
Communication

1702884  (1 of 8) © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advmat.de

Accelerated Discovery of Large Electrostrains in BaTiO3-
Based Piezoelectrics Using Active Learning

Ruihao Yuan, Zhen Liu, Prasanna V. Balachandran, Deqing Xue, Yumei Zhou,  
Xiangdong Ding, Jun Sun, Dezhen Xue,* and Turab Lookman*

R. Yuan, D. Xue, Dr. Y. Zhou, Prof. X. Ding, Prof. J. Sun, Dr. D. Xue
State Key Laboratory for Mechanical Behavior of Materials
Xi’an Jiaotong University
Xi’an 710049, China
E-mail: xuedezhen@mail.xjtu.edu.cn
Z. Liu, Dr. P. V. Balachandran, Prof. T. Lookman
Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545, USA
E-mail: txl@lanl.gov

DOI: 10.1002/adma.201702884

calculation. However, the number of well-
characterized samples available as sources 
of data to learn from is typically small; as 
a result, uncertainties associated with the 
predictions from model fits, or even those 
from measurements, become large and 
important. The choice of the next experi-
ment or calculation solely based on the 
inference model predictions is prone to be 
suboptimal.[9] Thus, optimization schemes 
are needed for decision making to guide 
experiments using uncertainties to 
explore the vast material space in an active 
learning loop to successively improve pre-
dictions to minimize the number of meas-
urements needed.[14–16]

Few studies have demonstrated an 
active learning framework that itera-

tively combines machine learning, optimization, and experi-
ments.[2,4,11] Recently, we studied a number of active learning 
strategies for their appropriateness on materials data sets[3] 
and have shown how such algorithms can be used to find new 
materials, such as alloys.[4] However, lacking is any work com-
paring how different optimization or design methods perform 
experimentally when guiding the next experiments toward the 
targeted objectives. Here we address this challenge by demon-
strating the discovery of superior Pb-free BaTiO3 (BTO) based 
piezoelectrics with large electrostrains. In particular, we show 
how our optimal experimental design approach leads to the 
piezoelectric (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 with the largest 
electrostrain of 0.23% (unipolar strain 0.19%) under a field of 
20 kV cm−1 in the BTO family. Using Landau theory in par-
ticular, and insights from density functional theory (DFT), we 
show that the physics underlying this composition is controlled 
by Sn4+ that facilitates the switching of tetragonal domains 
under the action of an external electric field. We demonstrate 
experimentally that balancing the trade-off between exploration 
(using uncertainties) and exploitation (using only inference 
model predictions) gives the optimal criterion for the design of 
the next experiment, especially when the initial size of data is 
limited.

High-performance actuator materials, such as electrocer-
amics, convert electrical energy to mechanical strain through 
either piezoelectricity or electrostriction.[17–19] They are desired 
for a wide range of applications such as micromotors and 
prosthetic devices.[20–24] In particular, the Pb-based family of 
perovskites has been the ceramics of choice, but toxicity associ-
ated with Pb has led to recent efforts to find alternatives.[25–29] 

A key challenge in guiding experiments toward materials with desired proper-
ties is to effectively navigate the vast search space comprising the chemistry 
and structure of allowed compounds. Here, it is shown how the use of machine 
learning coupled to optimization methods can accelerate the discovery of new 
Pb-free BaTiO3 (BTO-) based piezoelectrics with large electrostrains. By experi-
mentally comparing several design strategies, it is shown that the approach 
balancing the trade-off between exploration (using uncertainties) and exploita-
tion (using only model predictions) gives the optimal criterion leading to the 
synthesis of the piezoelectric (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 with the largest 
electrostrain of 0.23% in the BTO family. Using Landau theory and insights 
from density functional theory, it is uncovered that the observed large elec-
trostrain is due to the presence of Sn, which allows for the ease of switching of 
tetragonal domains under an electric field.

