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Nonlinear Measures: A New Approach to Exponential
Stability Analysis for Hopfield-Type Neural Networks

Hong Qiao, Jigen Peng, and Zong-Ben Xu

Abstract—In this paper, a new concept called nonlinear mea-
sure is introduced to quantify stability of nonlinear systems in the
way similar to the matrix measure for stability of linear systems.
Based on the new concept, a novel approach for stability analysis
of neural networks is developed. With this approach, a series of
new sufficient conditions for global and local exponential stability
of Hopfield type neural networks is presented, which generalizes
those existing results. By means of the introduced nonlinear mea-
sure, the exponential convergence rate of the neural networks to
stable equilibrium point is estimated, and, for local stability, the
attraction region of the stable equilibrium point is characterized.
The developed approach can be generalized to stability analysis of
other general nonlinear systems.

Index Terms—Global exponential stability, Hopfield-type neural
networks, local exponential stability, matrix measure, nonlinear
measures.

I. INTRODUCTION

I N APPLICATION of neural networks either as associative
memories (or pattern recognition) or as optimization

solvers, the stability of networks is prerequisite. Particularly,
when neural networks are employed as associative memories,
the equilibrium points represent the stored patterns, and, the
stability of each equilibrium point means that each stored pat-
tern can be retrieved even in the presence of noise. While when
employed as an optimization solver, the equilibrium points
of neural networks correspond to possible optimal solutions,
and the stability of networks then ensures the convergence to
optimal solutions. Also, stability of neural networks is funda-
mental for network designs. Due to these, stability analysis of
neural networks has received extensive attentions in recent past
years (see, for example, [1]–[11]).

To the best of authors’ knowledge, the approaches extensively
used in the existing investigation into stability of neural net-
works are mainly those based on Lyapunov’ direct method, that
is, based on construction of Lyapunov functions. It is known,
however, that no general rule can guide how a proper Lyapunov
function should be constructed for a given system. Therefore,
the construction of Lyapunov function becomes very skillful,
and consequently, there is little compatibility among the existing
results. In addition, the techniques based on Lyapunov’s direct
method can neither be used to estimate the convergence rate nor
be used to determine the attraction region of stable equilibrium
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points. (It should be noted that when neural networks applied as
associative memories, the attraction region of a stable equilib-
rium point characterizes the error-correction capability of the
corresponding stored pattern, and hence, the identification of
such attraction region is fundamental.)

In this paper, our purpose is to quantify the stability of
nonlinear systems by introducing several novel qualities similar
to the matrix measure for linear systems, and hence, to develop
a new approach to stability analysis for nonlinear systems. The
developed approach can be immediately applied to the stability
analysis (particularly, the exponential stability analysis) of
neural networks. We will show that based on the new approach,
not only can a series of new sufficient conditions for global
and local exponential stability derived, but also the exponential
convergence rate of the neural networks to equilibrium points
and the attraction region of a stable equilibrium point can be
derived.

The model we consider in the present paper is the neural net-
works modeled by the equations

(1)

where
neural voltages;
resistances;
connection weight matrix;
transfer functions;
external inputs.

The model (1) was suggested by Hopfield in [12] and there-
fore referred to as Hopfield-type neural networks henceforth.
The stability of Hopfield-type neural networks has received ex-
tensive attentions, due to the fact that some other neural network
models can be regarded either as direct generalizations or as ex-
tensions of Hopfied-type neural networks (see, e.g., [21]).

The main difficulty for stability analysis of the model (1)
comes from the nonlinearity of the transfer functions. Almost
all stability analysis of (1) is conducted under some special as-
sumptions on . These assumptions frequently include those
such as differentiability, boundedness and/or the monotonic in-
creasing property [1]–[11]. In the early studies (say, e.g., [2], [8],
[9], and [11]), the transfer functions are usually assumed to be
sigmoidal, that is, each is differentiable,
for any and . Such a typical sig-
moid function, for instance, is given by with
some . However, in the studies on the neural networks
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(see, e.g., [22] and [23]), the transfer functions are assumed to
be neither smooth nor strictly monotonic. This is because it has
been shown [14], [15] that when applied as associative memo-
ries, the network (1)’s absolute capacity can be remarkably im-
proved by replacing the usual sigmoid transfer functions with
nonmonotonic transfer functions. Motivated by these, in recent
investigations, the differentiability and/or the monotonicity of

are abandoned. Instead, the Lipschitz conditions onare
supposed (see, e.g., [1]–[3]).

