IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997 1165

Degree of Population Diversity—A Perspective on
Premature Convergence in Genetic Algorithms
and its Markov Chain Analysis

Yee Leung, Yong Gao, and Zong-Ben Xu

Abstract—In this paper, a concept of degree of population the difference between the average and maximum fitness
quﬁrSity IT intr(t)r(]jucedgtlj quar;titativelg/ characterize and.theoretil values as a yardstick to measure premature convergence,
ically analyze the problem of premature convergence in genetic PR ;
algorithms (GA’s) within the framework of Markov chain. Under t.hOUQh not a measure of gen(.atlc dlverSIF)./,. and vary.adap—
the assumption that the mutation probability is zero, the search tiVely the crossover and mutation probabilities according to
ability of the GA’s is discussed. It is proved that the degree of the measurement. On the other hand, the term “population
population diversity converges to zero with probability one so that  diversity” has been qualitatively used in many papers to study
the search ability of a GA decreases and premature convergence premature convergence [9]-[11]. It is widely recognized that

occurs. Moreover, an explicit formula for the conditional proba- . . . .
bility of allele loss at a certain bit position is established to show the decrease of population diversity leads directly to premature

the relationships between premature convergence and the GA COnvergence. Hoyveyer, SO fqr there exis.ts Iitt!e effort in
parameters, such as population size, mutation probability, and performing quantitative analysis of population diversity, let

some population statistics. The formula also partly answers the alone to use it as a tool to prevent premature convergence.
questions of to where a GA most likely converges. The theoretical | thjs paper, we formally propose a concept of degree
results are all supported by the simulation experiments. of population diversity and quantitatively characterize and
Index Terms—Genetic algorithms, Markov chains, population theoretically analyze the problem of premature convergence in
diversity, premature convergence, schema. GA'’s using the theory of Markov chains. Under the assumption
of zero mutation probability, the search ability of GA’s (in
particular, the function of the crossover operator) is discussed.
It is proved that the degree of population diversity converges
ENETIC algorithms (GA’s) are search and optimizatiofp zero with probability one so that the search ability of genetic
algorithms based on the principles of natural evolutiogigorithms decreases consistently and premature convergence
[1]. In applying GA'’s to solve large-scale and complex reahecessarily occurs. The relationships between premature con-
world problems, one of the most frequent difficulties encounergence and the GA parameters such as population size,
tered is premature convergence [2], [3]. Roughly speakingputation probability, and relevant population statistics are also
premature convergence occurs when the population in a Giudied in light of an explicit formula for the conditional
reaches such a suboptimal state that most of the gengtiobability of allele loss at a certain gene position. The
operators can no longer produce offspring that outperform thgfioposed formula is also employed to partly answer the
parents [3]. Several methods have been proposed to confiygstion of where a GA most likely converges to.
premature convergence in GA’s [4]-[7]. These include, for In Section Il, we introduce the population Markov chain
example, the restriction of the selection procedure, the matiftpdels for the canonical genetic algorithms (CGA'’s) and
procedure (e.g., more disruptive crossover operators, hig}péesent the strict probabilistic definitions of the genetic op-
mutation rate, and local mating), and the modification efrators. With the aid of ergodic analysis of the population
fitness assignment (e.g., scaling, fitness sharing). However,M#rkov chain, the reason why the mutation probability may
these methods are heuristic in nature. Their effects vary witle assumed to be zero when analyzing premature convergence
different problems and their implementation strategies raekd is demonstrated. In Section Ill, we propose a concept of degree
hoc modifications with respect to different situations. of population diversity and quantitatively characterize and
A critical problem in studying premature convergence is thibeoretically analyze the problem of premature convergence
identification when it has occurred and the characterizatiom GA’s within the Markov chain framework. In Section IV,
of its extent. Srinivas and Patnaik [8], for example, use series of simulation studies is employed to substantiate
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N. We further assume that the algorithms use proportionalRemark 2.1: Throughout the present paper, we only con-
selection, one-point crossover, and bit mutation. Each indiider the two-parents-one-child crossover operator, i.e., cross-
vidual in the population corresponds to an element of theg two parents will always generate only one child (which
spaceS = {0, 1}}, which is called thendividual space The we assume to be the first offspring). Such a scheme has also
population spacés denoted as”™¥ and we callS? theparents been adopted by many other theoretical works on GA'’s [1].
space For the sake of convenience, we write the populatiohhis is because only with two-parents-one-child crossover, the
X € SV in both the vector and matrix forms as follows:  offspring in the next generation are conditionally independent
and identically distributed. This is crucial in the derivation

o of some results concerning the transition probabilities of the
X=(X1, Xg, -, Xy)"' = a:21 a:22 3721 population Markov chains of GA's.

