Cite this: Org. Biomol. Chem., 2015, 13, 398

Received 11th September 2014,
Accepted 14th October 2014
DOI: 10.1039/c4ob01927j
www.rsc.org/obc

Construction of dispirocyclohexanes via aminecatalyzed [2 + 2 + 2] annulations of Morita-BaylisHillman acetates with exocyclic alkenes \dagger

Rongshun Chen, ${ }^{a}$ Silong Xu, ${ }^{*}{ }^{\text {b }}$ Xia Fan, ${ }^{a}$ Hanyuan Li, ${ }^{a}$ Yuhai Tang ${ }^{\text {b }}$ and Zhengjie He*a

Abstract

Amine-catalyzed [$2+2+2$] annulations of one molecule of Morita-Baylis-Hillman (MBH) acetates $\mathbf{1}$ with two molecules of 2-(arylmethylidene)indane-1,3-diones $\mathbf{2}$ or methyleneindolinones $\mathbf{4}$ have been developed under very mild conditions, which produce multistereogenic dispirocyclohexanes 3 and 5 , respectively, in moderate to excellent yields and good diastereoselectivity. This amine-catalyzed annulation constitutes a novel and efficient method for the construction of dispirocyclohexane motifs, and also showcases the divergent catalysis between amines and phosphines with regard to the corresponding phosphine-catalyzed [3+2] annulations.

Introduction

The Morita-Baylis-Hillman (MBH) adducts and their derivatives have been proven to be highly attractive and versatile substrates in synthetic organic chemistry for the construction of a variety of complex molecular architectures. ${ }^{1}$ In this context, MBH adducts have recently been validated as important synthons for Lewis base-catalyzed annulation reactions. ${ }^{1 c}$ Since the pioneering [$3+2$] annulations of MBH derivatives with electron-deficient alkenes reported by Lu and co-workers ${ }^{2}$ in 2003, an array of inter- or intra-molecular $[3+n](n=2,3$, $4,6)^{3}$ and $[1+4]^{4}$ annulations of MBH adducts have been achieved under the catalysis of phosphines, with MBH adducts serving as valuable C_{3} and C_{1} units, respectively (Scheme 1, left). Very recently, we disclosed that MBH adducts experiences distinct annulation modes under the catalysis of amines, acting as either a C_{4} or C_{2} synthon in $[4+2],{ }^{5}[2+4]$, and $[2+2+2]^{6}$ annulations (Scheme 1, right). These amineinduced divergent annulation modes of MBH adducts just precisely complements the corresponding phosphine-catalyzed counterparts and further strengthen the versatility of the MBH adducts in organic synthesis.

[^0]

Scheme 1 Divergent annulation modes of MBH adducts catalyzed by phosphines and amines.

Dispiro skeletons are common structural motifs embedded in many natural products and biologically active compounds. ${ }^{7}$ However, this kind of structure represents a challenging synthetic goal due to the difficulty in building at least two quaternary stereocenters. Interestingly, the incorporation of two cyclic structures into a ring system via a convergent annulation reaction would provide a promising one-step strategy for the construction of dispiro architectures. Recently, this intriguing protocol has been successfully utilized in the synthesis of many important dispiro compounds. ${ }^{8}$ Intrigued by our latest work on the amine-catalyzed $[2+2+2]$ annulation of MBH acetates with electron-deficient alkenes, ${ }^{6}$ we envisioned that employing activated exocyclic alkenes in the annulation should lead to a convergent synthesis of dispirocyclohexanes. Thus, as part of our continuous efforts on exploring Lewis base-catalyzed annulation reactions, ${ }^{4 c, e, f, 5,6,9}$ we herein report the DABCO-catalyzed [$2+2+2]$ annulations of Morita-BaylisHillman acetates with exocyclic alkenes derived from indane-1,3-diones or isatins, which provide an efficient method for the construction of dispirocyclohexane motifs.

