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Degree of Population Diversity—A Perspective on
Premature Convergence in Genetic Algorithms

and its Markov Chain Analysis
Yee Leung, Yong Gao, and Zong-Ben Xu

Abstract—In this paper, a concept of degree of population
diversity is introduced to quantitatively characterize and theoret-
ically analyze the problem of premature convergence in genetic
algorithms (GA’s) within the framework of Markov chain. Under
the assumption that the mutation probability is zero, the search
ability of the GA’s is discussed. It is proved that the degree of
population diversity converges to zero with probability one so that
the search ability of a GA decreases and premature convergence
occurs. Moreover, an explicit formula for the conditional proba-
bility of allele loss at a certain bit position is established to show
the relationships between premature convergence and the GA
parameters, such as population size, mutation probability, and
some population statistics. The formula also partly answers the
questions of to where a GA most likely converges. The theoretical
results are all supported by the simulation experiments.

Index Terms—Genetic algorithms, Markov chains, population
diversity, premature convergence, schema.

I. INTRODUCTION

GENETIC algorithms (GA’s) are search and optimization
algorithms based on the principles of natural evolution

[1]. In applying GA’s to solve large-scale and complex real-
world problems, one of the most frequent difficulties encoun-
tered is premature convergence [2], [3]. Roughly speaking,
premature convergence occurs when the population in a GA
reaches such a suboptimal state that most of the genetic
operators can no longer produce offspring that outperform their
parents [3]. Several methods have been proposed to combat
premature convergence in GA’s [4]–[7]. These include, for
example, the restriction of the selection procedure, the mating
procedure (e.g., more disruptive crossover operators, higher
mutation rate, and local mating), and the modification of
fitness assignment (e.g., scaling, fitness sharing). However, all
these methods are heuristic in nature. Their effects vary with
different problems and their implementation strategies needad
hoc modifications with respect to different situations.

A critical problem in studying premature convergence is the
identification when it has occurred and the characterization
of its extent. Srinivas and Patnaik [8], for example, use
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the difference between the average and maximum fitness
values as a yardstick to measure premature convergence,
though not a measure of genetic diversity, and vary adap-
tively the crossover and mutation probabilities according to
the measurement. On the other hand, the term “population
diversity” has been qualitatively used in many papers to study
premature convergence [9]–[11]. It is widely recognized that
the decrease of population diversity leads directly to premature
convergence. However, so far there exists little effort in
performing quantitative analysis of population diversity, let
alone to use it as a tool to prevent premature convergence.

In this paper, we formally propose a concept of degree
of population diversity and quantitatively characterize and
theoretically analyze the problem of premature convergence in
GA’s using the theory of Markov chains. Under the assumption
of zero mutation probability, the search ability of GA’s (in
particular, the function of the crossover operator) is discussed.
It is proved that the degree of population diversity converges
to zero with probability one so that the search ability of genetic
algorithms decreases consistently and premature convergence
necessarily occurs. The relationships between premature con-
vergence and the GA parameters such as population size,
mutation probability, and relevant population statistics are also
studied in light of an explicit formula for the conditional
probability of allele loss at a certain gene position. The
proposed formula is also employed to partly answer the
question of where a GA most likely converges to.

In Section II, we introduce the population Markov chain
models for the canonical genetic algorithms (CGA’s) and
present the strict probabilistic definitions of the genetic op-
erators. With the aid of ergodic analysis of the population
Markov chain, the reason why the mutation probability may
be assumed to be zero when analyzing premature convergence
is demonstrated. In Section III, we propose a concept of degree
of population diversity and quantitatively characterize and
theoretically analyze the problem of premature convergence
in GA’s within the Markov chain framework. In Section IV,
a series of simulation studies is employed to substantiate
our theoretical investigation. We then summarize and propose
some directions for further research in Section V. To facilitate
discussion, we put all proofs in the Appendix.

II. CANONICAL GENETIC ALGORITHMS

AND THEIR POPULATION MARKOV CHAIN

Without loss of generality, we consider the GA’s with binary
string representations of lengthand fixed population size

1045–9227/97$10.00 1997 IEEE
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. We further assume that the algorithms use proportional
selection, one-point crossover, and bit mutation. Each indi-
vidual in the population corresponds to an element of the
space , which is called theindividual space. The
population spaceis denoted as and we call theparents
space. For the sake of convenience, we write the population

in both the vector and matrix forms as follows:

where is the th individual of , while is the
th component of . The fitness function can

be derived from the objective function of the optimization
problem by a certain decoding rule.