Materials Discovery

Finding new materials with targeted properties with as few 
experiments as possible is a key goal of accelerated materials 
discovery.[1–4] The enormous complexity due to the inter-
play of structural, chemical, and microstructural degrees of 
freedom in materials makes the rational design of new mate-
rials with targeted properties rather difficult.[5] First principles 
high throughput calculations at 0 K have largely been used to 
generate large amounts of data to screen for promising can-
didates for further study.[6–9] Machine learning and optimal 
experimental design, used in industry for solving complex 
problems, in fields such as pattern recognition, bioinformatics, 
and operations research,[8–10] are being adapted for the design 
of new materials.[2–4,11,12] The machine learning algorithms 
effectively learn from past data and build an inference model 
relating the targeted property to material descriptors.[3,12–14] 
The targeted properties of unexplored materials are then esti-
mated, leading to the rational choice of the next experiment or 
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The BTO-based family, such as the well-studied compound 
(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCT-0.5BZT), shows considerable 
promise as it has both large piezoelectricity (d33 ≈ 620 pC N−1)  
and electrostrictive strain coefficient (Q33 ≈ 0.045 m4 C−2), 
and these compounds lend themselves to ease of operation 
at low voltages.[30–32] Thus, as our design criterion we focus 
on searching for BTO-based electroceramics with large elec-
trostrain. Our strategy is to enhance the electrostrain by 
chemical substitution (i.e., dopants) with Ca2+ and Sr2+ cations 
replacing Ba2+, and Zr4+, and Sn4+ substituting for Ti4+ in BTO. 
The family of solid solutions is thus given by (Ba1.0−x−yCaxSry)
(Ti1.0−u−vZruSnv)O3, where the mole fractions x, y, u, and v are 
constrained by 1 – x – y > 0.6, x < 0.4, y < 0.3, 1 − u − v > 0.6, u < 0.3,  
and v < 0.3 to avoid the possible presence of relaxor phases. 
As the composition of each ion can be controlled to 0.01 in 
the synthesis process, there are potentially ≈605 000 possible 
compositions of which only 61 have been synthesized (≈0.01%). 
This is a vast search space that cannot be explored by mere 
trial and error and intuition. Required is a systematic material 
design strategy to guide or recommend iteratively the optimal 
compounds for synthesis.

Figure 1 illustrates our material design active learning loop 
and shows the four search methodologies to guide experiments 
that we compare in this work. The data of known samples from 
which the initial learning occurs (training data) consist of the 
measured property (bipolar electrostrain at 20 kV cm−1) and 
material descriptors or features. The features, which should be 

easily available for all unexplored materials, are expected to be 
physically meaningful and should have a bearing on the prop-
erty. We choose elemental and structural properties such as 
electronegativity, ionic radii, ideal bond distance, and tolerance 
factor as these impact polarization and strain, and the contri-
butions from the A and B sites of the perovskite unit cell are 
determined by mole fraction of the elements. We also included 
products and ratios of the A and B site features to give us a 
total of 71 features (Section S1, Supporting Information). Elim-
inating pairs of features that are strongly correlated (in excess 
of a Pearson correlation coefficient of 0.95; see Section S2, Sup-
porting Information) reduces the total number of features to 
18. For example, only the tolerance factor is retained as it is cor-
related with the ideal bond distance. Since not all features are 
equally important, we invoked the method of gradient boosting 
in machine learning (see Section S2, Supporting Information) 
to rank the remaining features. This method trains regression 
models using data samples that are “difficult” to learn in other 
models, which results in an ensemble of models that are good 
at learning different “parts” of the training data.[13] Those fea-
tures which ranked highly included the direction (increase, 
decrease, or no change) of the dependence of the cubic to 
tetragonal ferroelectric transition temperature, NCT, and 
tetragonal to orthorhombic ferroelectric transition temperature, 
NTO, on the doping elements. For example, addition of Zr to 
BaTiO3 decreases the C–T transition temperature (NCT = −1) 
and increases the T–O transition temperature (NTO = +1). We 
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Figure 1.  Our active learning loop for accelerated discovery based on machine learning and optimal experimental design to iteratively guide experi-
ments in the search for high-performance piezoelectrics with large electrostrains. Compounds are synthesized following predictions from four strate-
gies (exploitation, exploration, trade-off between the former two, and random selection), the performance of which are compared.
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next trained an empirical, statistical inference model, y  =  f(x), 
on the data to predict the electrostrains, y, from a knowledge of 
the preselected features, x, where f is the estimated or learned 
relationship. This serves as a surrogate model in the absence 
of a physics based model for this mapping. We compared the 
performance of several linear, nonlinear, and kernel based 
inference models on the dataset to identify those with the least 
cross-validation error on unseen data using standard machine 
learning approaches (see Section S3, Supporting Informa-
tion). The support vector regression model with a radial basis 
function kernel was the best performer in estimating f and we 
used it to make predictions of the electrostrain on the ≈605 000 
unexplored compositions.