Results and discussion

Our initial investigation began with the reaction of MBH acetate 1a (0.3 mmol) and 2-benzylideneindane-1,3-dione $2 \mathbf{a}$ (0.4 mmol) in the presence of DABCO ($10 \mathrm{~mol} \%$) in DMF $(2.0 \mathrm{~mL})$ at room temperature. To our delight, the desired dispirocyclohexane 3a generated from the [2+2+2] annulation of one molecule of $1 \mathbf{1 a}$ and two molecules of $2 \mathbf{a}$ was obtained in 88% yield with good diastereoselectivity $(4: 1)$ (Table 1, entry 1). Using this reaction as a probe, the reaction conditions were briefly surveyed (Table 1). A few amine catalysts were first examined. It was found that DMAP also effected the reaction, albeit in a lower yield (entry 2), while DBU, pyridine, imidazole, and NEt_{3} were totally ineffective (entries 3-6). Among several common solvents checked, THF and $\mathrm{CH}_{3} \mathrm{CN}$ gave low yields while toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ only produced a trace amount of the product (entries 7-10). Reducing the amount of 1a or lowering the catalyst loading resulted in substantial decreases in the yield, although the diastereoselectivity remained steady (entries 11 and 12). Compared to MBH acetate 1a, it was verified that the corresponding MBH carbonate $\mathbf{1 a} \mathbf{a}^{\prime}(\mathrm{L}=\mathrm{OBoc})$ was incompatible with the $[2+2+2]$ annulation, only giving a complex mixture under the typical conditions (entry 13).

Under the optimized conditions, the substrate scope of the amine-catalyzed $[2+2+2]$ annulation was investigated (Table 2). With MBH acetate 1 a as a reactant, a variety of 2-(arylmethylidene)indane-1,3-diones 2 bearing an electrondonating or electron-withdrawing group at either meta or para position of phenyl ring all worked well, providing the corres-

Table 1 Condition survey on the model reaction ${ }^{a}$

Entry	Catalyst	Solvent	Time [h]	Yield $^{b}[\%]$	dr^{c}
1	DABCO	DMF	12	88	$4: 1$
2	DMAP	DMF	12	48	$4: 1$
3	DBU	DMF	48	Trace	
4	Pyridine	DMF	48	Trace	
5	Imidazole	DMF	48	Trace	
6	NEt $_{3}$	DMF	48	Trace	
7	DABCO 2	THF	12	43	$4: 1$
8	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	12	17	$4: 1$
9	DABCO	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	Trace	
10	DABCO	Toluene	24	Trace	
11^{d}	DABCO	DMF	12	71	$4: 1$
12^{e}	DABCO	DMF	24	37	$4: 1$
13^{f}	DABCO	DMF	12	Complex	

${ }^{a}$ Typical conditions: an amine catalyst (0.04 mmol) was added to a stirred solution of $1 \mathrm{a}(0.3 \mathrm{mmol})$ and $2 \mathrm{a}(0.4 \mathrm{mmol})$ in solvent $(2.0 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for a specified time. ${ }^{b}$ Isolated yield based on 2a. ${ }^{c}$ Refers to the major diastereomer versus the sum of others and determined by ${ }^{1} \mathrm{H}$ NMR assay. ${ }^{d}$ The amount of 1 a was reduced to $0.24 \mathrm{mmol} .{ }^{e}$ Catalyst loading: $5 \mathrm{~mol} \% .{ }^{f}$ MBH carbonate $1 \mathbf{a}^{\prime}$ was used instead of 1a.

