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Nonlinear Measures: A New Approach to Exponential
Stability Analysis for Hopfield-Type Neural Networks

Hong Qiao, Jigen Peng, and Zong-Ben Xu

Abstract—in this paper, a new concept called nonlinear mea- points. (It should be noted that when neural networks applied as
sure is introduced to quantify stability of nonlinear systems inthe  associative memories, the attraction region of a stable equilib-
way similar to the matrix measure for stability of linear systems. rium point characterizes the error-correction capability of the

Based on the new concept, a novel approach for stability analysis - . .
of neural networks is developed. With this approach, a series of corresponding stored pattern, and hence, the identification of

new sufficient conditions for global and local exponential stability Such attraction region is fundamental.)
of Hopfield type neural networks is presented, which generalizes  In this paper, our purpose is to quantify the stability of

those existing results. By means of the introduced nonlinear mea- nonlinear systems by introducing several novel qualities similar
sure, the exponential convergence rate of the neural networks to to the matrix measure for linear systems, and hence, to develop

stable equilibrium point is estimated, and, for local stability, the h to stabilit vsis f i ¢ Th
attraction region of the stable equilibrium point is characterized. anew approach to stability analysis Tor nonlinear systems. ine

The developed approach can be generalized to stability analysis of developed approach can be immediately applied to the stability
other general nonlinear systems. analysis (particularly, the exponential stability analysis) of

Index Terms—Global exponential stability, Hopfield-type neural neural networks. W? will show that _bgsed on th? new approach,
networks, local exponential stability, matrix measure, nonlinear NOt only can a series of new sufficient conditions for global
measures. and local exponential stability derived, but also the exponential
convergence rate of the neural networks to equilibrium points
and the attraction region of a stable equilibrium point can be
derived.

N APPLICATION of neural networks either as associative The model we consider in the present paper is the neural net-
memories (or pattern recognition) or as optimizatioworks modeled by the equations
solvers, the stability of networks is prerequisite. Particularly,
when neural networks are employed as associative memorig&i(t)
the equilibrium points represent the stored patterns, and, the;,— = —
stability of each equilibrium point means that each stored pat-
tern can be retrieved even in the presence of noise. While when (1)
employed as an optimization solver, the equilibrium points
of neural networks correspond to possible optimal solutionghere

. INTRODUCTION

ui(t) | ‘
R, +j§::1 wi; fi(w;E)+L  i=1,2,...,n

and the stability of networks then ensures the convergence ta,(¢) neural voltages;

optimal solutions. Also, stability of neural networks is funda- R, resistances;

mental for network designs. Due to these, stability analysis of W = (w;;)  connection weight matrix;
neural networks has received extensive attentions in recent past; transfer functions;

years (see, for example, [1]-[11]). I external inputs.

To the best of authors’ knowledge, the approaches extensivelyrhe model (1) was suggested by Hopfield in [12] and there-
used in the existing investigation into stability of neural nefore referred to as Hopfield-type neural networks henceforth.
works are mainly those based on LyapunoVv’ direct method, thBite stability of Hopfield-type neural networks has received ex-
is, based on construction of Lyapunov functions. It is knowmensive attentions, due to the fact that some other neural network
however, that no general rule can guide how a proper Lyapun®wdels can be regarded either as direct generalizations or as ex-
function should be constructed for a given system. Therefotensions of Hopfied-type neural networks (see, e.g., [21]).
the construction of Lyapunov function becomes very skillful, The main difficulty for stability analysis of the model (1)
and consequently, there is little compatibility among the existingmes from the nonlinearity of the transfer functiginsAlmost
results. In addition, the techniques based on Lyapunov’s diregt stability analysis of (1) is conducted under some special as-
method can neither be used to estimate the convergence ratesupriptions onf;. These assumptions frequently include those
be used to determine the attraction region of stable equilibrisguch as differentiability, boundedness and/or the monotonic in-

creasing property [1]-[11]. In the early studies (say, e.9.,[2], [8],
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(see, e.g., [22] and [23]), the transfer functions are assumedatbere ' is a Lipschitz (locally) continuous opera-
be neither smooth nor strictly monotonic. This is because it htss defined on an open subsé of R", and z(t) =
been shown [14], [15] that when applied as associative men{a (t), z2(t), ..., z,(t)T € Q.

ries, the network (1)’s absolute capacity can be remarkably im-When{2 is the whole space ari is linear (an x n matrix),
proved by replacing the usual sigmoid transfer functions withis well known that the stability of (3) can be characterized by
nonmonotonic transfer functions. Motivated by these, in receatquality called the matrix measw€r") of L: If u(L) < 0,
investigations, the differentiability and/or the monotonicity othen system (3) is (globally) exponential stable [16], [17].

fi are abandoned. Instead, the Lipschitz conditionsfoare Our aim here is to extend the matrix-measure criteria for

supposed (see, e.g., [1]-[3]). linear system to the nonlinear case. For this purposd}'tehe
In the present investigation, we will only assume the fothen-dimension real vector space with vector ndfm ||, and

lowing properties off;: recall that the*-norm|| - ||; of R™ is defined, for each vector
(H) For eachi = 1,2, ..., n, f; is Lipschitz continuous, = = (x1, 2, ..., z,) € R", by

that is, there is a constaff; > 0 such that
Ifi(s) = £:(t)] < M;|s —t| foranys, t € R. ey =) il
=1