In the present investigation, we will only assume the fol-
lowing properties of :

( ) For each , is Lipschitz continuous,
that is, there is a constant such that

for any

It should be noted that unlike the most previous investiga-
tions that assume the global boundedness ofto imply ex-
istence of equilibrium point of the networks by degree theory
(see, e.g., [4] and [7]), we do not assume the boundedness of
at all. This may lead to difficulty in proving existence of equi-
librium points. In addition, we do not make any assumptions
on the connection matrix which are limited in the
previous works to the classes of, such as, symmetry (i.e., for
any , ), nonself-connection (i.e.,

) or co-operative properties (i.e., ), see, for ex-
ample, [8] and [13].

For convenience, we denote by , in what follows, the min-
imum Lipschitz constant of the transfer function, that is,

(2)

It is easy to see that whenever is dif-
ferentiable on .

This paper is organized as follows. In Section II, we introduce
the nonlinear measure, as a novel generalization of the matrix
measure in linear system, to characterize the stability of non-
linear system. Based on the introduced notion, a new useful sta-
bility analysis approach for nonlinear systems is developed. In
Sections III and IV, the new approach is applied, respectively,
to analyze the global and local exponential stability of Hop-
field-type neural networks (1). A series of new general suffi-
cient conditions for global and local exponential stability of (1)
is presented. The exponential decay estimate and the attraction
region are also clearly characterized. This paper then concludes
in Section V.

II. NONLINEAR MEASURES

In this section, aiming to quantify the stability of nonlinear
system, we introduce the generalization of the matrix measure
concept in linear system, and develop a novel approach to sta-
bility analysis of nonlinear system. In the subsequent sections,
this new approach will be applied to the detailed stability anal-
ysis of the networks (1).

Consider the system of the type

(3)

where is a Lipschitz (locally) continuous opera-
tors defined on an open subset of , and

.
When is the whole space and is linear (an matrix),

it is well known that the stability of (3) can be characterized by
a quality called the matrix measure of : If ,
then system (3) is (globally) exponential stable [16], [17].

Our aim here is to extend the matrix-measure criteria for
linear system to the nonlinear case. For this purpose, letbe
the -dimension real vector space with vector norm , and
recall that the -norm of is defined, for each vector

, by

There are also other kinds of norms defined in. We will al-
ways use, however, the-norm throughout the present research.

Given an matrix , denote, respectively, by and
its matrix norm and matrix measure induced by the given

vector norm of . Then, by definitions

(4)

where represents the identity matrix on . It should be noted
that the matrix norm depends on the endowed norm of, and
thereby, so is the matrix measure. When-norm is used, we can
particularly show that the norm and the measure of

are given, respectively, by

and

In order to motivate a nonlinear generalization of the matrix
measure, we now make the following important observation:
The matrix measure of can be equivalently calculated by

sign
(5)

where denotes the inner product of vectorsand in ,
and sign sign , sign sign is the sign
vector of , with sign defined by

sign

for

for

for .

(6)

In fact, observing that, for each

sign and

sign for all
(7)
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we find from (4) that

sign sign

sign
(8)

To derive the inverse inequality, we let

sign

and notice that, for any and

sign

sign sign

this implies that whenever , ( ) will be nonsingular
and its inverse satisfies

Hence, by (4), we obtain

as expected.
In light of the above observation, we now introduce the fol-

lowing concept.
Definition 1: Suppose is an open set of , is an oper-

ator from into , and is any fixed vector.

1) The constant

sign
(9)

is called the nonlinear measure ofon .
2) The constant

sign

(10)
is called the relative nonlinear measure ofat .

By this definition, it is clear that for
any and all open set . However, when is specially the

whole and is linear,
for any . Here important is to note that the inequality

may strictly hold for nonlinear operators
(such an example will be presented in Example 1 below).
Similar to the matrix measure, the following properties of

the nonlinear measure defined by Definition 1 can readily be
proved:

1) for any two functions
from into ;

2) for any function from into
and any ;

3) for any function from
into and any real number, where denotes
the function mapping each vectoronto .

We further prove several useful properties of the nonlinear
measure, which will be needed in subsequent applications. In
the following, we always assume thatis a nonlinear operator
defined on an open set of .

