z); z € X}, Yy ={z €Y; g(x) = M}

for eachY € @Y, |Y| denotes the cardinality of the ¥t and
max{g(z); « € Q} 1) P[] i_s the probability _

' Axiom 2.1 characterizes three fundamental features of the ab-
whereg: 2 — R is the fitness function anf is the feasible stract selection operator: 1) selection must be carried out within
region. Without loss of generality, assume théat) > 0 for the current population; 2) selection should, with a positive prob-
anyz € Q and{Q is a discrete space. ability, increase the number of higher fitness individuals when-

The aim is to find the global optimum gfor, more precisely, ever the current population is not degenerate (i.e., consisting of
to find suchz* € Q such thatg(z*) = max{g(x);z € Q}. individuals of equal fitness); and 3) the more the fittest individ-
Such a task is difficult or even impossible in general. Thereforeals exist in the current population, the greater the number of
instead ofs*, we will focus on finding a satisfactory solution ofincreased fittest individuals in the selected population.
the problem (1). Axiom 2.2 (Evolution Operator)A stochastic function

Definition 2.1: A nonempty subseB ¢ Qs called a satis- E: QY — QY is an abstract evolution operator if, for each
factory set of the problem (1) if(a) > g(b) foranya € Band X € QY andB € T

b € Q\B. The collection of all satisfactory sets of (1) is denoted a) Pe(X; E(X)N B # ¢) # 0 wheneverX N B = ¢;

Consider the optimization problem

by 7. _ _ b) Pe(X; E(X)N B = ¢) # 1 whenevetX N B # ¢,
A satisfactory seB is clearly such a subset 6f whose ele- furthermore E is an abstract strong evolution operator if
ments have higher fithess than any others outSidEhe present E additionally satisfies

paper derives the conditions under which an SEA can converge) Pp(X; |E(X)NB| > |X N BJ|) #0.
to a satisfactory set. It is evident that a satisfactoryfsét the Property a) in Axiom 2.2 shows that the evolution is capable
global optimum set if and only i(a) = g(b) foranya, b € B.  of reaching any satisfactory set from anywher&it, whereas
Furthermore, an algorithm that converges to any satisfactajyshows that, once a satisfactory set is reached (by the current
sets must be convergent to the optimum set. search), then the evolution should, with probability 1, prevent
, ) the individuals of the population from escaping it totally. c) in-
B. The Axiomatic Model of SEA: AEA dicates that ifZ is a strong evolution operator, then it can surely
For simplicity, we treat each element Qfas an individual. increase the probability of a population to meet any fixed satis-
Thus £ is the individual space of SEA, astl" is the population factory set.
space whenever the population sizeNs For any stochastic  Fogel [8] noted that all evolutionary optimization algorithms
operator?” and two populationst andY’, we usePr(X;Y) can be described as a series of operators applied to a popula-
to denote the probability df (X) beingY". tion of candidate solutions. Particularly, in terms of the above-
To formulate SEAs axiomatically, we observe that for almosttroduced selection and evolution operators, an abstract SEA
all known SEAs, the algorithm’s mechanism of generating threodel—abstract evolution algorithm (AEA)—can then be de-
next population can be abstracted as two independent profieed as follows.
dures that can be represented by two operators: selection andxiom 2.3 (AEA): An AEA is a stochastic process, deduced
evolution. The selection operator works on the fitness value obm a sequence of abstract selection operaf6i¢); ¢ > 1}
individuals in the current population, and assigns the proba- _ _ , .
. . R . Here and in what follows, the notatidfs(_X; A) denotes the probability
bility of survival for each individual. Then, the evolution op-y-

) ) _ e Ps(X;Y), whered is an event. Whenever no confusion is caused, we
erator, independent of the fitness function, manages the seatieboften omit the subscrigt in Ps(X; A).
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and evolution operator§E(¢); ¢ > 1}, whose population at develop a unified convergence theory for SEAs, but also that

time ¢ is defined by they offer a unified quantitative criterion for fairly comparing
existing (different) SEAs. We will present a series of concrete
X® = E@) o S(t) (X(t_l)) examples to illustrate this point in Section IV.

whereX () is the initial population randomly chosen framd¥. C. Convergence Definitions

We will show in Section IV that almost all known SEAs are \ve will study two types of global convergence of AEA. The
concrete examples of the AEA introduced here. definitions are given as follows.
To analyze such an axiomatically defined AEA, we need 10 pefinition 2.4: An AEA is said to be quasi-convergent if
introduce the related characteristic parameters of the selectigR, __ P[x®) B +# ¢| = 1 for each satisfactory sét € 7 .
and evolution operators. . The AEA is said to be convergentliin, .., P[X) ¢ B] =1
Definition 2.2 (Selection Pressure and Selection Intensjy; each satisfactory sé@ € 7.
ties): Let .5 be an abstract selection operator; the selectionpy this definition, an AEA is quasi-convergent if and only if
pressure Ps, the selection intensityls, and the uniform yith probability 1 its population eventually intersects each sat-
selection intensity/s of S are positive real numbers such thatisfactory set. That is, the probability of a global maximum ap-
_ n ) ) pearing in the population will tend to 1. By comparison, an AEA
Ps =sup{p € BT P(X; [S(X)m| 2 p+1) # 0; being convergent means that its population will be included in

| Xm| =1} any satisfactory setin the end, so that the population must evolve
Is =inf{P(X; |S(X)m| = Ps + 1); | Xu| =1} gradually to be the degenerate one consisting of only global
Us = inf{P(X; [S(X)n| > |1 Xm]); | X 0| < N} maximum. A convergent AEA is naturally quasi-convergent, but

the reverse is not true in general.