It should be noted that unlike the most previous investiga- ) i .
tions that assume the global boundednesg;ab imply ex- There are also other kinds of norms defineddn. We will al-
istence of equilibrium point of the networks by degree theot{f2ys Use, however, tfié-norm throughout the present research.
(see, e.g., [4] and [7]), we do not assume the boundedness of CIVen ann x n matrix A, denote, respectively, bjA|| and
at all. This may lead to difficulty in proving existence of equi”(A) its matrix norm and matrix measure induced by the given
librium points. In addition, we do not make any assumption€ctor normi[ - [ of £™. Then, by definitions
on the connection matri¥” = (w;;) which are limited in the

previous works to the classes of, such as, symmetry (i.e., for ||A|| = sup ”Ax”’ w(A) = lim M +s4)-1 4)
anyi, j = 1,2, ..., n, w;; = wy;), nonself-connection (i.e., a0 ] 50" s

;; = 0) or co-operative properties (i.eu;; > 0), see, for ex- . . .
;Umple )[8] and [23] prop (i-8u ) wherel represents the identity matrix di*. It should be noted

that the matrix norm depends on the endowed nori&'afand
thereby, so is the matrix measure. Whkmorm is used, we can
particularly show that the norin4||; and the measupe, (A) of
A = (a;;)nxn are given, respectively, by

For convenience, we denote by, in what follows, the min-
imum Lipschitz constant of the transfer functigy that is,

| fi(t) — fi(s)]

m; = sup T E— (2)
s,tER, 55t |t - 3| n
It is easy to see thak,; = sup,.p |f/(s)| wheneverf; is dif- 14l = 2 2 |ai;|
=

ferentiable onk.
This paper is organized as follows. In Section Il, we introduc"’énd

the nonlinear measure, as a novel generalization of the matrix -

measure in linear system, to characterize the stability of non- pa(d) = jpax | it Z ]

linear system. Based on the introduced notion, a new useful sta- i

bility analysis approach for nonlinear systems is developed. In

Sections Il and IV, the new approach is applied, respectivepﬁeasure we now make the following important observation:

to analyze the global and local exponential stability of Hop|=he matrix measure ot can be equivalently calculated by
field-type neural networks (1). A series of new general suffi-

In order to motivate a nonlinear generalization of the matrix

pient conditions for global and local equnential stability of (1). (Az, sign(z))

is presented. The exponential decay estimate and the attraction p(A) = sup =l )
region are also clearly characterized. This paper then concludes rCRT O :

in Section V.

where(w, v) denotes the inner product of vectarandv in R™,
and sigrix) = (sign(zy), sign(zz), ..., sign(x,))? is the sign
vector ofz, with sign(t) defined by

In this section, aiming to quantify the stability of nonlinear
system, we introduce the generalization of the matrix measure 1, fort>0
concept in linear system, and develop a novel approach to sta- signt)=< 0, fort=0 (6)
bility analysis of nonlinear system. In the subsequent sections,
this new approach will be applied to the detailed stability anal-
ysis of the networks (1).

Consider the system of the type

Il. NONLINEAR MEASURES

—1, fort <.

In fact, observing that, for eachc R"

dx(t)
dt

(1)

||lz||1 = (x, signz)) and
=F(x(t), txt ®3) {

lzlls = (=, sign(y)) forally € R"
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we find from (4) that whole R™ and F is linear, i1 (A) = mq(F) = mq(F, 2°)
for any z°. Here important is to note that the inequality

p1(A) = lim [l +s4] -1 ma(F, 2°) < mg(F) may strictly hold for nonlinear operators
s—0F s F (such an example will be presented in Example 1 below).
_ |z 4+ sAz|l1 — ||| Similar to the matrix measure, the following properties of
= lim i‘;fé sl the nonlinear measure defined by Definition 1 can readily be
_ _ proved:
> lim sup {#+ sdz, signx)) — {x, signz)) 1) ma(F + Q) < ma(F) + ma(G) for any two functions
s—0F 220 sllzlly I, G from Q into R™;
(Az, sign(z)) 2) mq(BF) = Bmg(F) for any function?” from  into R*
> sup Tzl (8) and anys > 0;
w0 ' 3) ma(al + F) = a + mq(F) for any function#' from 2
To derive the inverse inequality, we let into R™ and any real numbet, whereal + F' denotes
. the function mapping each vecteronto ax + F(x).
= sup (Az, sign(x)) We further prove several useful properties of the nonlinear
o0 llllL measure, which will be needed in subsequent applications. In

the following, we always assume thétis a nonlinear operator
defined on an open sét of ™.