Lemma 1: If , then is a one-to-one mapping on
[i.e., implies ]. In addition, if ,

then is a homeomorphism of (that is, is an one-to-one
and onto mapping).

Proof: Suppose satisfy but .
Then, by (9), we find

sign

sign

which contradicts to . Therefore, the one-to-one
property of follows.

Suppose, furthermore, that is the whole space. Then
implies that, for all

sign

sign

This shows that, for any fixed, whenever
, that is, is norm-coercive. By norm-coercive the-

orem [18], thus, is a homeomorphism of . This implies
Lemma 1.

Lemma 1 particularly implies that will have and
only have one solution whenever and ,
that is, the solution set contains exactly one point in
this case.

Lemma 2: If is an equilibrium point of the system
(3) and , then, there is no equilibrium point in
other than [i.e., the equilibrium point of (3) is unique in].

Proof: Suppose is any other equilibrium point of
(3) different from , i.e., , . Then, by (10)

sign

sign
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Since , this implies , contradicting to the
assumption. This contradiction shows the uniqueness of equilib-
rium point of (3) in .

Lemmas 1 and 2 show that, exactly as the matrix measure that
can characterize the uniqueness of equilibrium point of linear
system, the nonlinear measure and relative nonlinear measure
defined here can also characterize the uniqueness of equilibrium
of nonlinear system. In the following, we will further justify that
the nonlinear measures can actually characterize the stability of
nonlinear systems.

Theorem 1: If , then there is at most one equi-
librium point of (3) in . Moreover, any two solutions and

in initiated, respectively, from and at sat-
isfy

for all

(11)

Proof: Since , Lemma 1 implies that is
one-to-one in , that is, there is at most one such that

. Accordingly, there is at most one equilibrium point
of (3) in .

By (7), we can show that, for all and

sign

Hence, the derivative of satisfies almost every-
where in interval that (see, for example, [19, Th. 6.9, p.
129])

sign

sign

(12)

Integrating the above differential inequality, we then obtain the
exponential decay estimation (11). This finishes the proof of
Theorem 1.

Given any two operators and we denote by the
composition of and (whenever it is possible) in the sense
that for all in the domain of . By
Definition 1, it is easy to verify that if and only if

for some diagonal strictly positive matrix
. From this, a corollary immediately follows.
Corollary 1: If for a diagonal matrix

diag with , then there is at most
one equilibrium point of (3) in . Moreover, any two solutions

and in initiated, respectively, from and
at satisfy

for all (13)

Proof: We only need to verify the exponential estimate
(13). Similar to (12), we have

sign

sign

sign

Hence, integrating the both sides yields the expected estimate
(13).

Remark 1: In Theorem 1 (Corollary 1), if is the whole
space, then, (3) has a unique equilibrium point, and, the expo-
nential decay estimation (13) shows that any trajectory of (3)
will eventually evolve to the unique equilibrium point, that is,
the system will be globally exponentially stable.

As an immediate consequence, we can claim that (3) is glob-
ally exponentially stable if is contractive with respect
to -norm for some positive number. Indeed, for any positive
number ,

sign

sign

holds for all . Hence, if is
contractive for some . This shows that Theorem 1 (Corol-
lary 1) is sharper than the well-known contraction mapping ap-
proach for stability analysis. Furthermore, we can show that the
present nonlinear measure approach can apply to the systems
that the contraction mapping approach can not apply to. Such a
system is, for instance, given by

[In fact, let and , it is then easily
seen that the minimal Lipschitz constant of is infinitely
large for any positive number while .]

Theorem 2: Suppose is an equilibrium of system (3) and
is an open -ball centered at . If , then,

1) any solution of (3) initiated from will be kept
in for any ;

2) is exponentially stable, with its attraction region con-
taining , and, furthermore, the exponential decay esti-
mation of is governed by

(14)

Proof: Denote by the solution of (3) initiated from
the vector . We first prove that for all .
Let denote the maximum time such that for all

, then we only need to prove that is infinite.
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Suppose this is not, i.e., . The point then
lies on the boundary of due to the extension theorem of the
solution. Similar to (12), we can justify that

for all . Integrating this differential inequality then
yields

(15)

for all . Since , this immediately
implies

So can not be on the boundary ofbecause of the open-
ness of , which contradicts to that is on the boundary of

. Thus, , and the whole trajectory will be kept
in , as claimed.