A CGA can, in essence, be given as follows.
CGA

Step 1) Set and generate initial population .
Step 2) Independently select pairs of individuals from

the current population for reproduction.
Step 3) Independently perform crossover to the pairs

of individuals to generate new intermediate
individuals.

Step 4) Independently mutate the intermediate individ-
uals to get the next generation

Step 5) Stop if some stopping criterion is met. Else, set
and go to Step 2).

From the mathematical point of view, the operators are
random mappings between the spaces, , and . They
are the analogous idealized abstractions of some of the genetic
mechanisms in the evolution of natural organizms. To facilitate
our later analysis, we present in the following the strict
probabilistic definitions of several basic operators.

a) The proportional selection operator, ,
selects a couple of parents from the given population for
reproduction. Given the population , the probability of
selecting as the parents is

(1)

b) The crossover operator, generates an
individual from the selected parents. Given the parent

, the probability for the one-point
crossover operator to generate an individualis

if

if
(2)

where is the so-called crossover probability,
is the number of gene positions at which

successful crossovers of and can generate .

Remark 2.1:Throughout the present paper, we only con-
sider the two-parents-one-child crossover operator, i.e., cross-
ing two parents will always generate only one child (which
we assume to be the first offspring). Such a scheme has also
been adopted by many other theoretical works on GA’s [1].
This is because only with two-parents-one-child crossover, the
offspring in the next generation are conditionally independent
and identically distributed. This is crucial in the derivation
of some results concerning the transition probabilities of the
population Markov chains of GA’s.

c) The mutation operator, , operates on the
individual by independently perturbing each bit string in a
probabilistic manner and can be specified as follows:

(3)

Based on the genetic operators defined above, the CGA can
be represented as the following iteration of populations:

(4)

where , are independent versions
of . It is easy to see that the sequence of popu-
lations is a time-homogeneous Markov chain
with the state space (henceforth, it is called the population
Markov chain). Similar to Rudolph [12], it can be proved that
if , we have for any ,

(5)

That is, . Therefore, the
population Markov chain is homogeneous,
irreducible, and aperiodic [13]. Hence, it can reach any state
infinite times with probability one regardless of the initial state.
Theoretically, this means that the CGA’s will never converge
and premature convergence cannot occur provided that the
mutation probability is larger than zero. Practically this means
that even if premature convergence can occur, it will not persist
indefinitely when the mutation probability is larger than zero.

III. D EGREE OFPOPULATION DIVERSITY

AND ITS MARKOV CHAIN ANALYSIS

In this section, we first propose and define a concept called
“degree of population diversity” as a way to formalize the
notion of population diversity, which has not been rigorously
characterized in the literature. We then use the concept to
study, in conjunction with the basic GA operators, the problem
of premature convergence in CGA’s within the Markov chain
framework.

Definition 3.1: Let be a
population. The degree of population diversity of, denoted
by , is defined as the number of the components of
the vector whose values are not equal to 0 and

. Accordingly, is called the degree of
matureness (or, the number of lost alleles) of the population.

If we denote in its matrix form, then is just the
number of columns of whose entries take on both zero and
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one as values. In particular, all the individuals ofmust be
identical whenever . On the contrary, is just
the number of columns of whose entries are either all zero
or all one.

A schema is a hyperplane of the individual space
and can be represented as

where is called the order of
are called the defining components (defining gene positions),
and are the values of the
defining components (defining alleles). To signify by its
defining components and their corresponding values, we may
denote as . It is obvious that a schema of
order contains different individuals.

Definition 3.2: Let be a
population with the degree of population diversity and
the degree of maturity . Let

be the components at which all the individuals oftake
the same values, say . We call the
schema the minimum schema containing

and denote it by or simply if
there is no confusion.

For example, consider the population
Since the individuals of take

both zero and one at the first, third, and fourth components,
the degree of population diversity of is then .
Since all the individuals of take the same value zero at
the second component, the minimum schema containing
is with . By “minimum” we
mean that if there is another schemathat also contains

, it must be true that . It is not difficult to
see that there are different individuals in

.
To evaluate the effect of population diversity on CGA

performance, we first assume that the mutation probability is
zero. The following theorem characterizes the search ability
of CGA’s with the mutation probability .

Theorem 3.1:Let be the population
Markov chain with and let

1) For each , there exists an
such that

(6)

2) For each and every

(7)

Remark 3.1:Theorem 3.1 shows that the search ability of
CGA’s with is confined to the minimum schema
containing the current population in which there are
different individuals. So the larger the degree of diversity
of the current population, the more the feasible solutions the
CGA’s can search. On the contrary, the smaller the degree of
population diversity, the less the feasible solutions the CGA’s

can search. In particular, when , CGA’s with
will have no ability to search for feasible solutions.

