Phosphine-Catalyzed Activation of Vinylcyclopropanes: Rearrangement of Vinylcyclopropylketones to Cycloheptenones

Jun Wu, Yuhai Tang, Wen Wei, Yong Wu, Yang Li, Junjie Zhang, Yuansuo Zheng, and Silong Xu*

Abstract

We report a phosphine-catalyzed activation of electron-deficient vinylcyclopropanes (VCPs) to generate an ambident C_{5} synthon that is poised to undergo consecutive reactions. The utility of the activation is demonstrated in a phosphine-catalyzed rearrangement of vinylcyclopropylketones to cycloheptenones in good yields with a broad substrate scope. Mechanistic investigations support a stepwise process comprising homoconjugate addition, water-assisted proton transfer, and 7-endo-trig $S_{N} 2^{\prime}$ ring closure.

Phhosphine catalysis ${ }^{[1]}$ has emerged as a reliable and powerful platform for the construction of structurally diverse carboand heterocycles. Lu's $[3+2],{ }^{[2]}$ Kwon's $[4+2]^{[3]}$ and Tong's $[4+1]^{[4]}$ annulations represent seminal advances in the area, which have inspired a myriad of cyclization reactions ${ }^{[5]}$ including asymmetric variants. ${ }^{[6]}$ To date, phosphine-catalyzed annulations typically rely on electron-deficient alkenes, alkynes, allenes, and their derivatives (Scheme 1). ${ }^{[1 e]}$ These

Electron-deficient alkenes/alkynes/allenes

Electron-deficient VCPs

Scheme 1. Substrates of phosphine-catalyzed annulations.
precursors serve as effective C_{1} to C_{4} synthons for generating various cyclic structures, especially five- and six-membered ring systems. However, phosphine-catalyzed formation of seven- or eight-membered rings ${ }^{[7]}$ are comparatively underdeveloped, despite their great potential in natural product synthesis. ${ }^{[8]}$

[^0]In an effort to expand phosphine catalysis, we hypothesized that electron-deficient vinylcyclopropanes (VCPs) 1 might serve as a complementary C_{5} synthon capable of producing value-added medium-sized ring structures (Scheme 1). Mechanistically, regioselective homoconjugate addition ${ }^{[9]}$ of a phosphine to VCPs 1 may generate an allylic phosphonium intermediate \mathbf{A}. By virtue of the leaving-group ability of the phosphonium, the alkene of \mathbf{A} can be rendered electrophilic for a potential $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction, thus making it possible use it as a C_{5} surrogate under phosphine catalysis.

VCPs ${ }^{[10]}$ have drawn tremendous interest in contemporary organic synthesis due to their unique and versatile reactivity. Transition-metal coordination has played a prominent role in the catalytic activation of VCPs, ${ }^{[10 c]}$ and complexes of rhodium, palladium, nickel, and others have facilitated a diverse range of $[3+n]^{[11]}$ and $[5+n]^{[12]}$ cycloadditions. A thiyl-radical-catalyzed activation of VCPs has also been demonstrated to effect [3+2] annulations. ${ }^{[13]}$ To our knowledge, the organocatalytic Lewis base triggered activation of VCPs remains thus far unexplored. Stemming from our interest in Lewis base catalysis, ${ }^{[14]}$ we herein report a phos-phine-catalyzed activation of electron-deficient VCPs and its utility in an efficient rearrangement of vinylcyclopropylketones to cycloheptenones in good yields with a broad scope (see below).

We began by examining the reactivity of vinylcyclopropane $1 \mathbf{a}^{[15]}$ with 1.0 equiv of PPh_{3} by NMR tracking (Scheme 2). Significantly, the reaction in CDCl_{3} at $40^{\circ} \mathrm{C}$ cleanly generated zwitterion $\mathbf{2 a}$ in 40% yield after 24 h . It is likely that $\mathbf{2 a}$ is derived from the putative intermediate \mathbf{A} through a double-bond migration (see the Supporting Information). We reasoned that the vinyl of \mathbf{A} would lend itself easily to eventual annulation reactions.