The rest of Theorem 2 is immediate from (15). This completes
the proof.

Corresponding to Corollary 1, we likewise have the following
corollary.

Corollary 2: Suppose is an equilibrium of system (3) and
is an open -ball centered at . If

for some diag with , then,

1) any solution of (3) initiated from will be kept
in for any ;

2) is exponentially stable, with its attraction region con-
taining , and, furthermore, the exponential decay esti-
mation of is governed by

(16)

Remark 2: Theorems 1 and 2 show that if the (relative) non-
linear measure is less than zero, then the system (3) is exponen-
tial stable. This conclusion is exactly a direct generalization of
matrix criterion of linear system stability.

It should be also noted, however, that we have incorporated
into Corollaries 1 and 2 an adjustable parameter matrix, which
makes Theorems 1 and 2 more versatile in concluding stability
of nonlinear system in general, and much more facilitating in
stability analysis of neural network system in particular. This
will be substantiated in the next section.

Remark 3: Since for any operator
and open ball centered at , the condition

can sufficiently guarantee the exponential stability of system
(3). But, it should be remarked that the relative nonlinear mea-
sure may be strictly less than the nonlinear measure

, and hence the relative nonlinear measure is sometimes
more precise than the nonlinear measure for characterizing the
exponential stability of equilibrium point under consideration.
The following example serves to clarify this statement.

Example 1: Consider the nonlinear system (3) with the func-
tion specified by

Obviously, is an equilibrium point. By Definition 1, we
can show that

sign

sign

and
sign

sign

That is, holds. So, by Theorem 2, the
equilibrium point will be globally exponentially stable
(with ). However, the nonlinear measure of[namely,

] is strictly larger than , the relative nonlinear
measure.

Theorems 1 and 2 show that the (relative) nonlinear measure
do have characterized the stability of nonlinear system in the
same way as the matrix measure for linear system. This leads
to a new approach for stability analysis of nonlinear system. In
subsequent sections, we will apply these theorems to conduct
stability analysis of Hopfield-type neural networks (1), demon-
strating the power of the developed new approach here.

III. GLOBAL EXPONENTIAL STABILITY OF NEURAL NETWORKS

In this section, we apply the nonlinear measure approach in-
troduced in the last section to analyze the global stability of
neural-network system (1). A series of general criteria for the
global exponential stability as well as the exponential decay es-
timation on the solutions of (1) will be provided.

Theorem 3: If there exists a set of real numbers such
that

(17)

then, corresponding to each set of external inputs, the neural
network (1) is globally exponential stable, and the exponential
decay estimate is governed by

for all (18)

where is any solution of (1) initiated from , and
.
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Proof: Define the operator
on by

for any , diag
and diag . It

is noted that, for any , (7) implies

sign

sign

(19)

which shows because of
assumption (17). Therefore, by Lemma 1 and Corollary 1, we
conclude that the system

(20)

has an unique equilibrium point which is globally exponen-
tially stable, and the exponential decay estimation of the solu-
tion of (20) obeys to

where is assumed to be initiated from the vector. Ob-
serving that is clearly the unique solution of
(20) whenever is a solution of (1). Theorem 3 therefore
follows.

Theorem 4: If each transfer function of (1) is monotoni-
cally increasing and there exists a set of real numbers
such that

(21)

then, corresponding to each set of external inputs, the network
(1) has a unique equilibrium point which is globally expo-
nential stable, and the exponential decay estimation is given by

(22)

where with

and is any solution of (1) initiated from .
Proof: Define the operator and the matrices as

in the proof of Theorem 3. Since eachis monotonically in-
creasing, we have

sign

for any and . We calculate that, for any
,

sign

sign

sign

Hence, by using the condition (21), we get
. Thus, the rest of the proof can be completed

similar to that of Theorem 3.
Remark 4: It is worth emphasizing the significance of incor-

poration of the adjustable parametersinto (17) and (21) in
Theorems 3 and 4. This not only makes it possible that many
known global exponential stability criteria in the literature can
be deduced from Theorems 3 and 4 (through specific choice of
the parameters ), but also can directly yield some new cri-
teria for global exponential stability of the networks (1). The
following corollary provides us with such examples.