c) The mutation operatof];,: S — S, operates on the
individual by independently perturbing each bit string in a
where X; € S is theith individual of X, while Tij f the probabilistic manner and can be specified as follows:
jth component ofX;. The fitness functiory: § — R™ can v
be derived from the objective function of the optimization P{T(X) =Y} = pli (1 = p)7H Y, (3)

T11 L2 XU

IN1 IN2 ' TNI

problem by a certain decoding rule. Based on the genetic operators defined above, the CGA can
égGA can, in essence, be given as follows. be represented as the following iteration of populations:
A R o .
Step 1) Setk = 0 and generate initial populatiaX (0). Xk + 1) =T [(TAX B e =1, -+, N}
Step 2) Independently seleclV pairs of individuals from k>0 (4)

the current population for reproduction.

Step 3) Independently perform crossover to té pairs
of individuals to generateV new intermediate
individuals.

Step 4) Independently mutate th& intermediate individ-
uals to get the next generation

X(k+1) =[Xi(k+1), -, Xn(k+1)].

Step 5) Stop if some stopping criterion is met. Else, set HP{TZ [(TH(X))] = Yi} > 0. (5)
k = k+ 1 and go to Step 2).

From the mathematical point of view, the operators afEhat is, P{X(k + 1) = Y/X( ) = X} > 0. Therefore, the
random mappings between the spaéés, S$2, and S. They population Markov cham{X( ), & > 0} is homogeneous,
are the analogous idealized abstractions of some of the gen&tieducible, and aperiodic [13]. Hence, it can reach any state
mechanisms in the evolution of natural organizms. To facilitaiefinite times with probability one regardless of the initial state.
our later analysis, we present in the following the strickheoretically, this means that the CGA’s will never converge
probabilistic definitions of several basic operators. and premature convergence cannot occur provided that the

a) The proportional selection operatd,: S — S§2%, mutation probability is larger than zero. Practically this means
selects a couple of parents from the given population ftiiat even if premature convergence can occur, it will not persist
reproduction. Given the populatlorX the probability of indefinitely when the mutation probability is larger than zero.
selecting(X;, X;) € S? as the parents is

where(T:,, T¢, T%), i = 1, ---, N, are independent versions
of (T, T, Ts). It is easy to see that the sequence of popu-
lations { X (k), k > 0} is a time-homogeneous Markov chain
with the state spac&” (henceforth, it is called the population
Markov chain). Similar to Rudolph [12], it can be proved that

if p, > 0, we have for anyX, Y,

f(Xi) F(X)) I1l. DEGREE OF POPULATION DIVERSITY
P{T,(X ) (Xi, X))t = ! AND ITS MARKOV CHAIN ANALYSIS
Z Jx qu In this section, we first propose and define a concept called
xeX XcX

“degree of population diversity” as a way to formalize the
notion of population diversity, which has not been rigorously
b) The crossover operatofl.: S2 — S generates an Characterized in the literature. We then use the concept to
individual from the selected parents. Given the pat&pt= study, in conjunction with the basic GA operators, the problem
(zi1, -+, za), i = 1,2, the probability for the one-point of premature convergence in CGA’s within the Markov chain
crossover operator to generate an individials framework. .
Definition 3.1: Let X = (Xi,---, Xy) € SV be a
, if Y #£X; population. The degree of population diversity)ﬁf denoted
P{T.[(X1, X2)]|=Y}= ! i . by A(X), is defined as the number of the components of
(1—pe)+ 'lpc, if Y =X, the vector X, ‘whose values are not equal to 0 and
(2) N. Accordingly, 3(X) = I — A(X) is called the degree of
where0 < p. < 1 is the so-called crossover probabilitymatureness (or, the number of lost alleles) of the popula’ﬁon
k = k(X1, X5, Y) is the number of gene positions at which If we denoteX in its matrix form, then\(X) is just the
successful crossovers &f; and X, can generatd”. number of columns off whose entries take on both zero and