The selection pressure provides a quantitative measure of th@here are other convergence notions used in litera-
maximal capability ofS in increasing the number of the fittestture. For instance,almost sure convergenc¢l9] reads
individual (note that for fair comparison purposes, we have a@s follows. An AEA is almost surely convergent if
sumed X ;| = 1, which is obviously necessary). The selectiod’[lim; .. d(OPT,X®) = 0] = 1, whereOPT is the
intensity provides a measure of the smallest probabilitys of optimal solution of (1) andi(:, -) is the Hausdorff distance
maintaining the selection pressure. Likewise, the uniform sef sets onR". This convergence notion is slightly stronger
lection intensity measures the infimum probability $funi- than ours in the general case, but in the situations that either
formly increasing the number of the best individuals for an§ is discrete oy and$2 both are continuous, it can be shown
nondegenerate populations (that is, any populaliosuch that that this notion is equivalent to ours. For other convergence

| Xar| < NV). definitions, see [17].
Definition 2.3 (Aggregating Rate, Scattering Rate, and Sta-
bility Rate): Let E be an abstract evolution operator; the ag- Ill. GLoBAL CONVERGENCE FORAEAS

gregating ratedg and the scattering ratez of E are positive

This section presents a detailed convergence analysis of AEA.
real numbers such that

We will particularly formulate general convergence conditions,
Ap=inf{P(X; EX)NB#¢); XNB=¢, BeT) and pr_ovide convergence sp(_eed estimations of AEA in_ terms
) of the introduced characteristic parameters of the selection and
S’ =sup{P(X; E(X)NB=¢); |XNB|zr, BET}.  gyolution operators. The specifications of the results will be pre-
Moreover, if E is an abstract strong evolution operator, its Stg_ented in the next section. . .
bility rate ,STE is defined by ’ Let X® denote the population generated by AEA at titme
through application of the selection operafigt) and evolution
STy = inf{P(X; |E(X)N B| > |X N B); operatorE_(t) a_lccord_ing to Axiom 2._3. The sele(_:tion pressure,
YeoV Be g the selection intensity, ar_ld the uniform selection mten_sny of
’ ' S(t) are denoted, respectively, By, I;, andU;. The evolution
The parametersi . Sg), and ST, defined above provide aggr_egating rate, the evolution scattering rate,(gnd the evolution
quantitative measures of global capability Bffrom the as- Stability rate of £(¢) are then denoted by, S;"", and ST,
pects, respectively, specified by a)—c) of Axiom 2.2. In parti¢€SPectively.
ular, Az measures the exploitation (convergence) capability xf
FE in searching and aggregating to a fixed satisfactory%%i, '
measures the exp|orati0n Capabi"ty (diversity)_@fforcing a We first characterize the quasi—convergence conditions of
population to leave a satisfactory set and scattering it arouddEA. We need the following lemma.
andSTxthen measures the stability degreebpreserving the ~ Lemma 3.1:Let {py; k > 0}, {ax; k& > 0}, and{bx; k >

Quasi-Convergence

satisfactory individuals found. 0} be three nonnegative real sequences such that:
The significance of introducing the parameters a) foreacht > 0, ax, bx, px € (0, 1) andpr+1 < ar+ by -
{Ps, Is, Uy, Ap, S%,, STr} is not only that they provide D

quantitative characterizations of the fundamental selectionb) limy_.oo(ax/1 —0bx) =0
and evolution operators of AEA, which makes it possible to ¢) Y77 (1 — by) = .
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Then,lim; .., pr = 0. Furthermorep,, < ¢ for everyn > . P [X(t) NB # (/)}
R+ T whereR andT are integers such thil;— » by, < ¢/2
and(ay /1 — by) < €/2 for everyk > R. +P (X(t) NB=¢; X"tnB= </>) ‘Do
Proof: Sincelimy—... (ax/1 — bx) = 0, for anye > 0,
there exists an integdt such that, whenevér > K, Consequently
ak<6-(1—bk). pé"’lgP(X(t)ﬂB;é(/), X(H'l)ﬂB:(/))

Therefore, from condition a), we have " (X(t) NB=¢ XD AR = d)) 2 ()
(Pr+1—€) — b - (pr — €)

= prg1 — by pr — € (1= by) LetY = S(t + 1)(X®). Then, by Axiom 2.1y ¢ X®,
and hencdY € QN; Y = St + 1)(X®), XU NB = ¢} C
{Y € Q%; Y N B = ¢}. It then follows from the definition of
evolution aggregating rate (Definition 2.3) that

< pry1 — by - pr — ax
<0.

That is

P (X(t) NB=¢; XD B= ¢)

- e<by(po—e).
Prtt =€ S b (pr =€) =P (Y=5(t+1)(x"). X NB=¢

This implies that, for any, > K,
E(t+1)(Y)nB = ¢)

pe<er [ T[0) tr -0 < sup{P(Y; E(t + D(Y) N B = ¢);
} X'NB=4,Y =8t +1)(X")}

Note that condition c) implie§[,~; bx = 0, which shows that = Sup{P(Y’ Et+DY)NB=¢); Y NB =4}
lim,, o0 H;:i b, = 0 and, hencdim sup,,_, . pr < €. Ascis =1-inf{PY; E¢+ DY )NB#¢); Y NB =g}
arbitrary andp, > 0, therefordimy ... pr = 0. =1—-A4;4. 4)
If (ax/1 — by) < ¢/2 for everyk > Rand[[ntr by < ¢/2, B
replacing K ande¢ in the preceding inequality by ande/2, Also, let M = max{g(z); x € xX®3 andB = {z €
respectively, we have, < f/2+(H?=_é b)-(pr—e¢/2) < ¢/2+ DB; g(z) = M}. Then, according to the Bayesian formula, we
?:_}% b;. It follows from&; < 1thatp,, < €/2 + HE%T b < ¢ have

=K

whenevem > R + t. This finishes the proof. O (1) (41
By making use of the above lemma, we now can prove the r (‘X NB#¢ X nBg= (7))
following basic theorem. _ = (t) .
. . . =P(lYNB|Z2m+1, X*¥NB ;
Theorem 3.1 (Quasi-convergencedn AEA is quasi-con- (| [zm i
vergent if it satisfies the following conditions: X+ N B = (/))
1) there is ann > 0 such that?, > m for eacht > 0 ) _
2) 1iInt4)O<>(1_It'(l_St(nl—i—l)))/At:0 P(X N B # ¢; |YﬂB|2m+1)
3) Yt A = o _ +P (Y NBl<m, XONB#¢;
In this case, for any > 0, the AEA obeys the following con-
vergence speed estimation: XHVnB= </>)
® _ P(XONB#¢ Y NB| <
PIXWNB£¢|>1—c¢ ; =m
. B ® .
for anyt > R + T, where R, T’ are integers such that =P (|YﬂB| zm+1, XVNB# ¢
1574, < ¢/2and(1—1,- (1S4, < ¢/2 X+ A :¢)
whenevert > R.
Proof: For any fixed satisfactory se&, let p! denote the .P (X“) NB#¢; [YNDB|>m+ 1)
probability at which there areindividuals in the intersection of , o
X and B, that is +P(XONB£y Y NBI<m).
pi="r HX“) N B‘ = L:| ) (2) SinceY ¢ X® andB ¢ B, the conditionY N B| > m + 1
implies X® N B # ¢. From the definition of the evolution
Clearly, it suffices to show thaf;, — 0 ast — oc. scattering rate of(¢ + 1), we have