Theorem 3.1 tells us that if the global optimum lies in
the minimum schema containing the initial population, it is
possible for CGA’s to find it. However, as demonstrated later,
the selection and crossover operators have a serious effect
on maturation—their employment may decrease the degree
of population diversity and degrade the search ability of the
CGA’s. So, although the global optimal solution is in the
minimum schema containing the initial population, it may
be excluded outside the search range by the selection and
crossover operators which are ironically searching for it. We
first present a necessary lemma for the discussion.

Lemma 3.1:Let be the population Markov
chain of a CGA with and be the set of homogenous
populations, i.e., . Then for
each ,

(8)

Theorem 3.2:Let be the population
Markov chain of a CGA with and be the set
of homogenous populations.

1) converges to with probability one,
i.e.,

(9)

2) The degree of diversity of the sequence of populations
decreases monotonically with probability one, decreases
strictly monotonically with positive probabilities, and
converges to 0 with probability one. That is,

(10)

and (11)

(12)

Remark 3.2:Part a) of Theorem 3.2 has been proved earlier
by Fogel [14].

Theorem 3.2 suggests that CGA’s with converge
to homogoneous populations with probability one and the
convergence is monotone in terms of the degree of population
diversity. The difficulty is, however, that the limiting homoge-
neous populations may correspond to local optimal solutions,
or nonextremal solutions, as well as the global optimal so-
lutions (that is, all of the points in the individual space).
Hence, to show the effectiveness of CGA’s (especially that of
the selection and crossover operators), the question of where
a CGA most likely converges to should be answered. We
now proceed to establish some explicit formulas concerning
the conditional probabilities of the population Markov chain.
These formulas will partly answer the above question and,
on the other hand, will give a formula of the probability of
allele loss at a certain gene position. In the following, we no
longer assume that the mutation probability is zero. Let us first
introduce some notations in the following definition:
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Definition 3.3: Given a population ,
, , for any positive integer

let and denote the sets of indexes of all
the individuals of the population that have, respectively, a
zero or one at the gene position, that is,

and write

We call

respectively, the fitness ratio of zero and one allele individuals
at the th gene position.

Theorem 3.3:Let be the population
Markov chain of a CGA, then for every , we
have

loses allele 1 at gene

(13)

loses allele 0 at gene

(14)

The following corollary shows the relationship between
premature convergence and the population size, the mutation
probability, and the population statistics .

Corollary 3.1: For the CGA’s, the probability for allele loss
to occur at a gene position (hence premature convergence at
the gene position) decreases with the population size, and
increases with and . Particularly, for fixed

, the above probability attains its minimum at
and .

Remark 3.3:Corollary 3.1 justifies the methods of scaling
to prevent premature convergence. In fact, on the condition that
the average fitness of the current population is not changed,
scaling will make the difference between the individual fitness
and the average fitness, and hence , even smaller.

Remark 3.4:From Theorem 3.3 and Corollary 3.1, we can
see that the probability of premature convergence at a gene
position is independent of the crossover probability. So the
method of adapting crossover probability to prevent premature
convergence presented in [8] seems to bare no theoretical
support. Adapting the crossover probability can merely speed

up the search of the minimum schema containing the current
population.

From Theorem 3.1, we can also get the following corollary
which partly answers the question of where a CGA most likely
converges to.

Corollary 3.2: Let be the population
Markov chain with . Denote by and
the two competing schemat

and assume that . Then we have

if (15)

and

if (16)

We close this section by a discussion of the relationship
between the fitness ratio and the degree of population
diversity . This relationship is indeed the very motivation
for us to introduce the concept of degree of population
diversity. From the proof of Theorem 3.3, we see that is
in fact the probability for the th component of an individual
generated from the current population to take on zero as its
value. To put it in another way, let us assume that the current
population is and is an individual of the next
generation. Then, is nothing but the probability for the

random variable to take on zero as its value.
The variance of is then . Define

which is a scalar characterization of the scatterness of individu-
als generated from the population. Define a scalar function

as

if
if or

then we have

This means that the degree of population diversity is a rough
and yet easy to manipulate two-level discrete approximation
of the degree of scatter of individuals generated from the
population.