In principle, the direct cyclization of intermediate \mathbf{A} through a 5-endo-trig $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ pathway would result in a vinyl-cyclopropane-cyclpentene $\quad(\mathrm{VCP}-\mathrm{CP})$ rearrangement, ${ }^{[16]}$ which was not observed, however, presumably because it is disfavored by Baldwin's rules ${ }^{[17]}$ (Scheme 2). Instead, when

Scheme 2. Initial investigation.

1,1-diacetyl-2-vinylcyclopropane 1b was employed, we were pleased to observe an unprecedented phosphine-catalyzed rearrangement of vinylcyclopropylketones to cycloheptenones (Table 1). Heating $\mathbf{1 b}$ with $20 \mathrm{~mol} \%$ of PPh_{3} in toluene

Table 1: Investigation of the conditions. ${ }^{[a]}$

[a] Under N_{2} and indicated temperature, to a solution of $\mathbf{1 b}$ (0.5 mmol) in the solvent $(5.0 \mathrm{~mL})$ was added the catalyst $(20 \mathrm{~mol} \%)$. [b] Isolated yield. [c] Dihydrofuran $2 \mathbf{b}^{\prime}$ was obtained in 37% yield. [d] 1.0 equiv of $\mathrm{H}_{2} \mathrm{O}$ was added. [e] Under strictly anhydrous conditions. [f] $2.5 \mathrm{~mol} \%$ of catalyst was used. [g] $50 \mathrm{~mol} \%$ catalyst loading. [h] 1.0 equiv of $\mathrm{P}^{n} \mathrm{Bu}_{3}$ was adopted.
at $110^{\circ} \mathrm{C}$ for 24 h resulted in the formation of 2-acetyl-4cycloheptenone $\mathbf{2 b}$ in 10% yield as keto-enol tautomers (keto/enol $=1: 2$; entry 1). Replacing PPh_{3} with electron-rich triarylphosphines or trialkylphosphines enhanced the efficiency (entries 2-6), among which $\mathrm{P}^{n} \mathrm{Bu}_{3}$ stood out giving 85% yield of the product. The reaction is reminiscent of divinylcyclopropane-cycloheptene rearrangement under thermal conditions. ${ }^{[18]}$ However, the lack of reactivity in the absence of phosphines suggests the crucial role of the catalyst (entries 7 and 8). Of note, DABCO as the catalyst produced a small amount of 2b (14%) together with dihydrofuran product $\mathbf{2 b} \mathbf{b}^{\prime}$ in 37% yield (entry 9). ${ }^{[14 a]}$ Solvent screening indicated that toluene was the best, while acetonitrile, DMSO, acetone, dichloromethane, and THF all provided diminished yields or trace amounts of the product (entries 10-14). A lowered temperature of $60^{\circ} \mathrm{C}$ was insufficient to promote the reaction (entry 15). It was found the rearrangement could tolerate 1.0 equiv of $\mathrm{H}_{2} \mathrm{O}$, giving a comparable 82% yield, whereas strictly anhydrous conditions led to a decreased 69% yield, thus suggesting that water may play a role in the reaction (see below; entries 16 and 17). Lowering the catalyst loading to $2.5 \mathrm{~mol} \%$ could still furnish 72% yield; however,
increasing that to $50 \mathrm{~mol} \%$ or 1.0 equiv decreased the yield to 71% or 22%, respectively, and oligomerization of $\mathbf{1 b}$ was observed (entries 18-20).

The scope of the phosphine-catalyzed rearrangement was then investigated (Table 2). Substitution at either internal or

Table 2: Investigation on substrate scope.

2m ($\mathrm{R}^{3}=\mathrm{Me}$), 71%, dr 1.5:1
2n ($R^{3}=E t$), 60\%, dr 2.3:1
$20\left(R^{3}=\operatorname{Pr}\right), 62 \%$, dr 2.3:1
2p ($\left.\mathrm{R}^{3}=\mathrm{iPr}\right), 61 \%$, dr 3.5:1
2q ($\left.\mathrm{R}^{3}={ }^{n} \mathrm{Bu}\right), 60 \%$, dr 2.2:1
$2 \mathbf{r}\left(\mathbf{R}^{3}={ }^{n} \mathrm{C}_{6} \mathrm{H}_{13}\right), 61 \%$, dr 2.3:1
2s ($\mathrm{R}^{3}=\mathrm{Bn}$), 62\%, dr 2.0:1
2t ($\mathrm{R}^{3}=$ allyl), 67%, dr 1.9:1