If machine learning is all we were doing, we would utilize 
the best predictions from the database of unexplored composi-
tions for synthesis. However, this is not necessarily the optimal 
strategy. A key element in our work compared to the current 
state-of-the-art in materials design is adaptive experimental 
design through which we determine iteratively the optimal 
compounds for synthesis, and these are not necessarily the best 
predicted from regression via machine learning. It is the adap-
tive aspect that gives rise to active learning. A central idea we 
employ is the use of uncertainties to explore the search space 
for the next best candidate.[14,33] We have used the approach 
that balances the trade-off between the best from inference or 
regression (“exploitation”) and by considering the maximum 
uncertainty in the predictions (“exploration”).[33] However, the 
merits of a purely exploitative or exploratory strategy, or the 
choice of the next compound for synthesis based on a trade-off 
between the two, has not been studied previously, certainly not 
experimentally. Such optimization or active or reinforcement 
learning methods have been tested on special functions or 
on the output of computer codes and their performance com-
pared.[33] Here we will test these experimentally to identify, at 
least for the electrostrain problem, the best performing adaptive 
design method. To the three strategies mentioned, we also add 
the selection of a composition for synthesis based on a purely 
random choice from all the allowed possibilities. Thus, we will 
compare experimentally the merits of four strategies: exploita-
tion, exploration, trade-off between exploitation and exploration,  
and random choice (see Section S4, Supporting Information). 
The trial and intuition approach that seeks to extrapolate trends 
in data could be seen as similar to exploitation, where the best 
prediction from inference is used.

We evaluated the inference model uncertainties using the 
statistical method of “bootstrap” sampling, in which sample 
compositions from the training dataset are randomly generated 
allowing for replacements. Each new data set then leads to a 
model with its own predictions, and by treating the uncertain-
ties from 1000 bootstrap samples as the realization of a nor-
mally distributed variable, we can estimate the mean (μ) and 
standard deviations (σ) of the predictions. For simplicity, in this 
work we do not incorporate measurement uncertainties. The 
idea then is to maximize the “expected improvement,” E(I), 
the ranking criterion, which ensures that the search will com-
bine exploration and exploitation, i.e., explores the total search 
space where the uncertainties are the largest and exploits where 
the uncertainties are small but the mean is large, guiding the 
search to find the global optimum. The improvement,I = Y − μ*,  