Lemmal: If mq(F) < 0, thenF is a one-to-one mapping on
Qfi.e., F(z) = F(y) impliesz = y]. In addition, if2 = R",

and notice that, for any > 0 andx € R"

(L = sA)ellL 2 (I — sA)z, sign(x))

=(x, signz)) — s{Ax, sign(z)) then £ is a homeomorphism o™ (that is,F" is an one-to-one
and onto mapping).
2 (1= sr)l|zllx Proof: Suppose:, v € Q2 satisfyF(u) = F(v) butu # v.

this implies that whenever< »~1, (I—sA) will be nonsingular Then, by (9), we find

and its invers¢l — sA)~! satisfies (F(x) — F(y), signz —y))

mo(F) = sup
L < 2,yCSay Iz —yllx
I = )7, < 1—sr o {F(w) = F(v), sign(u—v)) _

Hence, by (4), we obtain llw — |l

which contradicts tang(F) < 0. Therefore, the one-to-one

pa(4) . . property of 7 follows.
— lim [(IT=sA) 7|, =1+ T +sAll —|[(I—sA) 1|, Suppose, furthermore, that is the whole space. Then
s s mq(F) < 0implies that, for allz, y € £
1 1 1 :
< lim - — 1)+ lim = ||[I4+sA—(I—-sA)7Y| [£7(2) = E@)ll 2 (F'(x) = F(y). sign(z —y))]
s—0t s\ 1 — s7 50t 5 L

1 > —(F(z) = F(y), sign(z —v))
<r+ lim - H((I— s7A%) — I)(I- sA)_1H1 <r,

om0t 8 > —mo(F)|lz -yl
as expected. _ _ This shows that, for any fixed, ||F(z)|l1 — oo whenever
Ir_1 light of the above observation, we now introduce the thle — oo, that is,F is norm-coercive. By norm-coercive the-
lowing concept. orem [18], thus,t" is a homeomorphism oR™. This implies
Definition 1: Suppose€? is an open set aR™, F'is an oper- Lemma 1. O
ator fromQ into R*, andz® € Q is any fixed vector. Lemma 1 particularly implies that(x) = 0 will have and
1) The constant only have one solution whenevér = R™ andmgq(F) < 0,

. that is, the solution set’~*(0) contains exactly one point in
mQ(F) _ sup <F($) - F(y)7 Slgr(x - y)> (9) this case.
@,y Q1Y lz —ylh Lemma 2:If z* € Q is an equilibrium point of the system
(3) andmq(F, *) < 0, then, there is no equilibrium point {n
other thanz* [i.e., the equilibrium point of (3) is unique if].
Proof: Suppose: € Q is any other equilibrium point of
(F(z) — F(z°), sign(z — 2°)) (3) different fromz*, i.e., F'(w) = 0, w # z*. Then, by (10)

is called the nonlinear measure Bfon 2.
2) The constant

F 2% =
me(F, =7) T&Suf;,,o |z — x| . (Fz) — F(a*), sign(z — 2*))
(10)  mo(F, z*) = el e

is called the relative nonlinear measurefoft x°.
By this definition, it is clear thatng(F, %) < mq(F) for - (F(u) — F(z*), signu — z*))

any z° and all open sef!. However, wherf is specially the = llw — a*||1 =0
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Sincemq(F, =*) < 0, this impliest* = u, contradicting to the Proof: We only need to verify the exponential estimate
assumption. This contradiction shows the uniqueness of equil{3). Similar to (12), we have
rium point of (3) in{} .
Lemmas 1 and 2 show that, exactly as the matrix measure tiar (£) — y()l1
can characterize the uniqueness of equilibrium point of linear dt
system, the nonlinear measure and relative nonlinear measure d(z(t) — y(t)) sign(z () — y(t))>
defined here can also characterize the uniqueness of equilibrium dt ’
of nonlinear system. In the following, we will further justify that _ ; _
the nonlinear measures can actually characterize the stability of Fla(0) = Fly(), signAe(t) —y(H))
nonlinear systems. = (F-A7 (Ax(t))—F- A7 (Ay(t)), signAz(t)— Ay(t))
Theorem 1:If mq(F") < 0, then there is at most one equi-

IA

/%/\

—1
librium point of (3) inQ2. Moreover, any two solutions(¢) and < My (F- A7) - |4z () — Ay
y(t) in Q initiated, respectively, from® andy® €  att, sat- < maey(F - A7 min(a;) ||=(t) — y(t)]|1.
isfy 1<i<n

lz(t) — y(®)|1 < emQ(F).(t_to)on _ O, forallt > fo. I(—|1e3r)10e, integrating the both sides yields the expected eEsltlmate
(11) Remark 1:In Theorem 1 (Corollary 1), if2 is the whole
space, then, (3) has a unique equilibrium point, and, the expo-
Proof: Sincemq(F) < 0, Lemma 1 implies thai” is nential decay estimation (13) shows that any trajectory of (3)
one-to-one int, that is, there is at most one € 2 such that will eventually evolve to the Unique equilibrium point, that is,
F(u) = 0. Accordingly, there is at most one equilibrium pointhe system will be globally exponentially stable.

of (3) in . As an immediate consequence, we can claim that (3) is glob-
By (7), we can show that, for al > 0 andt > s + tg ally exponentially stable if + «F" is contractive with respect
to I*-norm for some positive number. Indeed, for any positive
l(t) =yl — llo(t — 5) — y(t — 5)l numbera,