By Bayesian formula, we first can express

P(|Ym§| >m41, XOAB £ ¢ XD mB:¢)
<sup{P(Y; Et+1)(Y)NB=¢); |YNB|>m+ 1}

=P (X(t) N B # ¢; Xt A B = ¢) _ St(rn-l—l)' (6)

P =P X*V 0B =g
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Moreover, from the definitions B and conditional probability, its evolution aggregating rate may be very small (even asymp-

we have toctically tending to zero), but should not be too small or tend
® _ to zero too fast; and b) then shows that, once the selection in-
P (X NB#¢; Y NB[>2m+ 1) tensity is near one (which is the case in most applications), the
_ ® ) ) scattering rate should be a higher order infinitesimal of the ag-
=P (X nB# ¢ (S(t +1) (X ))J\l‘ 2 m+ 1) gregating rate. Properties b) and c) provide us with a quantitative
- Z P(Z; |(SE+1)(Z)) | > m+1) strategy for balancing the exploration/exploitation dilemma that
|Za|> 1, ZO B B exists in SEAs. All of these explanations reveal that conditions
MIZL; .
P ) 7] a)—c) are indeed very natural.
'p [X® N B #¢] ™ 8. Convergence

Now, we further show when a quasi-convergent AEA be-
comes convergent.
) ) Bl > Theorem 3.2 (ConvergenceA quasi-convergent AEA
P (X NB#¢ [V 0Bl 2m+ 1) is convergent if, for eachh > 1, F(¢) is an abstract strong
> inf{P(Z; (St + )(Z))m| > m+1); evolution operator antm,_.., U; - ST, = 1. In this case, for
|Zy| > 1, ZN B # ¢} any satisfactory se®, the convergent speed can be estimated as

> inf{P(Z; [(S(t+ 1)(Z))m| =2 m+1); [Zm] 2 1} (8)

which implies

PX® c B|

because of the fact that N
P[X® = 7] ><IIS@LQ-Pp®mB¢ﬂ.
=1 =
Z P [X(t) N B ?é (/)] s=t+1

ZNB#¢
) ) ) Proof: As in the proof of Theorem 3.1, we let
By using Axiom 2.1c), the definitions of selection pressure and — p[|x® n B| = 4] for any satisfactory seB € 7.

selection intensity (Definition 2.2) and the assumption a), thé is observed first that the quasi-convergence of the AEA

above inequality then further shows implies thatlim, .., P[X® N B # ¢] = 1 and, therefore,
P (X(t) NB#£¢; |[YNB|>m+ 1) lim;—oo pj = 0. We now proceed by showing that for any
. l=1,2, ---, N, the following equality holds:
> inf{P(Z; [(S(t + 1)(Z))m| 2 m + 1); | Zp] = 1} N
> inf{P(Z; |(S(t+1)(2)m| > (Prpr + 1)); [Zm] > 1} Jim D pf =1 (12)
= Iy 9) =t

. , L ) ‘which then yields the convergence of the AEA. Eq\uation 9)is
Bringing (6) and the foregoing estimation (9) into (5), we Obta'ﬂivially true for I = 1 sincelim; .. pf, = 0 andZLO Pl =

T

1. If we suppose that (9) holds for any integer upito- 0,

r(t) R r(t—l—l) o
o (‘X NB#¢; X nb= ¢) then, by the definitions of the uniform selection intensity and

< Sfil;rl) .p (X(t) AB#¢; |V NB|>m+ 1) the ﬁvolution stability rate, we find
+I{X®m3¢¢mYmEgnQ > ot
i=l+1
_1_ (t) . I r
=1 P(X mB¢¢4Ymman4) zP‘XW”ﬂﬂzl+@
. (1 _ S(rn,—l—l)) c
t+1 > p XW”mﬂza+n‘X®mﬂzq
that is P [ x® mB‘ > l}
P(X(t) N B # ¢; X(H'l)ﬂB:(/)) N
m > pl|xt+n ‘> Hw ‘> :
<1l (1-83). (10) _PJX’ nBl>u+1||x®nB _42;@
Combining the estimations (4) and (10) with (3) yields and
P[XW”mﬂza+n‘X@mﬂzq

t+1 (m+1) t
po 1=l @ Ser )+“ Avia)-po- (D) zfﬂm@+nwyUﬂszBmYmmzz+L
By applying Lemma 3.1 to the above estimation (11), it then fol- x® Al >
lows thaflim,_. .., p§, = 0, and the convergence speed estimation ‘ n ‘ = }
is established. This completes the proof of The_:orem 3.10 P [|Y nB|> ‘X(t) A B‘ ‘ ‘X(t) A B‘ > l}

Remark 3.1: The quasi-convergence conditions formulated

in Theorem 3.1 are quite intuitive: a) says that for a quasi-con- = If{P[|E(t +1)(Y) N B| = [Y N BJ];
vergent AEA, its selection pressure must be positive; ¢) says that YeQV, BeT}
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-inf{P[|S(t+ 1)(X) N B| > |XNnBJ; wherey is the fitness (or objective) function and R — RT is
XeV Be T} a gauge (namely, a strictly increasing positive function). Let
:Sﬂ+l'Ut+l o(g(x
p= maX{ UE E ;; o(g(x) < olg(y), z,y € Q} . (14
where, as beforg, = S(t + 1)(X®). This then implies 9y
N N Then the selection pressurg, the selection intensitys, and
1> Z P> STy - Ungr) sz' (13) the uniform selection intensity/s of S are as follows:
= = Ps=N-1; Is=1+(N-1)p"
By the assumptions, it then follows thatim, .. Us>(1+(N-1p~N.
SN ap™ = 1. That is, the equality (12) holds for
anyl =1, 2, ---, N as claimed. Proof: We can assume thdf{,;| = 1, andz; is the
From (9) and (10), we have unique fittest individual. Sinc&” is created fromV indepen-
. N dent random experiments, we have
PX®Y) ¢ B = p{tY
N P(|X]\4|I].; |Y]\4|2(N—1)+1)IOCA >0
> ST, -U)-P|X®NB
- 1—[ ( ) [ 7 (7)} where
s=t+1
which yieldslim, .., P[X() ¢ B] = 1 and the estimation a= M
required. This finishes the proof of Theorem 3.2. O Z o(g(z:))
Remark 3.2: Theorem 3.2 can be also explained very intu- = '