1<i<N,1<j<N. (1)

k'pc
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one as values. In particular, all the individuals dfmust be can search. In particular, whamX) =0, CGA'swithp,, =0
identical whenevei(X) = 0. On the contrary3(X) is just will have no ability to search for feasible solutions.
the number of columns ok whose entries are either all zero Theorem 3.1 tells us that if the global optimum lies in

or all one. the minimum schema containing the initial population, it is
A schemalL([1]) is a hyperplane of the individual spade possible for CGA'’s to find it. However, as demonstrated later,
and can be represented as the selection and crossover operators have a serious effect

B B S B on maturation—their employment may decrease the degree
L={X = (21, ) € 824, = aj, of population diversity and degrade the search ability of the
1<ip <L 1<k K} CGA'’s. So, although the global optimal solution is in the

. . , minimum schema containing the initial population, it may
whereK(1 < K S. l? is called the order 91." lia, ”‘.}. be excluded outside the search range by the selection and
are called the defining components (defining gene positions : - . )

Crossover operators which are ironically searching for it. We
and{a; ,1 < k < K}(a;, € {0, 1}) are the values of the _ . X
L LTk ko . . first present a necessary lemma for the discussion.
defining components (defining alleles). To signify by its

defining components and their corresponding values, we m Lemma 3.1:Let {X(k), k > 0} be the population Markov
9 P . >P g ’ §¥ain of a CGA withp,,, = 0 andB be the set of homogenous
denoteL asL(a;,, ---, a;, ). It is obvious that a schema of

order K contains2:—¥ different individuals. poprl:latlgns, le.B = {(X, X, .-, X); X € 5} Then for
Definition 3.2: Let X = (X;,---, Xy) € SN be a eachn = L,
population with the degree of population diversiyX) and 2 2 _
the degree of maturity3(X) = I — A(X). Letiy, 1 < k < P{X(n) €B/X(0)€ B} =t ®
B(X) be the components at which all the individualstake
the same values, say, € {0, 1}, 1 < k < #(X). We call the
schemaL[a;,, - -, aiﬂ()?)] the minimum schema containing
X and denote it byL[a;,, -, @i g X] or simply L(X) if
there is no confusion.
For example, consider the populatiah = {(0001),
(0010), (0011), (1010)}. Since the individuals of{ take R
both zero and one at the first, third, and fourth components, P{kIE{}o X(k) € B} =1 ©)
the degree of population diversity of is then A(X) = 3.
Since all the individuals ofX take the same value zero at 2) The degree of diversity of the sequence of populations

Theorem 3.2:Let {X(k),k > 0} be the population
Markov chain of a CGA withp,,, = 0 and B be the set
of homogenous populations.

1) {X(k), k > 0} converges taB with probability one,

ie.,

the second component, the minimum schema contaiﬁng decreases monotonically with probability one, decreases
is L(az; X) = (%0 * %) with a; = 0. By “minimum” we strictly monotonically with positive probabilities, and
mean that if there is another scheriathat also contains converges to 0 with probability one. That is,

X, it must be true thaL(ay; X) C L. It is not difficult to .
see that there arg/~* = 24~ = g different individuals in P{AX(E+1)] <
L(az; X) = (%0 x *). P{AX (k+1)] <
To evaluate the effect of population diversity on CGA _ R
performance, we first assume that the mutation probability is P{klggo AX(R)] = 0} =1 (12)
zero. The following theorem characterizes the search ability
of CGA’s with the mutation probability,,, = 0. Remark 3.2: Part a) of Theorem 3.2 has been proved earlier
Theorem 3.1:Let {X(k),k > 0} be the population by Fogel [14].
Markov chain withp,, = 0 and IetX(O) = Xo. Theorem 3.2 suggests that CGA’s wigh, = 0 converge
1) For eachY” € Lla;,, -, a; . Xo], there exists an t0 homogoneous populations with probability one and the