S

(((t) —y(®) —(2(t=s) — y(t=s)), signa(t) —y(t)))

s

(I + aF)(z) = (I + aF)(y)lh
> (I +aF)(x) = (I + aF)(u), signz — y))
= [le = yllL + a(F(x) = F(y), signz —y))

<

Hence, the derivative dfx(t) — y(¢)||1 satisfies almost every- _ _
where in intervalt,, o) that (see, for example, [19, Th. 6.9, pholds for allz, y € R". Hencemg-(F) < 0if I + ol is
129]) contractive for some: > 0. This shows that Theorem 1 (Corol-

lary 1) is sharper than the well-known contraction mapping ap-
d||z(t) — y(®)|1 - d(z(t) — y(t)) sigr(z (1) — 4() proach for stz_:\bility analysis. Furthermore, we can show that the
at = a , SI9 Y present nonlinear measure approach can apply to the systems
] that the contraction mapping approach can not apply to. Such a
=(F(z(t)) — F(y(1)), signz(t) — y(t)))  system is, for instance, given by

< ma(F) - le(t) - u(t)|1- (12)

o'(t) = —23(t) —z(t), t>0.

Integrating the above differential inequality, we then obtain ”I?n fact, let F'(z) = —(1/3)2% — z andQ2 = R, it is then easily
exponential decay estimation (11). This finishes the proof @fe that the minimal Lipschitz constantlof: o.F is infinitely

Theorem 1. L' Jarge for any positive number while mr(F) < -1]
Given any two operator$’ and G we denote byF” - G the  Thegrem 2: Supposer* is an equilibrium of system (3) and

composition off” andG (whenever it is possible) in the sensg- ;g g operi!-ball centered at*. If mp(F, 2*) < 0, then

that F' - G(z) = F(G(x)) for all = in the domain ofG. By . . o .
Definition 1, it is easy to verify thatwo(£7) < 0 if and only if b ;n¥ ?g:u;fx(i) ?f.(?’) initiated from"™ € I"will be kept
—_— 01

Ry . . o :
mae) (£ A7) < 0 for some diagonal strictly positive matrix 2) z* is exponentially stable, with its attraction region con-

A. From this, a corollary immediately follows. - d. furth h il d .
Corollary 1: If m 4 (F - A7) < 0 for a diagonal matrix taining I, and, furthermore, the exponential decay esti-
' AlD mation ofz(t) is governed by

A = diaglay, a9, ..., a,) With a; > 0, then there is at most
one equilibrium point of (3) if2. Moreover, any two solutions < (0 ]| gmr (Rt (t—to)
#(t) andy(t) in Q initiated, respectively, fromt® andy° € Q () =27l < lla™ =l - e ' (14

atto satisfy Proof: Denote byz(t) the solution of (3) initiated from

the vectorzy € I'. We first prove that:(¢) € I for all ¢ > #,.
Let ., denote the maximum time such thaft) € T for all
2% =40, forallt > . (13) t € (to, teo), then we only need to prove that, is infinite.

l[2(t) — y(B)]|; < emam AT minegicn e (t—to)
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Suppose this is not, i.et,, < +oo. The pointz(t..,) then Example 1: Consider the nonlinear system (3) with the func-
lies on the boundary df due to the extension theorem of thdion £ specified by

solution. Similar to (12), we can justify that A
wr

F(.Z‘) = 51112x - m,

et . z € R.
WO =T < (8, 2 - ) — 2l
t Obviously,z* = 0 is an equilibrium point. By Definition 1, we

for all ¢ € (to, to ). Integrating this differential inequality then ¢an show that

yields _ .S _
() = sup ) F|<y>1 s|ngn<x v)
||.’L’(t) _ $*||1 < ernr(F,ac Y(t—to) | ||.’L’0 _ $*||1 (15) 7y
- [sin? z — sin? y] - signz — ¥) A
for all ¢ € (to, to0). Sincemr(F, z*) < 0, this immediately B #{j |z — vyl 4+ 72
implies dn
* * w
lo(te) = %11 < llzo — 2"l and
F(z)-si
Soz(t.,) can not be on the boundary Bfbecause of the open- mr(F, z*) = sup W
ness of", which contradicts to that(t.,,) is on the boundary of 270
I. Thus,t., = +oc, and the whole trajectory(¢) will be kept sin?(z) - sign(z) A7
. . = sup — < 0.
in I, as claimed. 2220 |z 4+ 72
The rest of Theorem 2 is immediate from (15). This completes
the proof. o L That is,mg(F, #*) < mg(F) holds. So, by Theorem 2, the
Corresponding to Corollary 1, we likewise have the followingquilibrium pointz* = 0 will be globally exponentially stable
corollary. (with I' = R). However, the nonlinear measure Bf[namely,

Corollary 2: Suppose:* is an equilibrium of system (3) and , , ()] is strictly larger thann g (F, z*), the relative nonlinear
I'isan operi'-ball centered at*. If m () (F-A™", Az*) <0 measure.

for someA = diagay, as, ..., a,) with a; > 0, then, Theorems 1 and 2 show that the (relative) nonlinear measure
1) any solutionz(¢) of (3) initiated fromx® € I" will be kept do have characterized the stability of nonlinear system in the
inI" for anyt > to; same way as the matrix measure for linear system. This leads

2) z*is exponentially stable, with its attraction region conto a new approach for stability analysis of nonlinear system. In
tainingI', and, furthermore, the exponential decay estsubsequent sections, we will apply these theorems to conduct
mation ofx(¢) is governed by stability analysis of Hopfield-type neural networks (1), demon-

strating the power of the developed new approach here.