Table 2 DABCO-catalyzed [2 + $2+2$] annulation between MBH acetates 1 and alkenes $\mathbf{2}^{\text {a }}$

$\begin{aligned} & \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}=\mathrm{Et}(\mathbf{1 a}) \\ & \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}=t-\mathrm{Bu}(\mathbf{1 b}) \\ & \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}=\mathrm{Me} \mathrm{(1c)} \\ & \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}=\mathrm{Et}(\mathbf{1 d}) \end{aligned}$		$\xrightarrow[\text { DMF, rt }]{\begin{array}{c} \text { DABCO } \\ (10 \mathrm{~mol} \%) \end{array}}$		
Entry	1	R^{2} in 2	3, Yield ${ }^{\text {b }}$ [\%]	dr^{c}
1	1a	Ph (2a)	3a, 88	4:1
2	1a	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}(2 \mathrm{~b})$	3b, 64	4:1
3	1a	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}(2 \mathrm{c})$	3c, 90	4:1
4	1 a	$4-\mathrm{IC}_{6} \mathrm{H}_{4}(2 \mathrm{~d})$	3d, 82	4:1
5	1a	$4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(2 \mathrm{e})$	3e, 80	4:1
6	1 a	$4-\mathrm{CNC}_{6} \mathrm{H}_{4}(2 \mathrm{f})$	3f, 96	4:1
7	1 a	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(2 \mathrm{~g})$	3g, 40	9:1
8	1 a	$3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(2 \mathrm{~h})$	3h, 91	9:1
9	1 a	2- $\mathrm{MeC}_{6} \mathrm{H}_{4}$ (2i)	3i, trace	
10	1a	3-Pyridyl (2j)	3j, 87	>20:1
11	1b	2 a	3k, 64	>20:1
12	1b	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}(2 \mathbf{k})$	31, 72	>20:1
13	1b	$3-\mathrm{BrC}_{6} \mathrm{H}_{4}(2 \mathrm{l})$	3m, 44	>20:1
14	1b	$4-\mathrm{FC}_{6} \mathrm{H}_{4}(2 \mathrm{~m})$	3n, 56	>20:1
15	1b	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$ (2n)	30, 72	>20:1
16	1b	2 c	3p, 52	>20:1
17	1b	2d	3q, 34	>20:1
18	1b	2h	3r, 71	>20:1
19	1b	2 j	3s, 54	>20:1
20	1c	2 a	3t, 52	1:1
21	1a	Cyclohexyl (2k)	-	-
22	1d	2 a	-	-

${ }^{a}$ For details, see Experimental section. ${ }^{b}$ Isolated yield based on 2. ${ }^{c}$ Refers to the major diastereomer versus the sum of others and determined by ${ }^{1} \mathrm{H}$ NMR assay.
ponding dispirocyclohexanes 3 in good to excellent yields and good diastereoselectivity (entries 2-8). However, a substituent at the ortho position retarded the annulation, presumably due to its steric hindrance (entry 9). 3-Pyridyl substituted alkene $2 \mathbf{j}$ was also a good candidate, giving the desired product $3 \mathbf{j}$ in a high yield and excellent diastereoselectivity (entry 10). It was found that the size of the ester group of MBH acetates exerted significant impact on the diastereoselectivity of the annulation. When the MBH acetate 1b, having a bulky tert-butyl ester group, was reacted with a range of 2-(arylmethylidene)indane-1,3-diones 2 , the corresponding dispirocyclohexane products $\mathbf{3 k}-\mathbf{s}$ were all obtained as single diastereomers in moderate to good yields (entries 11-19). In contrast, MBH acetate 1c, bearing a smaller methyl ester, exhibited a poor diastereoselectivity ($1: 1$) in the annulation with alkene 2 a (entry 20). However, in contrast with 2-(arylmethylidene)indane-1,3diones, the alkyl counterpart, e.g. 2-(cyclohexylmethylidene)-indane-1,3-dione $(2 \mathbf{k})$, was inert for $[2+2+2]$ annulation under standard conditions (entry 21). Furthermore, it was verified that MBH acetate $\mathbf{1 d}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}\right)$ with an extended alkyl group failed in the annulation (entry 22). ${ }^{6}$