2u ($\mathrm{R}=\mathrm{Et}$), 53\%, dr 2.1:1
2v (R = iPr), 68\%, dr 2.0:1

2w, 85\%, dr 2.3:1
[a] Conditions: under N_{2} and at $110^{\circ} \mathrm{C}$, the reaction was carried out with $\mathrm{P}^{n} \mathrm{Bu}_{3}(20 \mathrm{~mol} \%)$ in toluene for $24-36 \mathrm{~h}$, except that for $\mathbf{2 h}$ and $\mathbf{2 i}$, DABCO ($50 \mathrm{~mol} \%$) was used as the catalyst, and for $2 \mathbf{j}-\mathrm{t}, \mathrm{P}^{t} \mathrm{Bu}_{3}$ ($50 \mathrm{~mol} \%$) was employed as the catalyst and PhCl or DMSO as the solvent.
external positions (R^{1} and R^{2}) of the vinyl group were tolerated, affording the corresponding cycloheptenones $\mathbf{2 c - g}$ in $47-88 \%$ yields with enol isomers as the major product. Introduction of a phenyl on the acetyl fragment $\left(\mathrm{R}^{3}=\mathrm{Ph}\right)$, in combination with a benzoyl electron-withdrawing group (EWG), led to the formation of $\mathbf{2 h}$ and $\mathbf{2 i}$ in 90% and 62% yields, respectively. Of note, DABCO was a superior catalyst in these two cases. Substrates with an amide group ($\mathrm{EWG}=$ CONHAr) also worked well under similar conditions ($\mathrm{P}^{t} \mathrm{Bu}_{3}$, PhCl or $\mathrm{DMSO}, 110^{\circ} \mathrm{C}$), and the corresponding products $\mathbf{2} \mathbf{j}-\mathbf{t}$, including those bearing varied R^{3} substituents, were generated in $60-71 \%$ yields. The structure of $\mathbf{2 j}$ was unequivocally established by single-crystal X-ray diffraction analysis (CCDC 1816803 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre.). Finally, it was found that ketoester substrates were also competent, the rearrangement of which afforded cycloheptenones $\mathbf{2 u - w}$ in $53-85 \%$ yields. Notably, amide- and ester-functionalized products $\mathbf{2} \mathbf{j}-\mathbf{w}$ exist only as keto isomers, albeit as mixtures of diastereomers favoring trans configuration, which was confirmed by 2D NOESY.

Collectively, the above results suggest a broad scope of the phosphine-catalyzed rearrangement of vinylcyclopropylketones, which allows controlled synthesis of $2-, 3-$, or $4-$ substituted cycloheptenones. Since cycloheptenones are ubiquitous, though synthetically challenging, units in natural products and biologically active molecules, ${ }^{[8]}$ this reaction thus offers a mild method for accessing this kind of mediumsized carbocycles. In order to underline the usefulness of this method, treatment of diketone 2b with hydrazines or hydroxylamine led to the formation of pyrazole- or oxazolefused cycloheptenes 3 in good yields (Scheme 3a). Benzyne insertion into ketoester $\mathbf{2 v}$ was also achieved to access a ninemembered carbocycle 4 in 52% yield (Scheme 3b). ${ }^{[19]}$

Scheme 3. Diversification of products.

A plausible mechanism is illustrated in Figure 1. Initial regioselective attack of $\mathrm{P}^{n} \mathrm{Bu}_{3}$ on vinylcyclopropane $\mathbf{1 b}$ through the well-known homoconjugate addition ${ }^{[9,14 a]}$ produces zwitterionic intermediate A. Species \mathbf{A} then undergoes a proton transfer to shuttle the anion to the methyl carbon, leading to the formation of intermediate \mathbf{B}. Finally, a favored 7-endo-trig $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization ${ }^{[17]}$ furnishes the product 2b and releases the catalyst.