n > 0 such that oo convergence is monotone in terms of the degree of population
- . . . diversity. The difficulty is, however, that the limiting homoge-
P{Y € X(n)/X(0)= Xo} > 0. (6) neous populations may correspond to local optimal solutions,
or nonextremal solutions, as well as the global optimal so-
2) For eachy” ¢ L{a;,, ---, Big g0y Xo] and everyn > 0 lutions (that is, all of the points in the individual spasg.
Hence, to show the effectiveness of CGA'’s (especially that of
P{Y € X(n)/X(0) = X’O} =0. (7) the selection and crossover operators), the question of where
a CGA most likely converges to should be answered. We
Remark 3.1: Theorem 3.1 shows that the search ability ofiow proceed to establish some explicit formulas concerning
CGA's with p,, = 0 is confined to the minimum schemathe conditional probabilities of the population Markov chain.
containing the current population in which there @&¥*) These formulas will partly answer the above question and,
different individuals. So the larger the degree of diversityn the other hand, will give a formula of the probability of
of the current population, the more the feasible solutions tldele loss at a certain gene position. In the following, we no
CGA's can search. On the contrary, the smaller the degreel@figer assume that the mutation probability is zero. Let us first
population diversity, the less the feasible solutions the CGAistroduce some notations in the following definition:

[X(B)]} =1, VEk>0,  (10)
[X(K)]} >0, Vk>o0and (11)

> >
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Definition 3.3: Given a populationf = (X1, -+, Xn), up the search of the minimum schema containing the current
X; = (1, -+, xy), 1 =1, ---, N, for any positive integer population.
1 <m <, let I]* and I{* denote the sets of indexes of all From Theorem 3.1, we can also get the following corollary
the individuals of the populatioﬁf that have, respectively, awhich partly answers the question of where a CGA most likely

zero or one at the gene positien, that is, converges to. .
mop L Corollary 3.2: Let {X(k),k > 0} be the population
I(:n _{f €L, 2, -+, N} zim = 0 Markov chain with X(0) = X. Denote byL(1) and L(0)
I"={ie{l,2, -, N zim =1} the two competing schemat
and write L(1) ={X; z,, =1}
(X)) =) (X)), L) ={X; 2, =0}, 1<m<lI
. el and assume that,, > b,,. Then we have
X)) = Y ). B} L B} Lo
£ P{R(1)cL©)/X(©0)=X }>P{£1)cL)/£0)=X}
We call if 0<pm <3 (15)
nl(X) and
__Jo S . S 5 o o
m = P{X(l)CL(O)/X(O):X} <P{X(1)CL(1)/X(O):X}
> (X)) if 1/2<pn <1. (16)
j=1
b =1 — am We close this section by a discussion of the relationship
£ X) between the fitness ratia,,, and the degree of population
1

= diversityA(X). This relationship is indeed the very motivation
Zf(X') for us to introduce the concept of degree of population
J diversity. From the proof of Theorem 3.3, we see thatis

=t in fact the probability for thenth component of an individual
respectively, the fitness ratio of zero and one allele individuagenerated from the current population to take on zero as its
at the mth gene positign. value. To put it in another way, let us assume that the current

Theorem 3.3:Let {X(k), k > 0} be the population population isX(k) and X(k + 1) is an individual of the next

Markov chain of a CGA, then for every < m < [, we generation. Theng,, is nothing but the probability for the

have 0 — 1 random variabler,,,(k + 1) to take on zero as its value.
P{X(l) loses allele 1 at gene/X(0) = X} The variance of,,,(k + 1) is thena,,(1 — a,,). Define
!
= [am + (1 - 2am)pm]N (13) A= Z am (1 — am)
P{X(l) loses allele 0 at gene/ X (0) = X} m=l
— (b + (1 = 25 )po] ¥ (14) which is a scalar characterization of the scatterness of individu-

als generated from the populatidﬁ Define a scalar function
The following corollary shows the relationship betweeg as

premature convergence and the population size, the mutation o) { 1, fo<z<l

probability, and the population statisties,. s fr=0orz—1

Corollary 3.1: For the CGA’s, the probability for allele loss
to occur at a gene position (hence premature convergencehan we have
the gene position) decreases with the population aizeind

!
increases witha,,, — 5| and |p,, — 3|. Particularly, for fixed AX) = Z 9(am)g(1 — am).
N > 1, the above probability attains its minimum @4, = % el

andp,, = 3.