Spiro cyclohexaneoxindole frameworks exist as privileged subunits in many natural products and pharmaceuticals. ${ }^{10}$ The development of an efficient synthetic methodology for

Table 3 DABCO-catalyzed [2+2+2] annulation between MBH acetates 1 and 3-methyleneindolinones $4^{\text {a }}$

			$\mathrm{CO}_{2} \mathrm{Et}$
Entry	$\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$ in 4	5, Yield ${ }^{\text {b }}$ [\%]	$\mathrm{dr}^{\text {c }}$
1	Ac, Et, H (4a)	5a, 99	$2: 1$
2	Ac, Et, 5-Me (4b)	5b, 86	2:1
3	Ac, Et, $5-\mathrm{Cl}(4 \mathrm{c})$	5c, 88	1:1
4	Ac, Et, $5-\mathrm{Br}$ (4d)	5d, 91	1:1
5	Ac, Et, 6-Br (4e)	5e, 87	$1: 1$
6^{d}	4a	5f, 70	1:1
7	Ac, Bn, H (4f)	5g, 84	2:1
8	Boc, Et, H (4g)	5h, 61	6:1
9	Bn, Et, $5-\mathrm{Cl}$ (4h)	5i, 84	>20:1
10	Bn, Et, $5-\mathrm{Br}$ (4i)	5j, 67	>20:1
11	Bn, Et, 5-F (4j)	5k, 87	>20:1
12	$\mathrm{Bn}, \mathrm{Et}, 5-\mathrm{NO}_{2}(4 \mathbf{k})$	51, 54	>20:1
13	$\mathrm{Bn}, \mathrm{Et}, 6-\mathrm{Br}(41)$	5m, 52	>20:1

${ }^{a}$ For details, see Experimental section. ${ }^{b}$ Isolated yield based on 4. ${ }^{c}$ Refers to the major diastereomer versus the sum of others and determined by ${ }^{1} \mathrm{H}$ NMR assay. ${ }^{d}$ tert-Butyl MBH acetate $\mathbf{1 b}$ was used instead of 1a.
this class of molecules has received considerable interest in recent years. ${ }^{11}$ The success of 2-(arylmethylidene)indane-1,3diones 2 in the above amine-catalyzed [2+2+2] annulation reaction prompted us to examine the feasibility of isatinderived 3-methyleneindolinones $\mathbf{4}$ as the alkene component. Gratifyingly, under the standard conditions, the $[2+2+2]$ annulation of MBH acetate 1a and 3-methyleneindolinone 4a readily produced the corresponding dispirocyclohexane product $5 \mathbf{a}$ in 99% yield and a moderate diastereoselectivity (2:1) (Table 3, entry 1). With 1a as a reactant, a range of 3-methyleneindolinones 4, bearing variable substituents at the benzene ring, worked well in the annulation giving excellent yields but low diastereoselectivity (entries $2-5$). To improve the diastereoselectivity, the bulky tert-butyl substituted MBH acetate 1b was employed in the annulation with $\mathbf{4 a}$, which, however, gave an even lower diastereoselectivity (entry 6). Increasing the size of the ester group in $4\left(R^{2}=B n\right)$ also showed little influence on the diastereoselectivity of the annulation (entry 7). To our delight, it was found that the substituent R^{1} at the nitrogen atom in 4 could significantly affect the diastereoselectivity of the annulation reaction. For example, while tert-butoxycarbonyl substituted $\mathbf{4 g}$ afforded an improved 6:1 diastereoselectivity (entry 8), benzyl-substituted substrates $\mathbf{4 h} \mathbf{- 1}$ delivered all the annulation products $\mathbf{5 i}-\mathbf{m}$ as single diastereomers in good yields (entries 9-13). The structures and relative stereochemistry of all the dispirocyclohexanes 3 and 5 listed in Tables 2 and 3 were easily identified by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS, and also confirmed by NOESY and single crystal Xray analyses for the representative products (Fig. 1 and 2,

Fig. 1 ORTEP drawing for 3r.