itively: since the AEA is quasi-convergent, there is at least one . o
individual in the AEA population which is in any given satis-Therefore,Ps = N — 1. Noting that (14) implies
factory setB from a sufficiently large onwards. The selection

operator gradually increases the number of these satisfactory in- o > inf f’(g(—xl))
dividuals, and the strong evolution operator then ensures that T xXcov &

these individuals become more and more stable (i.e., it becomes ‘ o(9(:)
more and more difficult for them to leave the population). As a =t 1

result, as the AEA population evolves, it must be totally con- = inf ~

tained in the satisfactory set and, hence, the convergence of the et Ny o(g(zi))
AEA follows. P o(g(z1))

IV. EXAMPLES AND APPLICATIONS

This section is devoted to specifications of the theoria%e obtainls = (1 + (N — 1)p)~". To estimate the uniform
developed in previous sections to various known SEAs. §glection intensity/s, we let|X,,| < N and assume that is
Sections IV-A and B, the characteristic parameters of variotle probability of that an individuat; in X, is selected in one
widely used selection operators and evolution operators #tgependent experiment. Then it follows that
evaluated, respectively. The evaluation results obtained are then

used in Section IV-C to derive the convergence and conver- 8= Z M (15)
gence speed estimations of genetic algorithms. In Section IV-D, 21 CX
Theorems 3.1 and 3.2 are specified to a class of evolutionary Za(g(%’))
strategies. 3=t )
. = > : (16)

A. Selection Operators X n | X | + Z o(9(y))

Assume thaX € QY is a populationX = (x1, 2, -+, zy) Y@ X at o(g(@:))
witheache; € Q (i =1, 2, ---, N) being an individual. Given

a selection operatd§: ¥ — QN we denot&” = S(X) and By Newton'’s formula, this then implies that, in téé indepen-

write Y = (y1, 42, -+, yn). ’ dent experiments, the probability of more tHah,, | individuals
Example 4.1 (Proportional Selection [14])By this selection 1" X being selected intd” is

rule, the selected populatidn is created fromV independent N

ran_dom experiments.l In thigh experimgnt, the individuat € Z Cipi(1— pYN=i > ONpN = gV,

X is selected according to the probability

=X |41
Plyi =] = % That is
a(g(y ]
yox P(|Xn| < N3 Y| > | Xu)) > BN (17)
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TABLE |
THE CHARACTERISTIC PARAMETERS OFSELECTION OPERATORS Pg: SELECTION PRESSURE [ 5 : SELECTION INTENSITY, AND U : UNIFORM SELECTION INTENSITY
Selection Operator | Pg Is Us
elitist 1 1 1
linear ranking N-1](5+%¢" > (& + o)V
nonlinear ranking | N —1 | ¢" > gV
tournament s—1 1 1
proportional N-1l(1+N=-1p) V| >0Q+(N=-1)p)"
Boltzmann 1 (1+e 7)™ (1+¢e7)2

From (11) and (13)3 attains its infimumX ;| + (N — | X | )p.  individual amongs individuals adjacent ta:; (wheres is the

Consequently, (17) implies so-called tournament size). The operator has the characteristics
N
Ps=s—-1; Is=1, Us=1.
Us 2 1>H£11\1f 1 <+> ’ ’ ’
ZnzN-1\n+( N n)p Proof: Without loss of generality, we assume thats the
_ 1 . unique fittest individual inX . Then, by the tournament selection
1+(N—-1)p rule,y1 = 21 andyny_s42 = --- = yny = 1 Since, for any

—s+1¢ (2 <i < s), thes individuals adjacent ta y_s4;
Ust containe; . Thus,P(| X | = 1; |Yu| > (s—1)+1) = 1.
atis,Ps = s — 1 andIs = 1 follow. It is obvious that
P(Xp| < N;|[Yas| > |Xn|) = 1. Sowe havd/s = 1. O

There are many different selection operators that are simi
to proportional selection in the sense that they all generate
selected populatio®” by N independent random experiment
and in each experiment, the fittest individual } is chosen Analogously, we have the following.

with a fixed positive probability. Consequently, selection pres- Example 4.5 (Elitist Selection [14])Suppose that; is the

sures and selection intensities of these selection operators ca&?& individual inX. The selection forces the fittest individual

computed n the same way as that in the above example. Soar:?%to the selected population to replace the worst individual in
results, for instance, are listed as follows.

; . : X. So its characteristic parameters are
Example 4.2 (Linear Ranking Selection [14]The selected P

populationY” is generated fron independent random exper- Ps=1; Is=1; Us=1.
iments. Suppos& = (z1, ---, zx) which is ranked so that ' '
g(z;) > g(z;) whenever < j. Then, in each experiment, is Example 4.6 (Boltzmann Selection [13]n this rule, for
selected fromX with probability eachl < i < N,y; is selected from two individuals iX, say,a
andb, which are adjacent to;. Suppose thaj(a) is more than
Plyi=ax.]=p+ (N —r)g g(b). The probability of selecting is then given by
where p, g are the adjustable parameters such that Ply; = a] = 1
((N—-1)N/2)g + Np = 1. The operator has the charac- 1+ elo®=g(@))/T
teristics whereT is a temperature parameter. LAt = min{g(a) —
1 N_1\Y g(b); g(a) > g(b), a, b € Q}. This operator has the following
Ps=N-1; Is= <N + 5 q) characteristics:
; -2 -2
1 N—-1\" Ps=1 Is= (1 + Cfm/:r))  Us= (1 n waT)) _
Us > N + Tq .

The above listed characteristic parameter evaluation results

Example 4.3 (Nonlinear Ranking Selection [14]pifferent  of the selection operators are summarized in Table I.
from the linear ranking selection, the nonlinear ranking selec-
tion selectsz, from X with probabilityg(1 — ¢)"~%). The op- B. Evolution Operators
erator then has the characteristics We first briefly review the notions of mutation, crossover, and
combination operators used in canonical GAs.