) - . This means that the degree of population diversity is a rough
Remark 3.3:Corollary 3.1 justifies the methods of scallngar}d yet easy to manipulate two-level discrete approximation

{0 prevent premature convergence. In fact, on the condition tf(])ar\ the degree of scatter of individuals generated from the
the average fithess of the current population is not changed,pulation

scaling will make the difference between the individual fitne$sO
and the average fitness, and heficg — %], even smaller.
Remark 3.4:From Theorem 3.3 and Corollary 3.1, we can
see that the probability of premature convergence at a gendo substantiate our theoretical results, a series of simulations
position is independent of the crossover probability. So theas carried out to apply CGA’s with parameté¥gpopulation
method of adapting crossover probability to prevent prematwsee),p,,, (mutation probability), ang. (crossover probability)
convergence presented in [8] seems to bare no theoretimah function optimization problem. The aim of the empirical
support. Adapting the crossover probability can merely speadalysis was three-fold: first, for a specific population size

IV. EXPERIMENTAL RESULTS
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and a specific mutation probability, we evaluated changes in TABLE |
the degree of population diversity over time (indicated by THE PERFORMANCE OF GAS WITH DIFFERENT PARAMETERS.
th ber of function evaluation By varving the mutation FOPT. Is THE OPTIMAL VALUE FOUND BY THE ALGORITHMS.
e num_ er of iunction € a_ua ons). By varying the mutatio ERR |s THE SQUARE ERROR OF OPTIMAL SOLUTION
probability, we further obtained and compared the trends of _
changes in diversity. The same analysis was then repeated-for =™ 0.000 0.001 0.005 0.010 0.500
nang Sty 1alys PeACAR O 1 0.9216 | 0.9480 | 0.9816 | 0.9891 | 0.9793
different population sizes to examine if there were significant;y orr. 100.32 61.23 19.70 11.16 14.50
differences. Second, for a fixed population size, we evaluated=" | fopt. | 09615 | 0.9672 | 0.9865 | 0.9892 | 0.9820
the performance of the CGA (indicated by its ability to search% | _err. 42.33 36.45 13.80 11.40 15.35
for the global optimal solution) under different mutation prob-}\: fopt. | 0.9838 0.9865 0.9869 | 09910 | 0.9822
e . ) . o . 200 err, 16.70 1412 11.49 8.87 12.50
abilities. Third, for a fixed mutation probability, we examined-
the performance of the CGA with different population sizes.
Except forp. whose valug_ was kept constant thFOUQhOU{han the case of a lower mutation probability, egg,,= 0.005
both N andp,, took on specified values for comparisons. Thg,q4 P = 0.01
. m = 0.01.
parameters of the CGA experiments were set as follows:

To summarize, the experimental results reveal that the
: : impact of population size on the CGA’s performance is more
Population sizeV = 50, 100, 200. favporable 5161'?1 that of the mutation probal:'?ility. For example, as
Crossover probability. = 0.85. shown in Table I, the performance of the CGA with= 200
Mutation probabilityp,,, = 0.000, 0.001, 0.005, 0.01, 0.50.  andp,, = 0.000 is better than that of the CGA with/ = 50
and p,, = 0.005. All these theoretical and empirical results
The optimization problem involved the search for the globaluggest that a more effective method to maintain the degree
optimum of the test function, the famous Sine envelope sié population diversity to prevent premature convergence is
wave function ([15]) to increase the population size instead of to adopt a high
mutation rate.
sin® \/22 4+ 22 — 0.5
[1.0 4+ 0.001(z? + z3)]? V. CONCLUSION