Corollary 3: If each transfer function is differentiable and
satisfies for all and some ,
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then, corresponding to each set of external inputs, the neural
network (1) is globally exponential stable provided

1) or
2) or
3) or
4)

for all . In any case when one of these con-
ditions is satisfied, the following exponential decay estimation
holds:

(23)

where is any solution of (1) with initial point , is the
unique equilibrium point, and

a)

in case 1)

b)

in case 2)

c)

in case 3)

d)

in case 4)

Proof: It is easily known that, in this case, eachis mono-
tonically increasing and its minimum Lipschitz constantcan
be upper bounded by (i.e., ) because
for all . We also can readily check that the condition (21)
will hold with , , and respec-
tively corresponding to the case 1), 2), 3), and 4). Consequently,
the stability and the exponential decay estimation (23) immedi-
ately follow from Theorem 4.

Remark 5: Driessche and Zou [2] recently proved the global
stability of (1) under the condition 2) of Corollary 3. But, in
their theorem ([2, Th. 3.1]), they additionally require that each
transfer function should be bounded, and even so, no conver-
gence rate of the solution of (1) to the unique equilibrium point
has been obtained.

Remark 6: Under the same assumptions on the transfer func-
tions with Corollary 3, Fang and Kincaid [3] have ever proved
the global exponential stability of (1) but required that

(24)

where for real . It is seen that these require-
ments naturally implies the condition 1) in Corollary 3. So their
result is a special case of Theorem 4.

Under the assumption that each transfer functionsatisfies
, Matsuoka [20] has also shown

the global stability of the network (1) with but provided

(25)

It is clear that (25) implies condition 1) of Corollary 3. So his
result is also a special case of Theorem 4.

Moreover, it should be noted that in Fang and Kincaid [3]
and Matsuoka [20], no explicit estimation on solution decay like
(23) is given.

We further present an example to show that Theorems 3 and
4 can yield completely new criteria for stability of (1).

Example 2: Consider the networks

(26)

where and for all real
number . It is calculated that and
for all real number . Through setting ;

, , ; , and ,
, we easily see that the criteria (17) and (21) both are

met. Therefore, corresponding to any external inputsand ,
the network (26) will be globally exponential stable according
to Theorems 3 and 4, and, furthermore, the exponential decay
estimation is given by

where , is any solution of (26) with initial point
at , and is the unique equilibrium point.

However, we can check that in this example the conditions (24)
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Fig. 1. A phase plane portrait of the trajectories of the neural network defined in Example 2.

and (25) are all not satisfied. See Fig. 1 for the phase plots of
(26) with initial points ( 10, 10), ( 1, 10), (8, 10), etc.

IV. L OCAL EXPONENTIAL STABILITY OF NEURAL NETWORKS

As mentioned previously, when neural networks (1) are ap-
plied as associative memories, their equilibrium points repre-
sent the stored patterns and the stability of any equilibrium point
will imply that the corresponding stored pattern can be recalled
from some noises. So, the number of stable (locally) equilibrium
points characterizes the capacity of the neural networks (1), and,
the attraction region of each locally stable equilibrium points
characterizes the error-correction capability of neural networks
(1) (see, e.g., [2] and [14]). Thus, the local stability analysis of
(1) is extremely important (see, e.g., [3]–[6], etc.). In this sec-
tion, we apply the relative nonlinear measure approach devel-
oped in Section II to analyze the local exponential stability of
(1).

For convenience, we denote by the projection of a subset
on the th axis of in this section.
Theorem 5: An equilibrium point

of (1) is exponentially stable and its attraction region contains
(where is any open -ball centered at ), if

(27)

where is defined by

(28)

In this case, the exponential decay estimation of solution of (1)
is given by

(29)

where , and
is the solution of (1) initiated from .

Proof: With defined as in the proof of Theorem 3,
we can verify that, for any ,

sign

This, together with (27), implies that
. Therefore, according to Theorem 2, we conclude that

is exponentially stable with as a part of attraction region.
The exponential decay estimation (29) is an immediate conse-
quence of (14) with . The
proof is then completed.
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Morita [14], and Yoshizawaet al. [15] have shown that as
an associative memory model the absolute capacity of (1) may
be remarkably improved by replacing conventional sigmoid
transfer function with the nonmonotonic transfer functions like

(30)

where and are positive constants and is a negative
constant (see, also [2]). Now, we present an example to show
how Theorem 5 can be successfully applied to conduct expo-
nential stability analysis of the neural networks with nonmono-
tonic transfer function defined by (30).