Fig. 2 ORTEP drawing for 5 f.

CCDC number for 3r: CCDC 1012038, for 5f: CCDC 1011983, see ESI \dagger).

The above results demonstrated that the amine-catalyzed $[2+2+2]$ annulation of MBH adducts with electron-deficient exocyclic alkenes such as 2-(arylmethylidene)indane-1,3-diones 2 and 3-methyleneindolinones $\mathbf{4}$ constituted an efficient and convergent method for the construction of dispirocyclohexanes. It is also noteworthy that both alkenes 2 and 4 have been validated before as effective C_{2} substrates in phosphine-catalyzed [3 + 2] annulations with MBH adducts to deliver important spirocyclopentenes. ${ }^{12}$ Therefore, the abovementioned DABCO-catalyzed [$2+2+2$] annulations of MBH derivatives 1 in this study, showcase the divergent catalysis between amines and phosphines. Recently, organic Lewis base-catalyzed divergent synthetic reactions have aroused considerable interest from organic chemists. ${ }^{5,6,13}$

On the basis of the results in this work and closely related reports, ${ }^{5,6}$ a plausible mechanism for the formation of dispirocyclohexanes is depicted in Scheme 2. Initially, nucleophilic attack of the amine catalyst at MBH acetates 1 through a $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanism produces an ammonium salt A. Subsequent deprotonation at the δ carbon of the salt then generates zwitteronic intermediate \mathbf{B}, which triggers two continuous nucleophilic additions of activated alkenes 2 or $\mathbf{4}$ to afford species \mathbf{D}. Intermediate \mathbf{D} undergoes a 6 -exo-trig cyclization to deliver the product cyclohexane incorporating two spiro subunits.

Scheme 2 A plausible mechanism for the formation of dispirocyclohexanes 3 and 5 .

Conclusions

In conclusion, the DABCO-catalyzed [$2+2+2]$ annulations of Morita-Baylis-Hillman acetates with electron-deficient exocyclic alkenes have been successfully developed as an efficient synthesis for complicated dispiro architectures. 2-(Arylmethyli-dene)indane-1,3-diones 2 and 3-methyleneindolinones 4 have been validated as the effective exocyclic alkenes in the annulation, giving highly complex dispirocyclohexanes 3 and 5 in a one-step operation in moderate to excellent yields and good diastereoselectivity. In contrast with the phosphine-catalyzed [3 + 2] annulations of MBH derivatives with 2 or 4, these DABCO-catalyzed [2 + 2 + 2] annulations also showcase the divergent catalysis between amines and phosphines. Future efforts in our laboratory will be directed toward exploring the asymmetric version of this amine-catalyzed annulation strategy, as well as applications in the syntheses of important and biologically active dispiro compounds.

Experimental section

General information

Unless otherwise noted, all reactions were carried out in a nitrogen atmosphere. Solvents were purified prior to use according to standard procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} with tetramethylsilane (TMS) as the internal standard. HRMS spectra were acquired in the ESI mode (positive ion) with the mass analyzer of TOF used. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether-ethyl acetate as the eluent. 2-(Arylmethylidene)indane-1,3-diones 2^{14} and 3-methyleneindolinones 4^{15} were prepared according to reported procedures.

General procedure for DABCO-catalyzed [2+2+2] annulation between 1 and 2 (Table 2)

At room temperature, DABCO ($10 \mathrm{~mol} \%$) was added to a stirred solution of $1(0.3 \mathrm{mmol})$ and $2(0.3$ or 0.4 mmol$)$ in DMF (2.0 mL) , and the resulting mixture was stirred until the reaction completed, as monitored by TLC. Water (10 mL) was added and the mixture was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL} \times 2)$. The combined organic layer was dried over anhydrous sodium sulfate. After filtration and concentration on a rotary evaporator under reduced pressure, the residue was subjected to column chromatography on silica gel (gradient eluent: petroleum ether-ethyl acetate $5: 1-1: 1$) to give the $[2+2+2]$ annulation products 3 .