IV. EXPERIMENTAL RESULTS

To substantiate our theoretical results, a series of simulations
was carried out to apply CGA’s with parameters(population
size), (mutation probability), and (crossover probability)
to a function optimization problem. The aim of the empirical
analysis was three-fold: first, for a specific population size
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and a specific mutation probability, we evaluated changes in
the degree of population diversity over time (indicated by
the number of function evaluations). By varying the mutation
probability, we further obtained and compared the trends of
changes in diversity. The same analysis was then repeated for
different population sizes to examine if there were significant
differences. Second, for a fixed population size, we evaluated
the performance of the CGA (indicated by its ability to search
for the global optimal solution) under different mutation prob-
abilities. Third, for a fixed mutation probability, we examined
the performance of the CGA with different population sizes.

Except for whose value was kept constant throughout,
both and took on specified values for comparisons. The
parameters of the CGA experiments were set as follows:

Population size

Crossover probability

Mutation probability

The optimization problem involved the search for the global
optimum of the test function, the famous Sine envelope sine
wave function ([15])

This is a rapidly varying mutimodal function of two variables
with as the unique global optimal solution
having value . Each variable was encoded by
22 b so that the string length of an individual was .
Therefore, the maximal degree of population diversity was
44. Each experiment was repeated in 30 independent runs and
the average was taken as the basis for evaluation.

The simulation results of changes in diversity over time
are summarized in Figs. 1–3, which depict the variations of
the degree of population diversity with respect to the number
of function evaluations for different population sizes. The
simulation results are in support of our theoretical analysis
in that the rate of decrease of the degree of population
diversity is in inverse proportion to the population size and
is proportion to . The larger the population size, the
longer the population is able to maintain its diversity. The
closer is to 1/2, the higher is the degree of diversity
the CGA can maintain, i.e., the slower is the decrease in
diversity. In particular, the degrees of population diversity
of the CGA’s with different population sizes all dramatically
decrease to zero when and the most rapid of them
is the CGA with the smallest population size . With
respect to population size and CGA performance, we observe
in Table I and Figs. 4 and 5 that the larger the population size,
the better is the performance of the algorithms. A moderate
mutation probability, e.g., , also contributes to
good performance while too large a mutation rate degrades the
performance. It is also observed that the smaller the population
size, the more notable is the effect of the mutation probability
on the algorithm’s performance (Fig. 5). In addition, though
the performance of the CGA with 0.5 mutation probability is
not very bad (Fig. 4), the convergence rate is obviously slower

TABLE I
THE PERFORMANCE OFGAS WITH DIFFERENT PARAMETERS.
FOPT. IS THE OPTIMAL VALUE FOUND BY THE ALGORITHMS.

ERR. IS THE SQUARE ERROR OF OPTIMAL SOLUTION

than the case of a lower mutation probability, e.g.,
and .

To summarize, the experimental results reveal that the
impact of population size on the CGA’s performance is more
favorable than that of the mutation probability. For example, as
shown in Table I, the performance of the CGA with
and is better than that of the CGA with
and . All these theoretical and empirical results
suggest that a more effective method to maintain the degree
of population diversity to prevent premature convergence is
to increase the population size instead of to adopt a high
mutation rate.

V. CONCLUSION

We have introduced in this paper a concept of degree
of population diversity, and quantitatively characterized and
theoretically analyzed the problem of premature convergence
in CGA’s using the theory of Markov chain. Under the as-
sumption that the mutation probability is zero, we have proved
that the degree of population diversity converges to zero with
probability one so that the search ability of a genetic algorithm
decreases over time, resulting in premature convergence. An
explicit formula for the conditional probability of allele loss
at a certain gene position has been established to show
relationships between premature convergence and the CGA
parameters—population size, mutation probability , and
population statistics . The formula also partly answers the
question of where a genetic algorithm most likely converges
to. A series of simulations have also been conducted to validate
our theoretical analysis. We conclude that to prevent premature
convergence, increase in population size tends to play a more
important role than the variation of the mutation probability.
Any effort in varying the crossover probability, unlike what
has been suggested by some research in the literature, has no
contribution in avoiding premature convergence.

For further research, we at least can pursue the following
two lines of investigation:

1) Use the degree of population diversity as a quantitative
measure to prevent premature convergence by adaptively
varying population size and mutation probability. Some
optimization procedures can also be explored to improve
performance.

2) The degree of population diversity presented in this
paper is exclusively based on the genotype of the pop-
ulation. Resorting to Theorem 3.3 of the present paper,
as has been outlined at the end of Section III, it is
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Fig. 1. The convergence curves of population diversity as functions of the number of function evaluations with different mutation probabilitiespm and
fixed population sizeN = 50.