where Y is a random variable for electrostrain chosen from a 
distribution where the uncertainties are assumed to be nor-
mally distributed with mean, μ, with standard deviation, σ, 
and where  μ* is the mean of the “best-so-far” value of the elec-
trostrain, assuming it is a maximum. Thus, E(I) gives the prob-
ability of making improvements to the current best estimate of 
the electrostrain by sampling from compounds in the search 
space using the uncertainties in electrostrain estimates. The 
sample with the largest E(I) is then chosen for the next experi-
ment. With E(I) = ∫Iφ(z)dz = σ[φ(z) + zΦ(z)], where z = (μ − μ*)/σ  
and φ(z)  and Φ(z) are the standard normal density and cumu-
lative distribution functions, respectively, in the limit σ → 0 
(no uncertainty), E (I) = μ − μ*, so that we choose composi-
tions with μ > best-so-far (μ*) to maximize E(I) − exploitation. 
Similarly, for σ → ∞, E(I) ≈ σ, and the choice will be limited to 
those samples with the largest uncertainty − exploration. For σ 
between 0 and ∞, there will be a trade-off between the extremes 
of exploitation and exploration. Clearly, the expected improve-
ment is not only related to the average predicted value (μ) but 
also to the uncertainty (σ) and maximizing expected improve-
ment provides an optimal means to trade-off between the two 
extremes.[33]

Figure 2a shows the results from synthesis and charac-
terization of the compounds predicted by each of our chosen 
design methods. We performed the iterative feedback loop a 
total of five times, thus five compounds were predicted and 
synthesized by each of the four methods (20 compounds in 
total and these are listed in Table 1). After each iteration, the 
electrostrains of the new compounds were measured and the 
results augmented the training data leading to a new round 
of regression and design. We note that we find a composition 
with large electrostrain at 20 kV cm−1 after just one iteration, 
which is better than the best in the training data. On the third 
iteration the compound (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 with 
the largest electrostrain was obtained. The strategy based on 
a trade-off between exploitation and exploration (referred to 
as efficient global optimization[33]) performs in a superior 
manner to the others. It produced the best performer in every 
iteration. The predictions from our design shown in Figure 2b 
deviate slightly from the measured values, however, the trend 
and largest strain obtained are roughly similar. The quality  
of our model predictions are shown in Figure 2c, which 
compares the electrostrains of all predicted and measured 
compounds from the training data and those obtained in succes-
sive iterations. There is enough scatter around the diagonal 
line to suggest that the model is certainly not overfitting and 
the agreement is reasonable. From Figure 2a, the strategy of 
random selection of a compound for synthesis is the worst 
performer and the pure exploitation strategy is superior to 
the one based on pure exploration. The exploitation strategy 
searches in the neighborhood of local minima in the feature 
landscape, and this appears for this problem to be preferred 
to exploration, which searches in regions where the uncer-
tainties are largest, for example, where there is little data. Of 
the 20 compounds synthesized, 9 had larger electrostrains 
than the best in the training set (Table 1), giving a Fisher p 
value < 0.001, that is, the probability that the best performing 
compounds came from a random distribution similar to the 
training compound, is very low.

Adv. Mater. 2018, 30, 1702884
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Figure 3a shows the measured butterfly-like strain versus 
electric field curve of the best compound (Ba0.84Ca0.16)
(Ti0.90Zr0.07Sn0.03)O3 obtained in the third iteration, where 
it is compared to the best in the training data (Ba0.84Ca0.16)
(Ti0.90Zr0.10)O3, as well as the prototypical compound, 
(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCT-0.5BZT). The bipolar elec-
trostrain is 0.23%, enhanced by 53.3% compared to the best in 
the training data at E = 20 kV cm−1, although the ferroelectric 

polarization hysteresis loops of the two almost overlap  
(Figure S6, Supporting Information). The electrostrains were 
measured by an MTI2000 photonic sensor and the electrostric-
tive coefficient, Q33, relating the strain  ε33 with polarization P3  by 

33 33 3
2Q Pε = , is measured to be 0.106 m4 C−2 at 20 kV cm−1. Our 

new composition (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 (hereafter 
referred to as 3 at% Sn) substitutes 3 at% Zr with Sn compared 
to the best in the training data (Ba0.84Ca0.16)(Ti0.90Zr0.10)O3  

Adv. Mater. 2018, 30, 1702884

Figure 2.  The results of the inference and design. a) Experimental comparison of the four design methodologies showing that the trade-off between 
exploration and exploitation performs better at each iteration than the other strategies in finding the compound with the largest electrostrains. b) The 
predictions from our method. c) The predicted and measured electrostrains of the new synthesized compounds are in reasonable agreement and 
provide confidence in the quality of the inference model.