[[(t) — 2" [|1
< on — |, A (F-AT Az®) ming << (i) (t—to) IIl. GLOBAL EXPONENTIAL STABILITY OF NEURAL NETWORKS

(16) In this section, we apply the nonlinear measure approach in-
troduced in the last section to analyze the global stability of

Remark 2: Theorems 1 and 2 show that if the (relative) nonr_1eura|-network system (1). A series of general criteria for the

linear measure is less than zero, then the system (3) is expor%ﬂpaI exponential stability as well as the exponential decay es-

tial stable. This conclusion is exactly a direct generalization Bfnanon on the solut|0n§ of (1) will be provided.

matrix criterion of linear system stability. Theorem 3: If there exists a set of real numbeis> 0 such
It should be also noted, however, that we have incorporat t

into Corollaries 1 and 2 an adjustable parameter maltyixhich LS

makes Theorems 1 and 2 more versatile in concluding stability Z d—’ lwij| < (Rym;)~1, i=12 ...,n a7)

of nonlinear system in general, and much more facilitating in =1 ™

stability analysis of neural network system in particular. Thit.T,1 ding t h set of ext | induth |
will be substantiated in the next section. en, corresponding to each set of external iniitthe neural

Remark 3: Sincemr(F, #*) < mr(F) for any operator network (1) is globally exponential stable, and the exponential

F and open ball’ centered at*, the conditionmr(F) < 0 decay estimate is governed by
can sufficiently guarantee the exponential stability of system

(3). But, it should be remarked that the relative nonlinear mea-  |ju(t) — «*||1 <
suremg(F, z*) may be strictly less than the nonlinear measure

mq(I"), and hence the relative nonlinear measure is sometimes |l = 2*||y, forallt >t (18)
more precise than the nonlinear measure for characterizing the

exponential stability of equilibrium point under considerationwherew(¢) is any solution of (1) initiated from.’, andb =
The following example serves to clarify this statement. 1 —maxi<j<n (MiR; Y iy (d;/di)|wij]).

max(di) (-~ ma(R:))(1—ta)
min(d;)
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Proof: Define the operatorl'(z) = (Fi(x), Fa(x), whereb =1 — max(0, u) with
.o, Fo(2)T on R by

J
z; = ) po= max ¢mil; | wpj+ E |wi
Fi(@)= -5+ wifile) + L, i=12...n s { ( = b
=

andu(t) is any solution of (1) initiated fron°.

for any x = (21,22, ...,2,)Y € R, P = dlag Proof: Define the operato#’ and the matriced®, A as
(di, da, ..., d,) and At = diagRy, Ra, ..., Ry). in the proof of Theorem 3. Since eaghis monotonically in-
is noted that, for any, v € R™, (7) implies creasing, we have
(P7t F(PA™'2) — P71 F(PA™Yy), sign(z —y)) |fi(t) — fi(s)| = (fi(t) — fi(s))sign(a(t — s))
- _ Z |z — v + Z dit Z wi for anyt, s € R ande > 0. We calculate that, for any, y €

= = = Rn!
~(fi(djRyz;) — fi(d;Rjx;))sign(z; — i)
" n (P IF(PA 'z) — P 'F(PA™Yy), signz —y))
< - Z s =il + > my iRyl -y n n n
1 j=1 :—lei—yi|+zdf,_lzwij
i=1 i=1 j=1

it wij| < =bllz — | (19) .
; ’ 1 (fi(diRyzy) — fi(di Ryy;)) sign(x; — vi)

which showsmpg.(P~'F - P - A=Y) < —b < 0 because of < —llz—yllh + Z [fi(diRyz;) — fi(d; Ryy;)]
assumption (17). Therefore, by Lemma 1 and Corollary 1, we i=1

conclude that the system n
: Z drlw“ Slgl"(l‘i — yz)
=1

dx(t)

=p1l.F. >
o SEPTEPa@), 2t @0 <zl
has an unique equilibrium point* which is globally exponen- + Z wjj d; “HNE(diRyxy) — £i(di Ry
tially stable, and the exponential decay estimation of the solu- j=1

tion z(t) of (20) obeys to
+ 3 d;  wig| -1 f5(di Ryy) — fj(deij}

||$(t) _ -T*Hl < 6(—!;/ maX(Rj))(t_tO)HaZO _ x*Hla t >t oyl
wherez(t) is assumed to be initiated from the vectdr. Ob- .
. . . . - — Y1 + wii + wy
serving thatz(t) = Pu(t) is clearly the unique solution of | I Z ¥ ; i