Although the formation of 2a (Scheme 2) could be supportive to the mechanism, several mechanistic studies

Figure 1. A proposed catalytic cycle.
were conducted to gain further insight. To inspect the protontransfer step, a deuterated substrate $\mathbf{1} \mathbf{j}-d_{3}\left(91 \% \mathrm{D}\right.$ at $\left.\mathrm{CH}_{3}\right)$ was subjected to the standard conditions, which produced a deuterated product $\mathbf{2} \mathbf{j}-d_{2}$ in 39% yield with significant loss of deuterium (Scheme 4 a). ${ }^{[20]}$ In addition, it was found that the presence of 1.0 equiv of $\mathrm{D}_{2} \mathrm{O}$ in the rearrangement of nondeuterated $\mathbf{1} \mathbf{j}$ led to full deuteration at the α-methylene of the product (Scheme 4 b). ${ }^{[21]}$ These results suggest that the proton transfer is presumably stepwise and assisted by trace amount of water in the solvent. ${ }^{[22,23]}$

Scheme 4. Deuterium-labeling investigations.

Furthermore, $\mathrm{a}^{31} \mathrm{P}$ NMR tracking experiment was conducted to verify the essential role of the phosphine catalyst (Figure 2). When substrate $\mathbf{1 j} \quad(0.05 \mathrm{mmol})$ and $\mathrm{P}^{t} \mathrm{Bu}_{3}$ $(0.025 \mathrm{mmol})$ in $\left[\mathrm{D}_{8}\right]$ toluene $(0.6 \mathrm{~mL})$ was heated at $110^{\circ} \mathrm{C}$ for 20 min , two new signals at $\delta 62.8$ and 64.1 ppm were observed apart from the peaks of $\mathrm{P}^{t} \mathrm{Bu}_{3}(62.1 \mathrm{ppm})$ and ${ }^{t} \mathrm{Bu}_{3} \mathrm{P}=\mathrm{O}(61.0 \mathrm{ppm}) .{ }^{[24]}$ This result strongly supports the involvement of the phosphine in the rearrangement. The new signals presumably correspond to the proposed intermediates of type \mathbf{A} and \mathbf{B} (Figure 1). ${ }^{[25]}$

In summary, we have expanded phosphine catalysis to encompass the activation of electron-deficient VCPs. This has been utilized in an unprecedented phosphine-catalyzed rearrangement of vinylcyclopropylketones to cycloheptenones in good yields with a broad scope. Mechanistic investigations including deuterium labeling and ${ }^{31} \mathrm{P}$ NMR

Figure 2. ${ }^{31}$ P NMR tracking on the rearragement of $\mathbf{1 j}$.
tracking support a stepwise mechanism comprising homoconjugate addition, water-assisted proton transfer, and 7-endo-trig $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ ring closure. This organocatalytic activation not only enriches the reactivity of VCPs, but also introduces a new subset of phosphine catalysis by supplying a distinct C_{5} synthon. Future efforts will focus on a detailed survey of mechanism and exploring intermolecular reactivity of the phosphine-catalyzed activation of electron-deficient VCPs.

Acknowledgements

We are thankful for financial support from the National Natural Science Foundation of China (Nos. 21402149; 21602167), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JQ2050), the China Postdoctoral Science Foundation (Nos. 2014M550484; 2015T81013; 2015M580830), and Shaanxi Province Postdoctoral Science Foundation. We also thank Prof. Justin Mohr (UIC) for helpful discussions.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cycloheptenones • organocatalysis • phosphine catalysis • rearrangement • vinylcyclopropanes