f(a:l, 372) =0.5—

This is a rapidly varying mutimodal function of two variables We have introduced in this paper a concept of degree
with z; = 0, z» = 0 as the unique global optimal solutionof population diversity, and quantitatively characterized and
having valuef(0, 0) = 1.0. Each variable was encoded bytheoretically analyzed the problem of premature convergence
22 b so that the string length of an individual was= 44. In CGA’s using the theory of Markov chain. Under the as-
Therefore, the maximal degree of population diversity wa$imption that the mutation probability is zero, we have proved
44. Each experiment was repeated in 30 independent runs i} the degree of population diversity converges to zero with
the average was taken as the basis for evaluation. probability one so that the search abl'lty ofa genetic algorithm
The simulation results of changes in diversity over timg€creases over time, resulting in premature convergence. An
are summarized in Figs. 1-3, which depict the variations 8Kplicit formula for the conditional probability of allele loss
the degree of population diversity with respect to the numb@t @ certain gene position has been established to show
of function evaluations for different population sizes. Théelationships between premature convergence and the CGA
simulation results are in support of our theoretical analyspgirameters—population siz€, mutation probabilityp,,,, and
in that the rate of decrease of the degree of populati®@pulation statistics,,. The formula also partly answers the
diversity is in inverse proportion to the population size an@duestion of where a genetic algorithm most likely converges
is proportion to|p,,, — %|_ The larger the population size, theto. A series of simulations have also been conducted to validate
longer the population is able to maintain its diversity. Theur theoretical analysis. We conclude that to prevent premature
closer p,, is to 1/2, the higher is the degree of diversitgonvergence, increase in population size tends to play a more
the CGA can maintain, i.e., the slower is the decrease important role than the variation of the mutation probability.
diversity. In particular, the degrees of population diversitf\ny effort in varying the crossover probability, unlike what
of the CGA'’s with different population sizes all dramaticallyhas been suggested by some research in the literature, has no
decrease to zero whem,, = 0 and the most rapid of them contribution in avoiding premature convergence.
is the CGA with the smallest population si2é = 50. With For further research, we at least can pursue the following
respect to population size and CGA performance, we obsef#® lines of investigation:
in Table | and Figs. 4 and 5 that the larger the population size,1) Use the degree of population diversity as a quantitative
the better is the performance of the algorithms. A moderate = measure to prevent premature convergence by adaptively
mutation probability, e.g.p,, = 0.01, also contributes to varying population size and mutation probability. Some
good performance while too large a mutation rate degrades the optimization procedures can also be explored to improve
performance. It is also observed that the smaller the population performance.
size, the more notable is the effect of the mutation probability 2) The degree of population diversity presented in this
on the algorithm’s performance (Fig. 5). In addition, though paper is exclusively based on the genotype of the pop-
the performance of the CGA with 0.5 mutation probability is ulation. Resorting to Theorem 3.3 of the present paper,
not very bad (Fig. 4), the convergence rate is obviously slower as has been outlined at the end of Section Ill, it is
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Fig. 1. The convergence curves of population diversity as functions of the number of function evaluations with different mutation propapititiels
fixed population sizeN = 50.
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Fig. 2. The convergence curves of population diversity as functions of the number of function evaluations with different mutation propabiitiels
fixed population sizeN = 100.
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Fig. 3. The convergence curves of population diversity as functions of the number of function evaluations with different mutation propabititiels
fixed population sizeN = 200.

1 T T T T T T T T T
R pm=0.010
pm=0.500 o iieeene.
..... / -
------ . / pm=0.005
o 0.95+
3
«
>
c
o
°
=
2
©
E
o
° 0.9
085 n ] 1 | 1 1 1 1 i 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8 1.8 2

. . 4
function evaluations x 10
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ps and fixed population sizeV = 50.
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pm and population sizeV. (@) pps = 0.000. (b) pas = 0.001. (c) pas = 0.005. (d) pps = 0.010.
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possible to introduce a more involving concept of degree We now proceed with the method of induction. Consider
of population diversity based on both genotype and ifgst the case ofA(Xy) = 2. We have
corresponding fitness.

Tij = Yy, 1<i<N, 1<5<0-2.
A Sothere ard < p, ¢ < N, p # g, so thatr,;_1) = y-1, and
PPENDIX zq = yi. Let Z = (Z1,--+, Zy) be a population such that
1) Proof of Theorem 3.1: . Zi = X;(i # p) and thatZ, is the individual generated by
a) LetY = (y1, 92, -+, m) € Liasy, -+, Tig 20y} Xo] crossing the two individualX’,, X, at thelth component, i.e.,
and
Zp = [xpla Lp2y +y Tp(i—1)» qu]
Xo =(X1, Xo, -+, X)) =(y1, " W)
Tl T2 ot Ty =Y.
= le x” x” ) By the definition of the selection operator and crossover
operator, we get
IN1 IN2 '+ INI