Let X = {x1, 9, ---, xn } be a population with each; =
Céff-“’ Ti, -, xir) € {0, 1} = Q. The mutationM is an

perator from2™¥ to 7, which satisfies

Ps=N-1; Is=q"; Us>q".

The subsequent examples will be other types of selection
erators: they all generate the selected populatian the way
that the individual oft” is selected (with a certain positive prob- M(X) = (M(z1), -, M(xy)), for anys € QY
ability) successively from the best one of several adjacent indi-
viduals inX. where, for a givermutation ratep,,,, ¥, = M (z;) will take its

Example 4.4 (Tournament Selection [15]hn this selection jth componeny;; = 1—x;; with probabilityp,,,, andy;; = x;;
mechanism, for each < ¢ < N, y; is selected as the fittestwith probability 1 — p,,,.
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The crossover operatdr: QY — QY is defined as follows. notice here that this value is clearly more than the probability

ForanyX € QV,Y = C(X) = {1, ---, yn} is created by that every individual inX remains unchanged under the
N independent experiments. For edcks i < IV, two parent mutation that is given by(l — p,,)“N. Consequently,
individuals, saya andb, are first randomly sampled frooY STy > (1 — p,,) Y. O

and then the probability of; being a random sample between Example 4.8 (Combination Operator)fhe combination op-

a andb equals tal — p.., wherep,. is calledcrossover rateWith  eratorE2 composed of crossover and mutation has the character-
the probabilityp., ¥; is created fronw and’ through a more istic parameters

complicated implementation such as the following.

. . LN
* One-Point Crossoverif % is a random sample from Ap=1- (1 —Pm)
{0, 1, 2, ---, N}. Then thejth component ofj; is taken Sg\W =(1-(1-p)H)N
as thejth bit of « whenj is more thark; otherwise, it is STr > (1 — pp) V(1 — po)V.

taken as thgth component ob.

* Two-Point Crossoveif £, lare tworandom samplesfrom  proof: We obtain the aggregating rate and the stability rate
{0, 1,2, .-+, N}, then thejth component of; is taken py the same arguments as that used in the mutation case. The

as the corresponding componentefvhen ; is located - scattering rates|") will be attained in the easiest case when

betweerk and/; otherwise, itis taken as the corresponding; _ {00 - .- 0"} and allN individuals of X are “00. - 0.” Let

component ob. _ a andb be two random samples froii (thereforea = b="“00
* Uniform CrossoverThe jth component ofj; isarandom . .. o Thys,c, the intermediate individual created franandb
sample from the corresponding components ahdb. under crossover, is “00 - 0” also. Consequently, the probability
The combination operatdt//, C) is the composition of the of the final individual not being “00- - 0” is the probability of
mutation M and the crossovef’. It generates a populationthe individual “00- - - 0” not preserving itself under mutation,
through two successive steps: first, an intermediate populatigfiich is given byl — (1—pm)L. Thereforeggw =(1-(1-
is created by the crossover and then, the mutatiod/ is | LyN, ’ O
applied to the intermediate population, yielding the final Remark 4.1: The precise evaluation of the evolution scat-
population. _ _ _ tering rateS\"’ (0 < r < N) of the combination operators is
Example 4.7 (Mutation Operator)If M is a mutation oper- ajsq possible, but it is extremely complicated. The presentation
ator with mutation ratg,,, < 1/2, then its evolution aggregating of sych a general scattering rate expression is, therefore, omitted
rate, the scattering rate, and the stability rate are given, respggre. Any reader interested in the expression can, however, cal-
tively, by culate it by carefully distinguishing among different crossover

AN manners (say, one-point, two-point, or uniform crossover).
Ap=1-(1-py)

v r N—r : f Typical ic Algorith
Sj(n:) =(1-(1—-pn)") (1 _ pan) C. Convergence of Typica (-Benetlc gorithms -
STe > (1 — pp)=Y. The examples presented in the last two subsections now can

be combined directly with Theorems 3.1 and 3.2 to yield conver-

(Note: by complicated calculation, we can also prove that tg&nce and convergence speed estimations of various canonical

stability rate in this case is given iy — p,, )X~ 4 (N — GAs.

Dpk (1 — pp)FN-D(1 — (1 — pp)E) Theorem 4.1:Assume that the GAs are defined by a series
Proof: By the definition, A = inf{P(X; M(X)nB # Of the proportional selectiongS(#)} (with the gauge function

$); XN B = ¢, B € T}. This infimum will be attained at o+) and the combination operatofs/(t), C(t)} (with the mu-

the most diffcult case whe® = {00 --- 0"} and each indi- tation raFepﬁ,? and the crossover rayét)). Corresponding to

vidual in X is “11--- 1.” In this case A, is equal to the proba- (11), define

bility of at least one individual11 - - - 1” becoming ‘00 - -- 0.” )
Since the probability of one individualll --- 1” becoming p, = max{L; or(g(x)) < oelg(y)), =, y € {0, I}N} :
“00 --- 0”is ply, we find Ap = 1 — (1 - pL)V. at(g(y))

To computeS,(q”) = sup{P(X; M(X)NB = ¢); [ XN I
B| > r, B € T}, welet|X n B| = r and notice that this 1) pr = o(1/t)
supremum will occur in the easiest cage= {“00 - -- 0"}, and 2) pm(t) = O(Y/1]%)
X containsr; individual(;)“oor-]-- 0" snglN —frl )indilviduals HN> L
“11---1.”Inthis caseS.’ is the probability of: 1) at least one ; ; -
bit of each individual “00 - - 0" is transformed into 1 and 2) no tgeg ?e genetic algorithms are quasi-convergent and for any
individual “11 - -- 1" is converted to 00 - - - 0.” Consequently,

Sg) < (1 — (1 — pnl)fz)tl(l - Prrh)’\’_rl. This function is ® N/(N+1)
monotonically decreasing in, wheneverp,, < 1/2. So we P [X NDB # (/)} >1-0 <¥> '
obtainsg’) = (1= (1= pn)E)(1 = pE)N—.