Table 1.  The 20 newly predicted and synthesized compounds with measured maximum bipolar strains at E = 20 kV cm−1 and electrostrictive coef-
ficient, Q33. The composition in bold discovered in interation #3 is the best performer.

Iteration no. Composition Strain [%] Q33 [m4 C−2]

1 (Ba0.88Ca0.12)(Ti0.92Zr0.03Sn0.05)O3 0.122 0.040

1 (Ba0.83Ca0.17)(Ti0.92Zr0.08)O3 0.107 0.057

1 (Ba0.84Ca0.16)(Ti0.91Zr0.08Sn0.01)O3 0.175 0.069

1 (Ba0.78Ca0.13Sr0.09)(Ti0.83Sn0.17)O3 0.021 –

2 (Ba0.87Ca0.13)(Ti0.91Zr0.04Sn0.05)O3 0.120 0.040

2 (Ba0.86Ca0.14)(Ti0.87Zr0.13)O3 0.074 0.046

2 (Ba0.85Ca0.15)(Ti0.90Zr0.07Sn0.03)O3 0.197 0.092

2 (Ba0.92Ca0.08)(Ti0.91Zr0.01Sn0.08)O3 0.110 0.043

3 (Ba0.85Ca0.15)(Ti0.91Zr0.05Sn0.04)O3 0.181 0.070

3 (Ba0.84Ca0.16)(Ti0.89Zr0.07Sn0.04)O3 0.179 0.083

3 (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 0.230 0.106

3 (Ba0.76Ca0.08Sr0.16)(Ti0.85Zr0.06Sn0.09)O3 0.030 –

4 (Ba0.84Ca0.16)(Ti0.90Zr0.06Sn0.04)O3 0.158 0.055

4 (Ba0.85Ca0.15)(Ti0.87Zr0.06Sn0.07)O3 0.106 0.047

4 (Ba0.83Ca0.17)(Ti0.90Zr0.07Sn0.03)O3 0.192 0.077

4 (Ba0.74Ca0.11Sr0.15)(Ti0.92Zr0.03Sn0.05)O3 0.070 0.061

5 (Ba0.84Ca0.15Sr0.01)(Ti0.90Zr0.07Sn0.03)O3 0.152 0.031

5 (Ba0.83Ca0.17)(Ti0.90Zr0.03Sn0.07)O3 0.114 0.054

5 (Ba0.84Ca0.16)(Ti0.90Zr0.08Sn0.02)O3 0.158 0.072

5 (Ba0.70Ca0.18Sr0.12)(Ti0.67Zr0.22Sn0.11)O3 0.030 –
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(0 at% Sn), but both have the same total A site and B site dopant 
concentrations (16 at% for A site and 10 at% for B site). In 
order to understand the salient physics leading to our optimal 
compound, we measured the bipolar electrostrain as a func-
tion of Sn concentration from 1 to 5 at%. Figure 3b shows that 
the electrostrain is a maximum at the 3 at% Sn composition, 
as predicted by our method. Our design loop thus captures the 
composition where the targeted electrostrain is optimal. There 
is potential for further improvement by grain size engineering, 
texturing or by growing single crystals. We do not consider 
these aspects in this work. Moreover, the elastic constants as 
a function of Sn composition did not show any unusual elastic 
instability at this optimal composition (Figure S5, Supporting 
Information). However, the width of the orthorhombic region 
in the phase diagram, as determined from the peaks in the 
dielectric permittivity and loss tan  δ data, is smallest at the  
3 at% Sn composition and increases on either side, mirroring 
the electrostrain behavior (Figure 3b). The shrinking in tem-
perature interval of the O phase region is connected with the 
flattening of the free energy profile of the T and R phases and 
favors the smaller polarization anisotropy (see also ref. [34]; we 
discuss this in Figure 5a). For applications, as in devices such 