(20) wheneven(t) is a solution of (1). Theorem 3 therefore
follows. O : dfllfj(d*R*xj) — fi(d; Ryu;)l}
Theorem 4:If each transfer functiorf; of (1) is monotoni-

cally increasing and there exists a set of real numbers 0 < ~(1 = max(0, w)llz =yl

such that
Hence, by using the condition (21), we gek-. (P~ -F - P -
A7) < —b < 0. Thus, the rest of the proof can be completed
w;; + Z lwij| < (m;R;)™1, j=1,2,...,n (21) similarto that of Theorem 3. U
itj d; Remark 4: It is worth emphasizing the significance of incor-

poration of the adjustable parametesinto (17) and (21) in

then, corresponding to each set of external inpythe network 1heorems 3 and 4. This not only makes it possible that many
(1) has a unique equilibrium point* which is globally expo- known global exponential stability criteria in the literature can

nential stable, and the exponential decay estimation is given'sy deduced from Theorems 3 and 4 (through specific choice of
the parameterd;), but also can directly yield some new cri-

max(d;) teria f_or global expone_ntial stabi_lity of the networks (1). The
lu(t) — u*||y < ———d e/ max(RDEto) |, _ %] following corollary provides us with such examples.
min(d;) Corollary 3: If each transfer functiorf; is differentiable and
t >ty (22) satisfies0 < fi/(r) < g; forall » € R and some3; € R,
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then, corresponding to each set of external ingutthe neural ~ Remark 5: Driessche and Zou [2] recently proved the global

network (1) is globally exponential stable provided stability of (1) under the condition 2) of Corollary 3. But, in
1) w3 Ry + B Ry Yor; lwij| < 1, or their theorem ([2, Th. 3.1]), they additionally require that each
2) wy; 3R, + E;, /3iRiJ|wij| <1, or transfer functionf; should be bounded, and even so, no conver-
3) w,; 3 R; + B th;, Rijw;j| <1, or gence rate of the solution of (1) to the unique equilibrium point
1] 3 Rk ? .
4) w;;B;R; + R, E;;j Bilwi;| < 1. has been obtained. _
forall j = 1,2 n. In any case when one of these con- Remark 6: Under the same assumptions on the transfer func-
ditions is satisfied, the following exponential decay estimatiotlb?nS with Corollary 3 ' Fang _and Kincaid [3] h-ave ever proved
holds: the global exponential stability of (1) but required that

+
||y < o oY/ max(R))(E—to)],,0 _y + -
lu(t) = w'lls < e bl @ 3 gl AR <1 G=v2 a2

itj
whereu(t) is any solution of (1) with initial point.®, «* is the

unique equilibrium point, and wherea™ = max{0, a} for reala. It is seen that these require-

ments naturally implies the condition 1) in Corollary 3. So their
a) result is a special case of Theorem 4.
Under the assumption that each transfer funcfipgatisfies
+ maxi<i<n Sup,cg fi(r) = 1, Matsuoka [20] has also shown
the global stability of the network (1) witR; = 1 but provided

a=1,

n
b=1-— | max ijj wjj—i—g |w“|

1<5<n

i#
in case 1) max 4§ wj; + Z lwij| o < 1. (25)
b) i#j
_ max(3; ;)
~ min(B;R;) It is clear that (25) implies condition 1) of Corollary 3. So his
" + result is also a special case of Theorem 4.
b=1— | max < m;R; | w;; + Z PiRi |wy; | Moreover, it should be pqted t.hat 'in Fang anq Kincaid _[3]
1<j<n Pyt BiR; and Matsuoka [20], no explicit estimation on solution decay like
) (23) is given.
in case 2) We further present an example to show that Theorems 3 and
C) 4 can yield completely new criteria for stability of (1).
_ max(f) Example 2: Consider the networks
~ min(R;)’
"R, " du;t(t) = —ui(t) + 0.9 f2(u2(t)) + 1y
b=1- max ijj wj; + Z = |w“| (26)
1<j<n —~ R dus(t)
1] dt = —UQ(t) + 0.55 fl (ul (t)) + IQ
in case 3)
d) where f1(r) = tanh(2r) and f>(r) = tanh(r) for all real
_ max(f3;) numberr. Itis calculated that < f{(r) < 2and0 < fi(r) < 1
~ min(3;) for all real number. Through setting?;y = Ry = 1; wy; =
+ woo = 0, wio = 0.9, we1 = 0.55; /31 =2, /32 =1 andd1 =1,
"B des = 1.11, we easily see that the criteria (17) and (21) both are
b=1- 11<n;l<Xn miR; | wj; + Z /7 lwis | met. Therefore, corresponding to any external ingutand/,,
- i#j the network (26) will be globally exponential stable according
in case 4) to Theorems 3 and 4, and, furthermore, the exponential decay

estimation is given by

Proof: Itis easily known that, in this case, eafhs mono-

tonically increasing and its minimum Lipschitz constantcan g (£) — uf] + |ua(t) — uj)
be upper bounded b¥; (i.e.,m; < 3;) becaus® < f/(r) < 5;

for all € R. We also can readily check that the condition (21)
will hold with d; = 1, d; = 3; R;, d; = R; andd; = j3; respec-
tively corresponding to the case 1), 2), 3), and 4). Consequentifhere(u, (¢), u2(¢))? is any solution of (26) with initial point
the stability and the exponential decay estimation (23) immedi:?, ©3)7 att,, and(u?, w3)T is the unique equilibrium point.
ately follow from Theorem 4. O However, we can check that in this example the conditions (24)