General procedure for DABCO-catalyzed [2+2+2] annulation between 1 and 4 (Table 3)

At room temperature, DABCO (0.03 mmol) was added to a stirred solution of $\mathbf{1}(0.3 \mathrm{mmol})$ and $\mathbf{4}(0.3 \mathrm{mmol})$ in DMF $(2.0 \mathrm{~mL})$, and the resulting mixture was stirred until the reaction was completed, as monitored by TLC. Water (10 mL) was added and the mixture was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$ $\times 2$). The combined organic layer was dried over anhydrous sodium sulfate. After filtration and concentration on a rotary evaporator under reduced pressure, the residue was subjected to column chromatography on silica gel (gradient eluent: petroleum ether-ethyl acetate $15: 1-5: 1$) to give the $[2+2+2]$ annulation products 5.

Analytical data of compounds

Compound 3a: following the general procedure, the reaction of 1a ($56 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2a ($94 \mathrm{mg}, 0.4 \mathrm{mmol}$), and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give 3 a as an inseparable diastereomeric mixture (dr 4:1), $104 \mathrm{mg}, 88 \%$ yield; as a white semi-solid; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54$ $(\mathrm{m}, 3 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.81-6.78 (m, 2H), 6.69-6.60 (m, 4H), 6.13 (s, 1H), 5.87 (s, 1H), $4.28(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.84-3.79 (m, 1H), 3.70 (dd, $J=12.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 202.8, 200.9, 200.2, 200.0, 166.4, 143.4, 143.3, 141.08, $141.05,140.0,139.2,135.5,135.1,135.0,134.7,134.4,134.3$, 128.9, 127.9, 127.8, 127.2, 126.9, 122.6, 122.4, 122.2, 122.0, 63.1, 62.2, 60.9, 54.4, 48.8, 42.7, 29.6, 13.8; selected NMR data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H})$, $3.53-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=13.2,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.0, 202.7, 202.1, 200.4, 166.6, 143.2, 142.6, 142.0, 141.3, 140.1, 139.4, 134.6, 133.6, 126.8, 126.6, 63.9, 60.6, 59.6, 52.4, 45.8, 41.6, 27.6, 13.6; HRMS-ESI calcd for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 595.2115, found 595.2117.

Compound 3b: following the general procedure, the reaction of 1a ($56 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2b ($99 \mathrm{mg}, 0.4 \mathrm{mmol}$), and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give $\mathbf{3 b}$ as an inseparable diastereomeric mixture ($\mathrm{dr} 4: 1$), 80 mg , 64% yield; as a white semi-solid; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.11$ $(\mathrm{s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.81-3.76$ $(\mathrm{m}, 1 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 4 \mathrm{H})$, $1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.1$, 201.1, 200.4, 200.1, 166.4, 143.5, 143.3, 141.14, 141.08, 140.0, 136.7, 136.3, 136.2, 135.5, 135.0, 134.6, 134.2, 131.3, 128.7, $128.5,128.4,122.6,122.4,122.2,122.0,63.2,62.4,60.9,54.0$, 48.4, 42.8, 29.8, 20.7, 20.5, 13.8; selected NMR data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ $(\mathrm{s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{q}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,202.3,200.5,166.6,143.2,142.7,142.0,141.4,140.2$, $136.5,136.4,136.2,134.9,134.5,130.5,128.3,122.1,64.0,60.5$, 59.7, 52.0, 45.4, 41.6, 27.8, 22.6, 13.6; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$623.2428, found 623.2437 .