as multilayer capacitors and electrostrictive actuators, charac-
teristics of unipolarly induced strains are of greater practical 
importance than those of bipolarly induced strains. We plot in 
Figure 3c the unipolar strain obtained for the third cycle (the 
second cycle still has a small remnant strain of 0.016%; see  
Section S5, Supporting Information) and compare to the bipolar 
strain shown in Figure 3a. The value of the maximum unipolar 
electrostrain of the 3 at% Sn compound at 20 kV cm−1 is 0.19%, 
consistent with the larger value of 0.23% from the measured 
butterfly-like strain curve. In addition, the unipolar strain for 
the BCT-0.5BZT compound at 20 kV cm−1 is 0.115%, slightly 
lower than the value of 0.12% for 0 at% Sn. The diffraction 
peak signatures in Figure 3d suggest coexisting tetragonal 
and orthorhombic phases, and as the T to O phase transition 
temperatures are below room temperature (see Section S5, 
Supporting Information), this indicates that the O phase is meta
stable. This is consistent with our calculated minimum free 
energy profile in Figure S13 (Supporting Information), which 
shows that the O phase in the 3 at% Sn is more unstable than 
the other two compounds. To compare a figure of merit across 
several piezoelectric classes, we plot in Figure 4 the maximum 
unipolar electrostrain versus the large-signal piezoelectric 
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Figure 3.  Validation of the predictions of our inference and design. a) The measured dependence of the electrostrain on the external electric field for 
the optimal compound. At 20 kV cm−1, the bipolar strain (0.23%) for the 3 at% Sn compound is larger than that for the 0 at% Sn compound (0.15%), 
the best in our training data, or that of BCT-0.5BZT (0.145%). b) Strain and orthorhombic region width (in temperature) from the data in Figure S8 
(Supporting Information) as a function of Sn content, showing that the 3 at% Sn compound is optimal, dashed lines correspond to those for BCT-
0.5BZT. c) The unipolar electrostrain curves for the third cycle for 3 at% Sn, 0 at% Sn, and BCT-0.5BZT compounds under different electric fields.  
d) Characteristic diffraction peaks for the three compounds BCT-0.5BZT, 0 at% Sn, and 3 at% Sn at room temperature indicate coexisting tetragonal 
and orthorhombic phases.
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coefficient (d33* = Smax/Emax) for our Sn-doped compound rela-
tive to other lead-free and lead-based ceramics.[35–37] The com-
pound with 3 at% Sn shows superior performance in terms of 
balancing both large unipolar strain and large d33*.

To provide an understanding of the physics controlling the 
large electrostrain in the 3 at% Sn compound, we performed DFT 
calculations at Temperature = 0 K (see Computational Section). 
We used a supercell of 60 atoms (12 Ba, 12 Ti, and 36 O atoms)  
and substituted one Zr (or Sn) for Ti in the perovskite lat-
tice to mimic the solid solution. The nominal composition 
of the simulated cell then is Ba(Ti0.92X0.08)O3, where X = Zr 
or Sn. Although we do not simulate the exact compositions 
experimentally prepared, the purpose of the DFT is to glean 
qualitative insights into a complex problem at the atomic level. 
Our DFT results for the three perovskite structures cubic (C), 
tetragonal (T), and orthorhombic (O), for which we compute 
the energy differences, lattice strains, spontaneous polarization, 
and electrostrictive coefficients, are summarized in Table S2  
(Supporting Information). In general, we find that the total 
energy for the O structure is lower than T, which in turn is 
lower than C. More specifically, the energy difference between 
O and T for the Sn compound is smaller than that for the Zr 
compound, suggesting that the stability field for the T phase 
in Sn compound is relatively smaller compared to that in the 
Zr compound. However, this does not take into account energy 
barriers from O to T or the thermodynamics of the transfor-
mation. The lattice strains in T are also larger compared to 
O (εT > εO) in the direction of the spontaneous polarization. 
By systematically varying the lattice strains and atom posi-
tions, we also calculated the electrostrictive coefficients (Q) in 
the T and O structures and our data reveals that the T struc-
ture has a larger Q value relative to O. To study if increasing 
Sn has a tendency to facilitate the transition from O to T and 
provide insight into a possible mechanism, we employed 
Landau theory to probe the two-phase coexistence of tetragonal 
and orthorhombic structures at room temperature under an  
electric field.