Fig. 2. The convergence curves of population diversity as functions of the number of function evaluations with different mutation probabilitiespm and
fixed population sizeN = 100.
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Fig. 3. The convergence curves of population diversity as functions of the number of function evaluations with different mutation probabilitiespm and
fixed population sizeN = 200.

Fig. 4. The convergence curves of the optimal value found by GA’s, as functions of the number of function evaluations, with different mutation probabilities
pm and fixed population sizeN = 50.
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(a) (b)

(c) (d)

Fig. 5. The convergence curves of the optimal value found by GA’s, as functions of the number of function evaluations, with different mutation probabilities
pm and population sizeN . (a) pM = 0:000. (b) pM = 0:001. (c) pM = 0:005. (d) pM = 0:010.

possible to introduce a more involving concept of degree
of population diversity based on both genotype and its
corresponding fitness.

APPENDIX

1) Proof of Theorem 3.1:
a) Let

and

Since the degree of population diversity of is , we
may suppose that the first components of
the individuals in take the same bit value, i.e.,

By the definition of degree of population diversity, for each
, there is an individual in such that

its th component equals to .

We now proceed with the method of induction. Consider
first the case of . We have

So there are , so that , and
. Let be a population such that

and that is the individual generated by
crossing the two individuals at the th component, i.e.,

By the definition of the selection operator and crossover
operator, we get

(17)

This proves the case of .
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Suppose that the theorem is valid for .
Consider the case of . Then, we have

and there exists such that . Let
be a population such that

and

It is easy to see that and
And hence

(18)

By the assumption and homogeneity of the Markov chain
, there is a such that

Let , we get

(19)

Thus, the theorem is valid for the case . The proof
of the first part of Theorem 3.1 is completed.

b) We write to express

that each individual of belongs to the schema
, so that all the individuals of

have the same values at the components .
Therefore, neither selection operator nor crossover operator
can change the values at these components of the individuals
in the population. So, for each ,
we have

To simplify the notation, let us write for

By the Markovian property, we get

Since implies , we have

This completes the proof.
2) Proof of Lemma 3.1:For any homogeneous population

and nonhomogeneous population , it follows
from Theorem 3.1b) that .
And hence

3) Proof of Theorem 3.2:
a) Let . For

each , we have

Let , then . If , it
follows from Lemma 3.1 that for any . So
the part a) of Theorem 3.2 is valid.

Now assume that and define
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For any , we get

It follows that , where
is the expectation of the random variable. And hence

. From Lemma 3.1 and the definition of
we know that whenever . Therefore,
we get as what we intend to prove.

b) Denote by the minimal schema containing. By
virtue of the formula of total probability, we have

which proves (10). Since for each ,

then an application of the formula of total probability yields
the desired result (11).

To get (12), it should be observed that for
each . It follows that implies

, and hence, .
The proof is completed.

4) Proof of Theorem 3.3:We only prove (13) and the proof
of (14) is similar. Let be the th component of the
th individual of and the random

individual generated by the selection and crossover operator
from . Then, for each

(20)

By the definition of the selection and crossover operators, we
get

The four terms in the right hand side of the second equa-
tion correspond to the four possible events of selection and
crossover all of which result in an individual with theth
component being zero. The first one is the case that the

th components of the selected parents are both zero and
crossover is arbitrary and immaterial. The second and third
terms correspond to the situation that the first parent is selected
with the th component zero and the second parent has one
at the th component. The difference is that the second term
corresponds to the case that the crossover point is selected after
the th component and crossover either occurs or does not
occur (i.e., having crossover or not is immaterial), while the
third one is the situation where the crossover point is before
the th component and crossover does not take place. The
fourth term captures the case that the first parent has one at
its th component and the second parent has zero at the same
position, and crossover occurs with the crossover point being
selected before the th component.

Therefore, for each
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Since the individuals of are independently generated
with the same manner, we get

loses allele 1 at gene m

This completes the proof.
5) Proof of Corollary 3.1: From Theorem 3.3, we know

that

loses an allele at gene m

(21)

Since for each and , the
function decreases with .

We write to simplify the notation.
The partial differential of with respect to
can be given as

It can be shown that, for each ,
whenever and whenever

. That is to say that is decreasing
when and increasing when . It follows that
the probability for an allele loss to occur at a gene position
increases with . Similarly, we can prove that the
probability for allele loss to occur at a gene position increases
with .

Solving the equations and , we
get an unique solution , . Hence, for fixed ,

takes its minimum at and .
The proof is completed.

6) Proof of Corollary 3.2: It is obvious that
[or ] if and only if lose the allele 1
(respectively 0) at gene . So

If , simple calculation shows that

if

if

The corollary then follows.
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