How to cite: Angew. Chem. Int. Ed. 2018, 57, 6284-6288 Angew. Chem. 2018, 130, 6392-6396
[1] Selected reviews: a) H. Li, Y. Lu, Asian J. Org. Chem. 2017, 6, 1130-1145; b) R. Zhou, Z. He, Eur. J. Org. Chem. 2016, 19371954; c) T. Wang, X. Han, F. Zhong, W. Yao, Y. Lu, Acc. Chem. Res. 2016, 49, 1369-1378; d) Z. Wang, X. Xu, O. Kwon, Chem. Soc. Rev. 2014, 43, 2927-2940; e) Y. C. Fan, O. Kwon, Chem. Commun. 2013, 49, 11588-11619; f) S.-X. Wang, X. Han, F. Zhong, Y. Wang, Y. Lu, Synlett 2011, 2766-2778; g) L.-W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 2008, 37, 1140-1152; h) J. L. Methot, W. R. Roush, Adv. Synth. Catal. 2004, 346, 1035-1050; i) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535-544.
[2] a) Y. Du, X. Lu, C. Zhang, Angew. Chem. Int. Ed. 2003, 42, 1035-1037; Angew. Chem. 2003, 115, 1065-1067; b) Z. Xu, X. Lu, Tetrahedron Lett. 1997, 38, 3461-3464; c) C. Zhang, X. Lu, J. Org. Chem. 1995, 60, 2906-2908.
[3] a) Y. S. Tran, O. Kwon, J. Am. Chem. Soc. 2007, 129, 12632 12633; b) X.-F. Zhu, J. Lan, O. Kwon, J. Am. Chem. Soc. 2003, 125, 4716-4717.
[4] Q. Zhang, L. Yang, X. Tong, J. Am. Chem. Soc. 2010, 132, 2550 2551.
[5] Selected examples: a) P. Chen, J. Zhang, J. Zhang, Adv. Synth. Catal. 2018, 360, 682-685; b) L. Zhou, C. Yuan, Y. Zeng, H. Liu, C. Wang, X. Gao, Q. Wang, C. Zhang, H. Guo, Chem. Sci. 2018, 9, $1831-1835$; c) A. Mondal, R. Hazra, J. Grover, M. Raghu, S. S. V. Ramasastry, ACS Catal. 2018, https://doi.org/10.1021/ acscatal.8b00397; d) R. Huang, H.-Y. Tao, C.-J. Wang, Org. Lett. 2017, 19, 1176-1179; e) J. Xing, Y. Lei, Y.-N. Gao, M. Shi, Org. Lett. 2017, 19, 2382-2385; f) Y. Zhang, X. Tong, Org. Lett. 2017, 19, 5462 - 5465 ; g) J. Zhang, C. Cheng, D. Wang, Z. Miao, J. Org. Chem. 2017, 82, 10121 -10128; h) Z. Huang, Y. Bao, Y. Zhang, F. Yang, T. Lu, Q. Zhou, J. Org. Chem. 2017, 82, 12726-12734; i) B. Mao, W. Shi, J. Liao, H. Liu, C. Zhang, H. Guo, Org. Lett. 2017,