We parameterized the full Landau free energy, 
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2P P Pj i ii∏α+ for all three compounds. The order para
meter Pi (i = 1,2,3) is the component of spontaneous 
polarization along three axial directions and the Landau 
coefficients αs(with α1, α12  linearly dependent on tempera-
ture) are obtained from permittivity, loss tan δ, and polariza-
tion versus electric field data, together with constraints on F 
imposed by the phase diagram (Table S3, Supporting Infor-
mation, lists all the parameters for each compound). It has 
been pointed out that the large piezoelectric response at  
the phase boundary in the BZT-xBCT system is related to the 
reduction of anisotropy energy with polarization[30,38,39] and elastic 
softening due to enhanced elastic compliance S33.

[38,40] The 
elastic compliance S33 of our compounds, given in Figure S5  
(Supporting Information), shows that S33 of 3 at% Sn is not 
enhanced by Sn doping, suggesting that elastic softening is not 
associated with a large electrostrain. Following Acosta et al.,[38]  
we calculated the anisotropy energy Ganiso. Figure 5a shows that 
for the 3 at% Sn compound (red curve) the lower anisotropy 
energy is accompanied by a smaller energy barrier between 
the T and O phases compared to the 0 at% Sn compound (blue 
curve). The reduction of anisotropy energy and T–O energy 
barrier is thus the likely mechanism for the large electrostrain 
enhancement, making the polarization rotation easier in the  
3 at% Sn compound compared to 0 at% Sn compound and 
leading to a larger electrostrain under an external field. We also 
calculated the domain structure and elastic strains in an elec-
tric field for the two compounds from phase field simulations. 
As shown in Figure 5b, with E[01] = 0, both 0 at% Sn and 3 at% 
Sn compounds have [10] and [01] T domains and pockets of 
metastable O domains. The colors denote the direction of the 
polarization domains and the red arrows represent the polariza-
tion distributions within the domains. With E[01] = 20 kV cm−1,  
the [10] T domains shrink and are preferentially poled in the 
[01] direction. Compared to the 0 at% Sn compound, the 3 at% 
Sn compound has more [01] domains, indicating that polari-
zation switching is energetically preferred in the presence of 
the external field in the 3 at% Sn compound. The behavior 
of the unipolar strain (after one cycle with remnant strain of 
0.025%) along the [01] field direction is shown in Figure 5c. 
The larger strain obtained from the 3 at% Sn compound com-
pared to 0 at% Sn is consistent with our experimental results 
(Figure 3c).

In summary, our results demonstrate that an active learning 
approach balancing the trade-off between exploration (using 
uncertainties) and exploitation (using only model predictions) 
provides an optimal criterion for guiding experiments in mate-
rials design. Our approach leads to the accelerated discovery 
of the doped compound, (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3, for 
which the bipolar electrostrain at 20 kV cm−1 is largest in the 
BTO family. We attribute the optimal response at 3 at% Sn 
composition to the ease of switching of polarization domains 
in the predominantly tetragonal (T) phase at room tempera-
ture relative to the compound without Sn. Our work shows that 
chemical substitutions can serve as an effective route to con-
trolling the electrostrain properties of ferroelectric oxides at the 
domain level.