The stability rate of M is defined as STg = Proof: According to Examples 4.1 and 4.8, the GAs in

inf{P(X; |[M(X)NB| > |XnB|);X € QV, B € T}. this case are special AEAs, with the selection presgire=

Despite the fact that it can be computed precisely, we only — 1 and the selection intensity = (1 + (N — 1)p,) =" =
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1 — o(1/¢) for eacht > 0. We also know thatd, = 1 — (thatis, with the strategy of recording the elitist individual up to

(1 —pEYN =1-(1-01/)N = O(N/t) and St(N) — the current population and showing the convergence of the elitist
(1 — (1 —O(¥/1/t))N = O(LN¢+=(N/1)), which implies individuals) and the time-independent genetic operators, and are
that} ., A, = oo and based on ergodicity analysis. The convergence of GAs derived
in this subsection are clearly all for the “nonelitist type” and the
1 (1 7 (1 B S(N))) time-dependent genetic operators, and are based on nonergod-
Ay ¢ t icity analysis. Therefore, the results obtained provide not only
1—1, St(N) new findings on convergent conditions, but also a new method-
= 4, + ItTt ology of convergence analysis of GAs.
1 . ) For GAs composed of proportional selection and combi-
=o(1)+0 <NLA tl_m/”) — 0. nation operators, their “nonelitist’ versions are known not

to converge [18] when the operators are time independent.

According to Theorem 3.1, the algorithms are quasi-conveheorem 4.1 reveals the convergent conditions of such GAs

gent. Moreover, lefd = t&/N+1); we then have — Ijc(1 — when the time-varying genetic operators are used. As a sp(_amal
5%\")) <1 I = o(1/t)V/N+D)) andHLK(l —Aj) = case, Zhangt al.[32] showed that the global annea!mg GAis
t . AN N N/NAL convergent if the “temperaturd’ — 0 and the selection takes

Tici G = 1/0)N = (K/H)N = (1/5) D), By Theorem it f the “ten turd’; = 0 d the selection tak

3 i_the converaence speed estimatiofd follows also. [ from the “parent—children” mixed populations. Corollary 4.1

.T’h 4% E led direct h o | in this section, however, shows that if the selection is natural
eorem 4.1 can be applie rectly to the simu ateg-\at is, only from the parent population), the algorithm will

anneal!ng-llke g.ene'uc aIgonthms. For instance, the glob so be convergent provided the temperature declines as low
annealing selection introduced in [32] corresponds to the Pros o

portional selection operator with time-variable guage functio&an
oi(x) = exp[—(z/Ty)], whereT; is the annealing temperature
Such a selection operator combined with the combinati
operator defines the GA which is called the global anneali
genetic algorithm. In this case

(1/1n(#)]. This result coincides surprisingly with the
dard requirement on the declining rate of temperature in
the simulated annealing algorithms. For GAs with tournament
Liection, Miller and Goldberg [15] proved convergence of the
ncﬁgorithm, but under the assumption that each generation of
population obeys the normal distribution. This assumption is
obviously impractical. Theorem 4.3 in this section establishes
the convergence of such GAs without supposing such an
impractical condition.

In all of the convergence conditions listed in Theorems
4.1-4.3, the mutation rates are all asked to decrease in order
of O(%/1/t). When the encoding lengtii is sufficiently
large, %/1_/t ~ 1. This suggests that, in this case, the constant
Thutation rate can actually be applied. This explains why the
GAs with a constant mutation rate often are also convergent in
1\ N/ (V41 praqtical appligations. N _ _

P [X(t) NB# d)} >1-0 <<_> ) ) It is worthwhile to note the condition¥ > L” listed in The-
t orems 4.1-4.3. In our developed methodology of convergence
analysis, this condition seems crucial and necessary. Note that

Analogously to Theorem 4.1, the following convergence qf is a long-standing problem how the involved genetic parame-
GAs can be verified. ters (like population sizé&V, encoding lengti., crossover rate

Theorem 4.2: The AEA made of a series of the nonlinear Sepc, mutation ratep,,,, etc_) are reasonab|y set in a GA so as to
lection and the combination operators is quasi-convergent if: ylib|d optimal performance. Although the present research is by
¢ = 1—0(1/t), whereg, is the parameter involved in nonlinearmo means tackling this difficult problem, the conditiaN > L”
ranking selection operator at timg2) p'%’ = O( {/1/t); and found in this paper can, however, shed some light on the final
N> L. solution of this problem.

Theorem 4.3: An AEA deduced by the tournament selections
and the mutation is convergent if the mutation rate at time
satisfiespt) = O( %/1/t) and the tournament size > L.

Proof: We can prove the quasi-convergence by using aWe now consider the applications of the general theories de-
similar argument as that in Theorem 4.1. Moreover, accordingloped in this paper to evolution strategies (ESs).
to Example 4.7, the evolution stability rate of the AEA at titne  As a typical example, let us consider the A)-ESs, which
is more thar(1 —pﬁf))’/’\’ =(1-0(Y/1/t))"¥ — 1(t — o0) consist of a selection operator and an evolution operator. The
and the uniform selection rate of the AEA at tirh&s one. So, initial populationX contains\ individuals. To generate the next
by Theorem 3.2, the algorithm is convergent also. O population, the besgi(;: < A) individuals are first chosen from

Remark 4.2: As remarked in the introduction of Section | these\ individuals, and each chosen individual will creatg.
the convergence of GAs has been studied in recent years. Neffspring. The resultant - (A\/z:) = A offspring consist of the
ertheless, most of the results are established for the “elitist-typeflected populatiol” = S(X). The next populatior¥, is then

py = e~ (A/T)
with A = min{g(a) — g(b); g(a) > ¢(b), a, b € 2} and
obviously, p; = o(t~!) amounts tdl; = o(1/In(t)). Thus,
Theorem 4.1 implies the following corollary.