19, $6340-6343 ;$ j) C. Wang, Z. Gao, L. Zhou, C. Yuan, Z. Sun, Y. Xiao, H. Guo, Org. Lett. 2016, 18, 3418-3421; k) Y. Gu, P. Hu, C. Ni, X. Tong, J. Am. Chem. Soc. 2015, 137, 6400-6406; 1) E. Li, Y. Huang, L. Liang, P. Xie, Org. Lett. 2013, 15, 3138-3141; m) J. Tian, R. Zhou, H. Sun, H. Song, Z. He, J. Org. Chem. 2011, 76, 2374-2378; n) S. Xu, L. Zhou, R. Ma, H. Song, Z. He, Chem. Eur. J. 2009, 15, 8698-8702.
[6] Selected examples: a) C. Wang, Z. Gao, L. Zhou, Q. Wang, Y. Wu, C. Yuan, J. Liao, Y. Xiao, H. Guo, Chem. Commun. 2018, 54, 279 -282; b) H. Li, J. Luo, B. Li, X. Yi, Z. He, Org. Lett. 2017, 19, 5637-5640; c) C. Wang, H. Jia, C. Zhang, Z. Gao, L. Zhou, C. Yuan, Y. Xiao, H. Guo, J. Org. Chem. 2017, 82, 633-641; d) D. Wang, X. Tong, Org. Lett. 2017, 19, 6392-6395; e) H. Wang, W. Zhou, M. Tao, A. Hu, J. Zhang, Org. Lett. 2017, 19, 1710-1713; f) Z. Wang, T. Wang, W. Yao, Y. Lu, Org. Lett. 2017, 19, 41264129; g) J. Zhang, H.-H. Wu, J. Zhang, Org. Lett. 2017, 19, $6080-$ 6083; h) Z. Wang, H. Xu, Q. Su, P. Hu, P.-L. Shao, Y. He, Y. Lu, Org. Lett. 2017, 19, 3111-3114; i) W. Yao, Z. Yu, S. Wen, H. Ni, N. Ullah, Y. Lan, Y. Lu, Chem. Sci. 2017, 8, 5196-5200; j) H. Ni, Z. Yu, W. Yao, Y. Lan, N. Ullah, Y. Lu, Chem. Sci. 2017, 8, 56995704 ; k) E. Li, H. Jin, P. Jia, X. Dong, Y. Huang, Angew. Chem. Int. Ed. 2016, 55, 11591-11594; Angew. Chem. 2016, 128, 11763 11766 ; 1) M. G. Sankar, M. Garcia-Castro, C. Golz, C. Strohmann, K. Kumar, Angew. Chem. Int. Ed. 2016, 55, 9709-9713; Angew. Chem. 2016, 128, 9861-9865; m) X. Han, W.-L. Chan, W. Yao, Y. Wang, Y. Lu, Angew. Chem. Int. Ed. 2016, 55, $6492-$ 6496; Angew. Chem. 2016, 128, 6602-6606; n) W. Yao, X. Dou, Y. Lu, J. Am. Chem. Soc. 2015, 137, 54-57; o) S. Takizawa, K. Kishi, Y. Yoshida, S. Mader, F. A. Arteaga, S. Lee, M. Hoshino, M. Rueping, M. Fujita, H. Sasai, Angew. Chem. Int. Ed. 2015, 54, 15511-15515; Angew. Chem. 2015, 127, 15731-15735; p) X. Han, W. Yao, T. Wang, Y. R. Tan, Z. Yan, J. Kwiatkowski, Y. Lu, Angew. Chem. Int. Ed. 2014, 53, 5643-5647; Angew. Chem. 2014, 126, 5749-5753; q) Z. Shi, P. Yu, T.-P. Loh, G. Zhong, Angew. Chem. Int. Ed. 2012, 51, 7825-7829; Angew. Chem. 2012, 124, $7945-7949$; r) F. Zhong, X. Han, Y. Wang, Y. Lu, Chem. Sci. 2012, 3, 1231-1234; s) X. Han, F. Zhong, Y. Wang, Y. Lu, Angew. Chem. Int. Ed. 2012, 51, 767-770; Angew. Chem. 2012, 124, 791794; t) F. Zhong, X. Han, Y. Wang, Y. Lu, Angew. Chem. Int. Ed. 2011, 50, 7837 -7841; Angew. Chem. 2011, 123, 7983-7987; u) X. Han, Y. Wang, F. Zhong, Y. Lu, J. Am. Chem. Soc. 2011, 133, 1726-1729.
[7] Phosphine-catalyzed formation of seven-membered heterocycles: a) H. Xu, Y. Zhu, P. Guo, C. Liu, J. Shan, M. Tang, Int. J. Quantum Chem. 2018, https://doi.org/10.1002/qua.25626; b) J. Chen, Y. Huang, Org. Lett. 2017, 19, 5609-5612; c) C. Yuan, L. Zhou, M. Xia, Z. Sun, D. Wang, H. Guo, Org. Lett. 2016, 18, 5644-5647; d) J.-Y. Liu, H. Lu, C.-G. Li, Y.-M. Liang, P.-F. Xu, Synlett 2016, 27, 1287-1291; e) G. Zhan, M.-L. Shi, Q. He, W. Du, Y.-C. Chen, Org. Lett. 2015, 17, 4750-4753; f) Z. Li, H. Yu, Y. Feng, Z. Hou, L. Zhang, W. Yang, Y. Wu, Y. Xiao, H. Guo, RSC Adv. 2015, 5, 34481-34485; g) C. Jing, R. Na, B. Wang, H. Liu, L. Zhang, J. Liu, M. Wang, J. Zhong, O. Kwon, H. Guo, Adv. Synth. Catal. 