—

P{Y e X(1)/X(0) = X’(o)}
Since the degree of population diversity &f is A(Xo), we S
may suppose that the fir§{ X,) = I — A(X,) components of >P{X( )= Z/X(O) = X(O)}
P

the individuals inX, take the same bit value, i.e., > H X;) f(X,) - (X))
27 2
N i N N
Tij = Yy, 1<i<N, 1< < B(Xo). 7 Zf ) Zf(X
By the definition of degree of population diversity, for each > 0. (17)

1+ A(Xo) < j <1, there is an individual; in X, such that B
its jth componentz;; equals toy;. This proves the case of(Xy) = 2
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Suppose that the theorem is valid fatX,) = m — 1.
Consider the case of(Xy) = m. Then, we have

Tij = Yjs 1<i<N,1<j<l-m
and there existsl < iy < N such thatz;,; = y;. Let
Z(1) = (41, -+, Zy) be a population such tha,;,, = X,
and

Zi = [wi1, @iz, -+~ i # 1.

» Li(1—1)» Tig1]s

It is easy to see that\[Z(1)] = m — 1 and Y €
L[y17 Y2, 5 Yi—m, Y13 Z(]-)] And hence

P{X(1) = Z)/X(0) = %}

4 A

SX) (X)) | pe
N 1
> T)

> )

\

>0. (18)

By the assumption and homogeneity of the Markov chain

{X(k), k > 0}, there is an* > 0 such that
P{y e X(n* + 1)/X(1) = Z(1)} > 0.

Letn = n* + 1, we get

(19)

Thus, the theorem is valid for the caseX,) = m. The proof
of the first part of Theorem 3.1 is completed.

b) We write X C Lia;,, -, a
that each individual of X belongs to
L{a;,, -- s iz ,Xo] so that all the individuals of¥
have the same values at the componeits.-

(X

T (R

Xo] to express
the schema
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By the Markovian property, we get

—

P{X(n) cL/X(0) = X’O}

(]

SinceY € X(n) implies X(n) ¢ L, we have
P{Y e X(n)/X(0) = X’O} -

This completes the proof.

2) Proof of Lemma 3.1:For any homogeneous population
X € B and nonhomogeneous populatma’ngz B, it follows
from Theorem 3.1b) thaP{X(n) = Y/X(0) = X} = 0.
And hence

3) Proof otThgorem 3.2 Lo
a) Let P{X, Y} = P{X(k+1) =Y/X(k) =
eachX = (X, -, Xy) € SV, we have

> PXY)

?eB

>Z { (k+1) =

X}. For

—

P(X,B):=

Therefore, neither selection operator nor crossover operator N

can change the values at these components of the individuals

in the population. So, for each € L{a;,, ---

szt Kol
we have

y g

P{X’(k+ 1) CLfai,, -+, ai . 5 Xo]/X(k) = Y} =1

(%)’
To simplify the notation, let us writd: for

L[ailv Tty XO]

ﬂ(X )

S al SA(XG)

= Te—m 12
=[]
Leta = infp_g. P(Y, B), then0 < a < 1. If X(0) € B, it
follows from Lemma 3.1 thafX (n) € B for any k > 1. So

the part a) of Theorem 3.2 is valid.
Now assume thal (0) ¢ B and define

=inf {k > 1; X(k) € B..
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For anyk > 1, we get By the definition of the selection and crossover operators, we
Lo Lo get
Vi, Voo1¢B P{ym = ()/X’(())}
P(Yy_2, Yi-1)P(Yi—1, B) FX)F(X;)
<(1—-a) L, =2 Ty
i, JEIT [Z f(Xn)]
It follows that E(T") = Y72, kP{T = k} < +oo, where —
E(T) is the expectation of the random variafife And hence FXDF(X) T=m
P{T < 4o} = 1. From Lemma 3.1 and the definition &@f + Z Z N 12 ]
we know thatlimy, X (k) € B wheneverI” < 4o0. Therefore, i€lgr el Z FX0)
we getP{lim; X (k) € B} =1 as what we intend to prove. ot |
b) Denote byL(X) the minimal schema containing. B 4 . -
virtae of the fo%n(ulez of total probability, we have By + Z Z .fj(\:XZ)f(X].)Q m(ll Pe)
. . iclyr jed Z F(X0)
PNE(k+1)] < AR (B)]} 2
=3 P{X’(k+ 1) € L(X) x L(X) +3 Y _f(ffz)f(Xﬂ_)Q mlpc
x - x LX)/ X (k)= X VP{X (k) = X} =l |