< 1AL () — |+ fug — |}
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Fig. 1. A phase plane portrait of the trajectories of the neural network defined in Example 2.

and (25) are all not satisfied. See Fig. 1 for the phase plotswfieremn;(I') is defined by
(26) with initial points (-10, —10), (—1, —10), (8, 10), etc.
() — fi(us
= s OB o
IV. LOCAL EXPONENTIAL STABILITY OF NEURAL NETWORKS relyr#u; = “J’|

As mentioned previously, when neural networks (1) are agy this case, the exponential decay estimation of solution of (1)
plied as associative memories, their equilibrium points reprg-given by

sent the stored patterns and the stability of any equilibrium point
will imply that_the corresponding stored pattern can be r_e_ca_ller:]ﬁi () — ¥y < (b max(B)IE=t0)|13,0 g%
from some noises. So, the number of stable (locally) equilibriu
points characterizes the capacity of the neural networks (1), and,
the attraction region of each locally stable equilibrium points
characterizes the error-correction capability of neural networkdiereb = 1 — max; <<, {Rym;(I) Y27, |wij|}, andu(t)
(1) (see, e.g., [2] and [14]). Thus, the local stability analysis é the solution of (1) initiated from® € T".
(1) is extremely important (see, e.g., [3]-[6], etc.). In this sec- Proof: With F, A defined as in the proof of Theorem 3,
tion, we apply the relative nonlinear measure approach devee can verify that, for any € A(T"),
oped in Section Il to analyze the local exponential stability of
2). (F(A™'2) — F(A™" Au"), signz — Au®))

For convenience, we denote By the projection of a subset
2 on the:th axis of R™ in this section.

t>to
(29)

< =b||lx — Au*|;-

Theorem 5: An equilibrium pointu* = (u}, ub, ..., us)T
of (1) is exponentially stable and its attraction region contaiddhis, together with (27), implies that sy (F - A™, Au*) <
I' (wherel is any operit-ball centered at*), if —b < 0. Therefore, according to Theorem 2, we conclude that

u* is exponentially stable with' as a part of attraction region.
" The exponential decay estimation (29) is an immediate conse-
RJmJ(]_“) Z |w“| <1, j=1,2 ....n (27) quen(‘:e of (14) Withninlgign(ai) = {maxlgign(Ri)}’l. The
— proof is then completed. O
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Morita [14], and Yoshizawat al. [15] have shown that as The above example demonstrate how Theorem 5 can be ap-
an associative memory model the absolute capacity of (1) maljed to provide sufficient conditions for local exponential sta-
be remarkably improved by replacing conventional sigmoioility of the neural networks even when all transfer functions are
transfer function with the nonmonotonic transfer functions likeonmonotonic, and, how the decay rate of the solutions and the
L emeu 14 et (ul-) attraction _region of a stable equilibrium point can be estimated.
flu) = — . - (30) However, it should be noted that Theorem 5 could be sharpened

L+emen 14 e (ul=h) and improved if all the transfer functions are monotonic. We

wherec, ¢ andh are positive constants aridis a negative State such animprovement as the following theorem.

constant (see, also [2]). Now, we present an example to show/ Neorem 6: Supposex” is equilibrium point of (1) and™

how Theorem 5 can be successfully applied to conduct exgs-a"n opgnll-bgll centered at". If each transfer function is

nential stability analysis of the neural networks with nonmondPenotonically increasing oh, and

tonic transfer function defined by (30).
Example 3: Consider the networks

mi(IVR; | w,; +Z lwii| | <1, 7=12 ...,n
4 iy
= —uw(t)+ Y wy flu(t),  i=1,234 (33)
J=1 then, 1) each solution(t) of (1) is kept inI" whenever it ini-
(31) tialized from a pointu® in I'; 2) »* is an exponential stable
where f; are as defined in (30) with the positive constant  equilibrium point withI" as a portion of the attraction region;
c > landk = —1, and the connection matri¥’ is defined as 3) the exponential decay estimation of the solutigt) is gov-

dui (t)
dt

follows: erned by (29) withh = 1 — max{0, s} andp = maxi<j<n
0.5 —02 095 08 {my(D)R; (wjj + 37055 [wisD}- o
9 -3 01 1.2 Proof: Define the operatof’ and the matrix4 as in the
W= 06 04 -03 o1 proof of Theorem 3. Then, similar to the proof of Theorem 4,
—09 —-04 015 0.7 we can show that, for any € A(T")