2012, 354, 1023-1034; h) R. Zhou, J. Wang, C. Duan, Z. He, Org. Lett. 2012, 14, 6134-6137; i) R. Na, C. Jing, Q. Xu, H. Jiang, X. Wu, J. Shi, J. Zhong, M. Wang, D. Benitez, E. Tkatchouk, W. A. Goddard, H. Guo, O. Kwon, J. Am. Chem. Soc. 2011, 133, 13337 -13348; j) K. Kumar, R. Kapoor, A. Kapur, M. P. S. Ishar, Org. Lett. 2000, 2, 2023-2025; Synthesis of sevenmembered carbocycles: k) W. Meng, H.-T. Zhao, J. Nie, Y. Zheng, A. Fu, J.-A. Ma, Chem. Sci. 2012, 3, 3053-3057; 1) S. Zheng, X. Lu, Org. Lett. 2009, 11, 3978-3981; An intriguing phosphine-catalyzed enantioselective [4+4] annulation to access eight-membered rings: m) H. Ni, X. Tang, W. Zheng, W. Yao, N. Ullah, Y. Lu, Angew. Chem. Int. Ed. 2017, 56, 14222-14226; Angew. Chem. 2017, 129, 14410-14414.
[8] a) T. V. Nguyen, J. M. Hartmann, D. Enders, Synthesis 2013, 45, $845-873$; b) M. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. Eur. J. 2006, 12, 3438-3447.
[9] S. Danishefsky, R. K. Singh, J. Am. Chem. Soc. 1975, 97, 3239 3241.
[10] Reviews: a) M. Meazza, H. Guo, R. Rios, Org. Biomol. Chem. 2017, 15, 2479-2490; b) V. Ganesh, S. Chandrasekaran, Synthesis 2016, 48, 4347-4380; c) L. Jiao, Z.-X. Yu, J. Org. Chem. 2013, 78, 6842-6848.
[11] Selected examples: a) M. Laugeois, J. Ling, C. Férard, V. Michelet, V. Ratovelomanana-Vidal, M. R. Vitale, Org. Lett. 2017, 19, 2266-2269; b) Z. Yuan, W. Wei, A. Lin, H. Yao, Org. Lett. 2016, 18, 3370-3373; c) M. Laugeois, S. Ponra, V. Ratovelomanana-Vidal, V. Michelet, M. R. Vitale, Chem. Commun. 2016, 52, $5332-5335$; d) K. S. Halskov, L. Næsborg, F. Tur, K. A. Jørgensen, Org. Lett. 2016, 18, 2220-2223; e) F. Wei, C.-L. Ren, D. Wang, L. Liu, Chem. Eur. J. 2015, 21, $2335-$ 2338 ; f) R. Tombe, T. Kurahashi, S. Matsubara, Org. Lett. 2013, 15, $1791-1793$; g) B. M. Trost, P. J. Morris, S. J. Sprague, J. Am. Chem. Soc. 2012, 134, 17823 -17831; h) L.-Y. Mei, Y. Wei, Q. Xu, M. Shi, Organometallics 2012, 31, 7591-7599; i) A. P. Dieskau, M. S. Holzwarth, B. Plietker, J. Am. Chem. Soc. 2012, 134, 5048 $5051 ;$ j) A. F. G. Goldberg, B. M. Stoltz, Org. Lett. 2011, 13, 4474-4476; k) B. M. Trost, P. J. Morris, Angew. Chem. Int. Ed. 2011, 50, 6167-6170; Angew. Chem. 2011, 123, 6291-6294; 1) L. Jiao, M. Lin, L.-G. Zhuo, Z.-X. Yu, Org. Lett. 2010, 12, 2528 2531; m) L. Jiao, S. Ye, Z.-X. Yu, J. Am. Chem. Soc. 2008, 130, 7178-7179; n) A. T. Parsons, M. J. Campbell, J. S. Johnson, Org. Lett. 2008, 10, 2541-2544.
[12] A review: a) Y. Wang, Z.-X. Yu, Acc. Chem. Res. 2015, 48, 2288 2296; For selected reports: b) P. A. Wender, G. G. Gamber, R. D. Hubbard, S. M. Pham, L. Zhang, J. Am. Chem. Soc. 2005, 127, 2836-2837; c) P. A. Wender, G. G. Gamber, R. D. Hubbard, L. Zhang, J. Am. Chem. Soc. 2002, 124, 2876-2877; d) D. F. Taber, K. Kanai, Q. Jiang, G. Bui, J. Am. Chem. Soc. 2000, 122, $6807-$ 6808 ; e) P. A. Wender, H. Rieck, M. Fuji, J. Am. Chem. Soc. 1998, 120, 10976-10977.
[13] a) T. Hashimoto, Y. Kawamata, K. Maruoka, Nat. Chem. 2014, 6, 702-705; b) K. Miura, K. Fugami, K. Oshima, K. Utimoto, Tetrahedron Lett. 1988, 29, 5135-5138; c) K. S. Feldman, A. L. Romanelli, R. E. Ruckle, R. F. Miller, J. Am. Chem. Soc. 1988, 110, 3300-3302.
[14] a) J. Zhang, Y. Tang, W. Wei, Y. Wu, Y. Li, J. Zhang, Y. Zheng, S. Xu, Org. Lett. 2017, 19, 3043-3046; b) R. Chen, S. Xu, X. Fan, H.