Corollary 4.1: If: @) T, = o(1/In(t)), b) p'¥) = O(/1/¢),
and c)N > L, then the global annealing genetic algorithm i
guasi-convergent and, moreover, for dBye 7

D. Evolution Strategies
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generated front(XX) by adding to each selected individual a (29)
random perturbation, say, as in [30] and [31] p* =sup{P(z; E(z) € A); z € B, A, Be Q,., A+ B}.
Zi =Y;+%N(0, &) (20)

If p, p* < 1/2, then the evolution aggregating rate and the scat-

whereN(0, &) is the normal distribution or, as in [19] . i . , N
tering rate of), respectively, satisfy the following estimations:

R v o o
Zi =Y +pi(Lou)+ qi(Ls ou) (18) Ap > pl(l —p“))‘fl
WhereL °u i_s a l_Jniform distribution of—L, L], L; o u is the Sg) < (p") (1 — ) (] — D).
uniform distribution of—L,, L,] andp,, ¢:, L, are adjustable
parameters. Proof: For a satisfactory sef3, to evaluateAr =
Example 4.9(u, A)-ES Selection):The(:, A)-EShasase- inf{P(X; F(X) N B # ¢;X N B = ¢ X €
lection pressuré’s = A/ — 1, a selection intensitys = 1, Q) B € 7(Q.)}, we can letX = {X,---, X,} and
and a uniform selection intensitys = 1. X, ¢B(=1,2,---, A). Then, in this case
Proof: LetX = {z1, 72, -+, zA} € @ and|Xy/| = 1
(without loss of generality, we assume thate X isthe fittest).  P[E(X) N B # ¢] > PIE(X,) € BIP[E(X;) € B; i > 2]
Then, by the definitions; € S(X), and it gets\/ copies. All > pl(1 — p)M L.
of these copies are clearly the fittest individualsSiiX ). This
implies that This implies thatd g > p!(1 — p*)*~L. If, in this case X con-
tainss (s > r) individuals in B and other\ — s individuals are
P( Xy =1 18(X)m| 2 [(A/p—1)+1]) =1. outsideB (that is,|X N B| = s > r), then each individual out-

sideB remains unchanged with the probability less thiaap!).
This means that’s = A/ — 1 andIs = 1. It is noted Consequently, we find
that, if [ Xy < A, Xy N S(X)y must contain at least
min{\, [ X/ |(A/p)} elements. SAS(X)y| > | X since S = sup{P(X; E(X)N B = ¢);
)\/LL> 1. Thus,Us = 1 follows. | |XﬂB| ZT,XEQS,BEQG}
Evolution strategies are known to work on a continuous fea- < Ol — 1) ()5 (1 — A=
sible region(} (as usual, a bounded subsetijf), so they are - ‘?Sﬁ‘m SRR D
mainly used on optimization problems of continuous functions. < (|%] = D" (p") (1 — P
To apply our theory to this case, we need to discretilize the con-
tinuous regiort2 and, instead of yielding exact solutions, wavhere we have used the assumptiinp' < 1/2 to deduce the

consider convergence of the algorithm to argpproximate so- last inequality. This justifies Example 4.10. O
lutions. Thus, we first introduce the following definition. Applying Theorem 3.1 and Examples 4.9 and 4.10, we can
Definition 4.1: A subset of the fornw = {(x1, ---, z,,) € directly get the convergence ¢f:, A)-ESs. Assume that the

R": ke < 2y < (k;4+1)e} (wheree > Oisrealnumberand;is (i, A)-ESs employ the time-dependent evolution oper&at
an integer) is called a cell with meshA set of cellsS = {#*}  time t. Correspondingly, the probability boungsandpy can

is said to be amr -covering of§} if be defined as in (19) and (20).

1) o*ne’ =¢ifa#p Theorem 4.4:Assume that the AEA is specialized by the

2) Q Cc U{o;0 € X} (1, A)-ESs. Then the AEA is quasi-convergent tocaapprox-

3) anyo® € ¥ has a uniform mesh imate solution of (1) if
Given ane-covering of(2, the intersection set a) Yo pl(l—p)Mt =0

b) lime—oo ((p) " /(pi(1 — py)*1)) = 0.
Q. ={D C R™:thereiss € ¥ such thatD = o N Q} The proof of Theorem 4.4 follows directly from Theorem 3.1
and, therefore, is omitted.

is called an: -discretization of 2. Theorem 4.4 can be applied to derive the convergence of var-

Our purpose is to analyze hoi, A)-ES evolves from one joys specific(u:, A)-ESs. As an illustration, let us consider the
cell in €2, into another cell, and if it eventually stabilizes iNtq;, A)-ESs, where the time-dependent evolution operakrs
the cell containing an optimal solution of the problem (1). Tgre defined as in (15).
simplify the exposition, we assume that the fitness function hascorollary 4.2: For the(p, A)-ES specified in (15), it will be

a unique global maximum. Under the assumption, the Opti”&\hasi-convergent to anapproximation solution of (1) if
setis a cell in},; hence, without any loss of generality, we can 1) L, — 0; g5 — O(t — o)

only consider the satisfactory sBt which is identical to a cell 2) p = O(1/4)

in Q.. However, the following propositions hold for any fitness 3 L) = O((1/6)") with somer € M. 1

function. We will give the full proof in another paper. ) (@/Lo) ((1/6)7) ((r/2), L).
Example 4.10((:, A\)-ES Evolution Operator):Let E: @ —

2 be the componentwise definéd, \)-ES evolution operator

and define

Proof: We need to compute the probability boundsind
o}’ defined by (19) and (20) [witlE, specified as in (18)]. To
this end, we tak€2, = {[—L, L] N (ie, (i + 1)e], 7 € Z} to
be thee discretization of[—L, L], where L /¢ is assumed to
p' =inf{P(z; E(z) € A); x € B, A, B€ Q., A# B} be an integer [i.e(L/¢) € Z] and Z denotes the integer set.
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For any two disjoint cell§ay, b1] (a2, b2] € 2. from the def-  We have verified the quasi-convergence ofthag))-ESs via
inition (15), we calculate as shown in (21). Assumptions a)—djscretization approximation ¢f. This makes it direct and easy
imply im; . (g+/Lt)/(p:/(L — L¢)) = oo. We can assume to follow the same argument as that in the analysis of GAs. How-
(¢:/L+) > ((p+/L — L)) without loss of generality. From (18), ever, this discretization procedure is by no means imperative

this then yields for application of the developed theories to txe \)-ESs. The
L quasi-convergence of thg:, A)-ESs can actually be deduced
py=Inf{P[Ey(z) € A|z € Bl A# B, A, B €Q} by applying the theories without such discretization procedure
Dy ;’ if (L—1Ly)> hd but with some more sophisticated mathematical estimations.
_ 2(L — Ly) 2 22)
Dt 2L i ) +q Q(Zt)’ otherwise V. CONCLUSION
and We have proposed an axiomatic model of simulated evolu-
u . tionary computation to unify various known evolutionary algo-
Pe = SUp{P[GEt(x) €AlreBEA# DB, A BeQ} rithms like GAs, ESs, and EP. With the new model, a novel con-
qt 2L, if L—Li>e vergence analysis and convergence rate estimation methodology

(23) is developed, which is not based on the usual ergodicity anal-
ysis, and could be regarded as a nonergodicity approach. The
effectiveness and usefulness of the new model and the method-

Sincec is fixed andL; — 0 (¢ — 0), (19) and (20) imply ojogy are demonstrated through establishment of a generic con-

= €

€
otherwise.
POy — Ly eI,y

that there is & > 0 such that, as long &> T vergence theory of the model and successful applications of the
. € " € theory to various concrete GAs and ESs.