2

=1
[Z f(Xi)

which proves (10). Since for eack € SV, el

Zf(Xw]

X f(X;
: )= by 3 i)
{AX(k+1):O/X(k):X} iely jely [

> f(Xn)]

= a?n +am(l—am)

P{)\[ (k+1)] < ALX(B)])/X (k) = X’}
<

2
= A;f (X—l) 3 >0 = am-
[Z f(Xi)] The four terms in the right hand side of the second equa-
=1

tion correspond to the four possible events of selection and

then an application of the formula of total probability yield§rossover all of which result in an individual with theth

the desired result (11). component being zero. The first one is the case that the
To get (12), it should be observed tha(?) — 0 for mth components of the selected parents are both zero and

eachY € B. It follows that limy X(k) € B implies crossover is arbitrary anpl im_material. Th_e second _and third

limy, A[X(k)] = 0, and hence P{limy A[X(k)] =0} = L. te_rms correspond to the situation that the first parent is selected

The proof is completed. with the mth component zero and the second parent has one

4) Proof of Theorem 3.3We only prove (13) and the proof at themth component. The difference is that the second term
of (14) is similar. Letz;;(1) be the jth component of the corresponds to the case that the crossover point is selected after

sth individual of X(l) andY = (y., -, ) the random the mth_ compo_nent and crossover e_ith_er occurs or dc_)es not
individual generated by the selection and crossover opera@§cyr (€., having crossover or not is immaterial), while the
from X(O). Then, for each third one is the situation where the crossover point is before
the mth component and crossover does not take place. The
P{xm(l) —0/X(0) =X fourth term captures the case that the first parent has one at
its mth component and the second parent has zero at the same
= P{ym =0/X(0) = X’} (1= pm) position, and crossover occurs with the crossover point being
selected before theith component.

+ P{yrn =1/X(0) = } P Therefore, for each

X
= P{ym =0/X(0) = X} (1= pm) P{xm(l) =0/X(0) = X} =am(1 = pm) + (1 = am)pm
n (1 _ P{ym —0/X(0) = X’}) Pm. (20) — i+ (1 = 2am)pm '
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Since theN individuals ofX(l) are independently generated
with the same manner, we get

Zim(1 —mlsngwﬁ@zx}

{ (1)loses allele 1 at gene fX (0)

(1]
(2]
(3]
(4]

?:1>§&

[ Pl = 0750 - X}

[anl (1 - 2arn )prn]

This completes the proof.
5) Proof of Corollary 3.1: From Theorem 3.3, we know

that 5]

P{X(l) loses an allele at gene /¥ (0) = X}

= [arn + (1 - 2arn)prn]N + [brn + (1 - 2brn)prn]N
= [arn + (1 - 2arn)prn]N + [1 - Qm — (1 - 2arn)prn]N
= f(@m; pm, N). (21)

Since0 < a,, + (1 — 2a,)pm < 1 for eacha,, andp,,, the
function f(a,, pm, N) decreases withv.

We write a = a,,, + (1 — 2a,,)pm to simplify the notation.
The partial differential off(a,,, pm, V) with respect toa,,

(6l
(7]

El

can be given as
[10]
af N1 _ _ _ o \N=171 _
3 =Na (1-2pp)—N(1-a) (1-2pm)
arn
=N(1=2pm)la™ ™ = (1= )], 1y
It can be shown that, for eadh < a,, < 1, df/dan,, <0
whenever0 < a, < i anddf/da,, > 0 whenever; < [12]

am < 1. That is to say thatf(am, pPm, N) is decreasmg [13]
when a,, g and increasing when,,, > 5. It follows that

the probablllty for an allele loss to occur at a gene positidh?
increases with|a,, — |. Similarly, we can prove that the
probability for allele loss to occur at a gene position increasé$]
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