Li, Y. Tang, Z. He, Org. Biomol. Chem. 2015, 13, 398 -408; c) S. Xu, J. Chen, J. Shang, Z. Qing, J. Zhang, Y. Tang, Tetrahedron Lett. 2015, 56, 6456-6459; d) R. Chen, S. Xu, L. Wang, Y. Tang, Z. He, Chem. Commun. 2013, 49, 3543-3545.
[15] The indandione moiety is expected to stabilize the resultant anion of $\mathbf{2 a}$.
[16] T. Hudlicky, J. W. Reed, Angew. Chem. Int. Ed. 2010, 49, $4864-$ 4876; Angew. Chem. 2010, 122, 4982-4994.
[17] J. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 734-736.
[18] A seminal report: W. R. Dolbier, Jr., J. H. Alonso, J. Am. Chem. Soc. 1972, 94, 2544-2545.
[19] U. K. Tambar, B. M. Stoltz, J. Am. Chem. Soc. 2005, 127, 5340 5341.
[20] When stopping the reaction at $10 \mathrm{~h}, \mathbf{1} \mathbf{j}-d_{3}$ could be recovered in 43% yield with $59 \% \mathrm{D}$ on the methyl. The loss of deuterium suggests that the ring-opening and proton transfer steps of the mechanism are reversible.
[21] Deuterium at the methine of $\mathbf{2} \mathbf{j}-d_{2}$ was not observed probably due to rapid D / H exchange during work-up and separation. Treating 2j under identical conditions of Scheme 4b incorporated $18 \% \mathrm{D}$ on the α-methylene, which should not account for the full deuteration event.
[22] A seminal report on water-assisted H -shift in phosphine catalysis: Y. Xia, Y. Liang, Y. Chen, M. Wang, L. Jiao, F. Huang, S. Liu, Y. Li, Z.-X. Yu, J. Am. Chem. Soc. 2007, 129, 3470-3471.
[23] Prelimiary DFT studies indicate that a concerted proton transfer is less possible because it has an activation barrier of 42.5 kcal mol^{-1}.
[24] ${ }^{t} \mathrm{Bu}_{3} \mathrm{P}=\mathrm{O}$, which was confirmed by comparing ${ }^{31} \mathrm{P}$ NMR with authentic samples, may arise from oxidizing of $\mathrm{P}^{t} \mathrm{Bu}_{3}$ by residual molecular oxygen.
[25] Due to overlap and complex splitting of signals, it is difficult to discern the intermediates via ${ }^{1} \mathrm{H}$ NMR. However, quenching with acetic acid forms observable zwitterions resembling 2a. For details, see the Supporting Information.

Manuscript received: January 14, 2018
Revised manuscript received: March 15, 2018
Accepted manuscript online: April 12, 2018
Version of record online: May 2018, 02

[^0]: [*] J. Wu, Y. Tang, W. Wei, Y. Wu, Y. Li, J. Zhang, Y. Zheng, S. Xu Department of Chemistry, School of Science, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiaotong University, Xi'an 710049 (P. R. China) E-mail: silongxu@mail.xjtu.edu.cn

 - Supporting information and the ORCID identification number(s) for D the author(s) of this article can be found under: https://doi.org/10.1002/anie. 201800555.