Example 3: Consider the networks

(31)
where are as defined in (30) with the positive constant

and , and the connection matrix is defined as
follows:

Clearly, is one of the equilibrium points of (31).
With Theorem 5, we consider the stability of this equilibrium
point.

Let us define the open ball :
with an adjustable parameter . Obvi-

ously, the projection of to the th axis is the interval ( )
for . From (27), we then calculate that

(32)

If is chosen such that ,
and , then we see that (27) holds for

. Consequently, by Theorem 5,
is exponentially stable, its attraction region con-

tains , and, furthermore, any solution of
(31) initiated from satisfies, for all

and

where .

The above example demonstrate how Theorem 5 can be ap-
plied to provide sufficient conditions for local exponential sta-
bility of the neural networks even when all transfer functions are
nonmonotonic, and, how the decay rate of the solutions and the
attraction region of a stable equilibrium point can be estimated.
However, it should be noted that Theorem 5 could be sharpened
and improved if all the transfer functions are monotonic. We
state such an improvement as the following theorem.

Theorem 6: Suppose is equilibrium point of (1) and
is an open -ball centered at . If each transfer function is
monotonically increasing on, and

(33)
then, 1) each solution of (1) is kept in whenever it ini-
tialized from a point in ; 2) is an exponential stable
equilibrium point with as a portion of the attraction region;
3) the exponential decay estimation of the solution is gov-
erned by (29) with and

.
Proof: Define the operator and the matrix as in the

proof of Theorem 3. Then, similar to the proof of Theorem 4,
we can show that, for any

sign

So, by (10) and (32), . From
this estimation, all the conclusions are readily followed from
Corollary 2. The proof is completed.

We remark here that, in the most previous investigations, the
differentiability of each transfer functions is necessarily sup-
posed in order that either Lyapunov approach or the classical
linearization method could be adopted. As compared, no any
differentiability of the transfer functions is assumed in our Theo-
rems 5 and 6. This reveals the promising of the new approach de-
veloped. However, we notice that wheneveris differentiable,
Theorem 5 can be further improved and simplified.

Corollary 4: Suppose is an equi-
librium point of (1) and each transfer function is differen-
tiable in the interval ( ) for some , and

for all and some . If

(34)

then, 1) any solution of (1) lies in the region :
whenever it is initiated from ; 2)

is exponentially stable, with as a part of its attraction region;
and 3) the exponential decay estimation of the solution is given
by

(35)

where and
.
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Proof: It follows from and the monotonic
increasing property of that [where is
defined as (27) with ]. So Theorem 5
directly implies Corollary 3.

Remark 7: The above theorems not only characterize the
local stability of equilibrium point under consideration, but also
tell us whether is a part of attraction region of stable equilib-
rium point or not. So, when the neural network (1) are applied
as associative memories, their error-correction capacity can be
roughly characterized.

V. CONCLUSION

Through generalizing the matrix measure concept to non-
linear operator case, we have defined two important qualities
called the nonlinear measure and the relative nonlinear measure
of a nonlinear operator. We have shown that these two qualities
can be applied to quantify stability of nonlinear systems in a
way similar to the matrix measure for stability of linear systems,
leading to a novel and powerful approach to the stability anal-
ysis of neural networks. With the new approach, we have for-
mulated a series of new generic sufficient conditions for global
and local exponential stability of Hopfield type neural networks,
which generalize most existing criteria. Moreover, we have em-
ployed the new approach to estimate the decay rate of the solu-
tion of neural networks to its stable equilibrium points, and to
characterize the attraction region of the local stable equilibrium
point. In most previous investigations, no such convergence rate
and attraction region identification was made for Hopfield type
neural networks.

The significance of the new developed approach can be
summarized as follows. 1) It can be applied to characterize both
global and local stability of Hopfield-type continuous neural
networks even if the transfer functions are neither differentiable
nor monotonic. 2) It can yield very generic global stability
conditions with a set of adjustable parameters (cf. Theorem
3 and Theorem 4) which then often offer much more generic
stability criteria than any other approaches. 3) It provides the
useful means of quantifying the error-correction capability of
the stored pattern by directly evaluating the related minimum
Lipschitz constants of the transfer functions when the networks
are applied as associative memories. 4) It is not only valid
for the neural network system of Hopfield-type (1), but also
for other general nonlinear system (see, for the generalized
Hopfield-type neural networks
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