Adv. Mater. 2018, 30, 1702884

Figure 4.  Unipolar strain as a function of large field d33* = Smax/Emax for 
piezoelectric solid solutions including the BT-based, BNT-based, KNN-
based, lead-based families, and the Sn-doped compounds in this work.
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Experimental Section
(Ba1.0−x−yCaxSry)(Ti1.0−u−vZruSnv)O3  ceramics were fabricated by a 
conventional solid-state method with the raw materials of BaCO3 
(99.8%), CaCO3 (99.9%), SrCO3 (99.9%), BaZrO3 (99.9%), SnO2 
(99.9%), and TiO2 (99.9%). The calcination was performed at 1350 °C 
for 3 h and sintering was done at 1450 °C for 3 h in air. All the samples 
were synthesized under the same conditions to reduce the influence 
of processing on the targeted property. The sintered samples for 
ferroelectric measurements were polished to obtain parallel sides and 
painted with silver electrodes. The polarization–electric field loops (P–E 
loops) were identified by a ferroelectric tester and electrostrains were 
measured by a MTI2000 photonic sensor at room temperature under a 
frequency of 1 Hz, all with disk-shaped samples.

Computational Section: In the Landau simulations,[41] the total free 
energy of the system F is written as F  = ∫dV(G + fela + fg + fe), where fela 
is the elastic energy density, fe is the electrostatic energy density, and fg is 
the gradient energy density, respectively. The elastic energy density can be 

written as 1
2

( )( )ela
0 0f C ijkl ij ij kl klε ε ε ε= − − , where Cijkl is the elastic stiffness

tensor, εij is the total strain, and 0 Q P Pij ijkl k lε =  is the spontaneous strain 
during the phase transformation. Qijkl is the electrostrictive coefficient. 

The electrostatic energy can be expressed as 
1
2e extf E P E P= − ⋅ − ⋅ , 

where Eext is the external applied field, and E is the electrostatic field 
with the electric field evaluated from the electrostatic potential ϕ using 
E = −∇ϕ. In the model the space is assumed to be charge free, therefore 
the equation ∇ · (−ε0εb∇ϕ + P) = 0 is used to solve the electric field, 
in which ε0 and εb are permittivity of vacuum and relative background 
permittivity, respectively. The gradient energy density is given by 

1
2g , ,f G P Pijkl i j k l= , where Gijkl is the gradient coefficient. The temporal 

evolution of the polarization is obtained by solving the time-dependent 

Ginzburg–Landau equation ( , )
( , )

,( 1,2,3)
P r t

t
L F

P r t
ii

i

δ
δ

δ
δ= − = , where r is 

the spatial vector and L is the kinetic coefficient. For the two 
compounds, the same elastic constants and electrostrictive constants 
were used to compare the polarization rotation behavior under an 
external electric field. The elastic constants of the 3 at% Sn compound 
are: C11 = 14.0 × 1010 N m−2, C12 = 11.0 × 1010 N m−2, and C44 = 6.44 ×  
1010 N m−2, and the elastic constants of the 0 at% Sn compound are 
taken to be: C11 = 13.5 × 1010 N m−2, C12 = 11.4 × 1010 N m−2, and 
C44 = 6.44 × 1010 N m−2. The electrostrictive constants for the two 
compounds are taken to be Q11 = 0.08 m4 C−2, Q12 = −0.034 m4 C−2, 
and Q44 = 0.06 m4 C−2 with the background permittivity εb set at 500 
(Section S6, Supporting Information, tabulates other parameters).

The DFT calculations were performed using the plane-wave 
pseudopotential code, Quantum ESPRESSO (QE).[42] The ultrasoft 
pseudopotentials with the PBEsol functional were used.[43] A plane-wave 
cutoff of 60 Ry was used during the ionic and electronic relaxation steps 
and a 4 × 4 × 2 Monkhorst–Pack mesh.[44] The electric polarization was 
calculated using the Berry phase method,[45] as implemented in QE (see 
Section S6, Supporting Information, for further details).

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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