Pe= ptm and p; = o1, The main thread of the introduced axiomatic model is to cast

the complicated evolution procedure from one generation to an-

By the assumptions, it then follows that other generation as a composition of two independent operators:
oo oo the selection, and the evolution operators. Each of these opera-

Zpi(l _ pg)k—l - ZO <1) 0(1) = 0o tors models an independent mechanism of evolution at a level

=1 =1 4 of abstraction. The selection operator simulates natural selec-

tion and the evolution operator mimics the reproduction of the

natural populations. The main benefit of such an abstraction is

(p)M# e\Mr—1 [ g, \M* L—1, that with this, most of the currently known GAs, ESs, and EP

W = (5) < ) <W) can be unified and expressed as a stochastic process composed
t t ¢ of the two operators, with each taking a specific form, which

and

L,

<1> e (L — Ly) then makes it possible to develop a unified theory of the various
_ (E)A/“—l 13 -0 evolutionary algorithms. Moreover, there is no complex inter-
2 0 1 action between the evolutionary operators, unlike that in many
<Z) analyses on some specific evolutionary algorithms, which also
(t — o) makes it easier to conduct a precise and detailed analysis of the
algorithms.

(note thatr(A/u) > 1). Thus, conditions a)-b) of Theorem With the proposed model, an evolutionary algorithm differs
4.4 are satisfied; consequently, the conclusion of Corollary 4@m another only in the selection and evolution operators in-
follows from Theorem 4.4. O volved. This provides a mathematical basis for unifying the field
Remark 4.3: Rudolph [19], [20] has proved the convergencef evolutionary computation. We have introduced the related
of the(u, A)-ESs for a class of convex fithess functions. Corokharacteristic parameters of the selection and evolution oper-
lary 4.2 here provides a significant extension of these resultsators—selection pressure, selection intensity, evolution aggre-
the sense that the convergence now has been proved for egtyng rate, evolution scattering rate, and evolution stability rate,
fitness function. In addition, it should be observed that Theoremwhich quantitatively measure their functions and properties. In
4.4 can also be applied directly to study convergence of othterms of these introduced characteristic parameters, several gen-
specific(u, A)-ESs (say, those defined in [31] and [30]). This igral convergence (or quasi-convergence) conditions are formu-

omitted because of the limitation of length of the paper. lated, and the corresponding convergence speeds are estimated.
€ . .
Py if minflay — al, b — o} > Ly
€ .
P[E(z) € (a2, ba] |« € (a1, b1]] = U 5,y if max{[as — |, b — x|} < Ly (21)
€ .
otherwise

€
Py — Ly Tty
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The current approach is based on a direct and precise analysis of
the evolutionary operators, but not on the ergodicity analysis of
the algorithms as is commonly adopted in the literature. There-
fore, the major advantage of this approach is that the theories so
deduced are not only of generality (particularly, they are valid
for the “nonelitist” type and the “time-dependent” evolutionary
algorithms), but also very convenient to specify for any concrete
algorithms (which only needs to calculate the related charac-
teristic parameters of the selection and evolution operators). A
large set of specification examples in GAs and ESs presented in
Section IV has justified this advantage.

There exist many opportunities of further research. For in-

mathematical axiomization approach, which provides not
only a unifying mathematical model of various biological
simulation-based SEA schemes, but also the possibility
of devising SEA implementation schemes beyond pure
biological simulation. It can be expected, in particular,
that some more efficient new SEA schemes can be
developed through constructing more promising selection
and evolution operators (at least in a mathematical sense)
based on the developed axiomization framework.
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oped are all based on the worst case analysis, and for all
fitness functions. This makes the results very general, but
on the other hand, these general results have not explored
thoroughly and characterized completely the performancel1]
of SEAs for certain specific types of fitness functions (e.g.,
the nondeceptive functions, convex functions, etc.). Itis of 2]
significance to further refine the application of Theorems
3.1 and 3.2 to such specific types of fitness functions. 3]
» To abstract more general mechanism of selection and evo-
lution operators and to integrate them into a more universalf4]
evolution computational model. Particularly, it should be
observed that the introduced AEA model in the present
paper requires essentially a certain kind of full connec- [5]
tivity (i.e., the evolution should, with a positive proba- 6]
bility, carry each individual to every state of the feasible
region). This is an implicit limitation of the present devel-
oped theory. How this implicit limitation can be resolved [7]
or relaxed deserves further investigation. 8
» To apply the developed AEA model in the prediction of
the convergence of SEAs with noisy fitness evaluation.
In most challanging and practical cases, SEAs are alwayég]
implemented in a noisy environment (in particular, with [10]
noisy or inexact fitness evaluation). An elitist-type SEA in a1
a noisy environment may report an incorrect maximum fit-
ness if it happens that a fitness value that is extremely dig12]
torted by noise is assigned to some individuals. Similarly,
the known theories based on an ergodicity analysis of SE/&B]
cannot predict the convergence of an SEA in a noisy envi-
ronment correctly because they have not taken the effect$4l
of noise into consideration. The developed AEA modely;s,
and convergence theories in this paper can, however, apply
directly to analysis of the SEAs with such noisy environ- [16]
ment. [17
» To devise more efficient new SEAs based on the the-
oretical inspiration of the developed AEA framework.
The known SEA implementation schemes are almost™
all based on simulation of certain natural, biological[19]
evolution mechanism. While useful and fundamental,
such a pure biological simulation approach has beet”
subjected to the thorough understanding of natural evo-
lution, of which many fundamental matters still need to[21]
be clarified. On the other hand, the proposed AEA model
in this paper is an attempt at modeling SEAs in a pure
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