Clearly,(0, ..., 0)T is one of the equilibrium points of (31). (F(A™ z) — F(A™" Au®), sign(z — u*)) < =blz — Au*[|,.
With Theorem 5, we consider the stability of this equilibrium

point. So, by (10) and (32)m 4y (FA™!, Au*) < —b < 0. From
Let us define the open ball = {(z1, ..., z,)T € R* this estimation, all the conclusions are readily followed from
%, || < &} with an adjustable parametér> 0. Obvi- Corollary 2. The proof is completed. [
ously, the projectiol’; of I" to theith axis is the interval£5, §) Ve remark here that, in the most previous investigations, the
fori =1, ..., 4. From (27), we then calculate that differentiability of each transfer functions is necessarily sup-
posed in order that either Lyapunov approach or the classical
miT) =  sup | fi () linearization method could be adopted. As compared, no any
! wcTiuzo | differentiability of the transfer functions is assumed in our Theo-

rems 5 and 6. This reveals the promising of the new approach de-

—cu clu—h
= sup 1|1z 1 S veloped. However, we notice that wheneygis differentiable,
ucliuo [u] |1+e7e 14 ecluh) Theorem 5 can be further improved and simplified.
_ch Corollary 4: Supposew* = (u}, us, ..., u:)T is an equi-
1 2(14+¢ ") . ; no o
==  max — . librium point of (1) and each transfer functigfy is differen-
u=—>=§, or, u==46 1+ e—ch + e + eclu—h)

tiable in the interval 4; — 6, v + ¢) for someé > 0, and

(32) 0< fl(r) < piforallr € (uf — 6, uf +6) and somes; > 0. If

If 6 is chosen such that, (I') = mo(I") < 1/4, ms(T") < N
1/1.5 andmu(I') < 1/2.8, then we see that (27) holds for 4 . Ny - 1 i_1 9 34
R, = R, = Ry = R, = 1. Consequently, by Theorem 5, Pilti | wis +Z il | <1, J=12m (34)

(0, ..., 0)T" is exponentially stable, its attraction region con- 7
tainsI’, and, further(r)‘nore, any 50|UEC(7@61(t)7 -, ug(t)T of  then, 1) any solution(t) of (1) lies in the regiod” = {u € R™:
(31) initiated fromu” = (uf, ..., ug)” € I satisfies, forall y~ |y, —y7| < 6} wheneveritisinitiated from® € T'; 2) v*
t 2t is exponentially stable, with' as a part of its attraction region;
and 3) the exponential decay estimation of the solution is given
—S<u() <8, i=1,2,34 oy D neee d ?
and
||U,(t) _ U,*H S 6(—b/ 11lax(R7-))(t—t0)||u0 _ UI*Hla t 2 tO
4 4
S fui(d)] < D S jud) (35)
=1 =1

whereb = 1 — max{0, ¢} andp = maxi<;<n {G;R;(w;; +
whereb = 1 — max{m (), ..., ma(T)}. E;;j |wij|}-
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Proof: It follows from0 < f/() < 8; and the monotonic  [2]
increasing property of; thatm;(I') < j3; [wherem, (') is
defined as (27) witl;, = (uf — 6, uf + §)]. So Theorem 5 3]

directly implies Corollary 3. O

Remark 7: The above theorems not only characterize the
local stability of equilibrium point under consideration, but also
tell us whethefl” is a part of attraction region of stable equilib-
rium point or not. So, when the neural network (1) are applied [°]
as associative memories, their error-correction capacity can be
roughly characterized. [6]

[71
V. CONCLUSION

Through generalizing the matrix measure concept to non-g
linear operator case, we have defined two important qualities
called the nonlinear measure and the relative nonlinear measur
of a nonlinear operator. We have shown that these two qualities[.%
can be applied to quantify stability of nonlinear systems in a
way similar to the matrix measure for stability of linear systems/[10]
leading to a novel and powerful approach to the stability anal-
ysis of neural networks. With the new approach, we have for11]
mulated a series of new generic sufficient conditions for global
and local exponential stability of Hopfield type neural networks,[lz]
which generalize most existing criteria. Moreover, we have em-
ployed the new approach to estimate the decay rate of the soIH—?’]
tion of neural networks to its stable equilibrium points, and to
characterize the attraction region of the local stable equilibrium
point. In most previous investigations, no such convergence raté?
and attraction region identification was made for Hopfield typey; s
neural networks.

The significance of the new developed approach can b
summarized as follows. 1) It can be applied to characterize bot
global and local stability of Hopfield-type continuous neural[17]
networks even if the transfer functions are neither differentiableflgl
nor monotonic. 2) It can yield very generic global stability
conditions with a set of adjustable parameters (cf. Theoreri9]
3 and Theorem 4) which then often offer much more generié2]
stability criteria than any other approaches. 3) It provides th?zl]
useful means of quantifying the error-correction capability of
the stored pattern by directly evaluating the related minimum
Lipschitz constants of the transfer functions when the networkg,,
are applied as associative memories. 4) It is not only valid
for the neural network system of Hopfield-type (1), but also 3
for other general nonlinear system (see, for the generalize[gi ]
Hopfield-type neural networks

i6]

du; (t) ui(t) |~ -
080 (35 ) 1
j=1 k=1
t=1,2, ..., 7’L)
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