Compound 3 c : following the general procedure, the reaction of 1a ($56 \mathrm{mg}, 0.3 \mathrm{mmol}$), $2 \mathrm{c}(125 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give 3 c as an inseparable diastereomeric mixture ($\mathrm{dr} 4: 1$), 135 mg , 90% yield; as a white semi-solid; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.12(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.76$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=13.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,200.5,199.9,199.8,166.1,143.2,143.0,141.0,140.8$, 139.6, 138.1, 135.9, 135.7, 135.1, 135.0, 133.4, 131.1, 131.0, 130.5, 130.1, 129.1, 122.7, 122.6, 122.4, 122.3, 121.6, 121.1, $62.6,62.1,61.0,53.4,48.0,42.8,29.5,13.8$; selected NMR data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.57(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H})$, $3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.22(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=12.1,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.7, 202.4, 201.7, 200.1, 166.5, 142.4, 142.0, 141.1, 139.8, $138.3,135.6,135.4,135.2,134.8$, 132.7, 126.8, 121.5, 120.9, 63.4, 60.7, 59.3, 51.5, 45.2, 41.5, 27.5, 13.7; HRMS-ESI calcd for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 751.0326$, found 751.0330.

Compound 3d: following the general procedure, the reaction of $1 \mathrm{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathrm{~d}(144 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give 3 d as an inseparable diastereomeric mixture ($\mathrm{dr} 4: 1$), 138 mg , 82% yield; as a white semi-solid; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.12$ $(\mathrm{s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.5$, 200.5, 199.9, 199.8, 166.1, 143.2, 143.0, 141.0, 140.8, 139.6, 138.7, 137.04, 136.98, 135.9, 135.7, 135.1, 135.0, 134.1, 130.8, 129.1, 122.7, 122.6, 122.5, 122.3, 93.6, 92.9, 62.6, 62.1, 61.0, 53.5, 48.1, 42.7, 29.4, 13.8; selected NMR data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H})$, $1.88(\mathrm{dd}, J=13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.7,200.1,166.5,142.4,141.9,139.8$, $139.0,122.7,122.4,93.5,92.6,63.4,60.7,59.2,51.6,45.3,41.5$, 13.7; HRMS-ESI calcd for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 847.0048$, found 847.0051.

Compound 3e: following the general procedure, the reaction of 1a ($56 \mathrm{mg}, 0.3 \mathrm{mmol}$), $2 \mathbf{e}(121 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give 3 e as an inseparable diastereomeric mixture ($\mathrm{dr} 4: 1$), 118 mg , 80% yield; as a white semi-solid; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70-7.66 (m, 1H), $7.61(\mathrm{t}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H})$, $7.30(\mathrm{~s}, 4 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.38$ $(\mathrm{s}, 1 \mathrm{H}), 4.10-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=13.0$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.1$, 200.2, 199.7, 199.6, 166.1, 143.1, 143.0, 142.9, 140.9, 140.7, $139.5,138.4,129.3,129.2,128.8,124.93,124.89,124.86$, $124.82,124.79,122.8,122.7,122.5,122.3,62.6,62.1,61.1,53.8$, 48.3, 42.7, 29.3, 13.8; selected NMR data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (s, 1H), $6.10(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{q}, J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.96(\mathrm{dd}, J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,202.0,201.4,199.9,166.5$, 139.6, 63.4, 60.8, 59.2, 51.7, 45.6, 41.5, 27.4, 13.7; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 731.1863$, found 731.1851.

Compound 3f: following the general procedure, the reaction of $1 \mathbf{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathrm{f}(104 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give 3 f as an inseparable diastereomeric mixture (dr $4: 1$), $124 \mathrm{mg}, 96 \%$ yield; as a white semi-solid; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{~s}, 3 \mathrm{H}), 7.55(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.35 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H), $6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.36$ $(\mathrm{s}, 1 \mathrm{H}), 4.07-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.83-3.71(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.7,199.9,199.5,199.3,165.9,144.1,142.82,142.75,140.8$, 140.5, 139.6, 139.2, 136.2, 135.5, 131.83, 131.78, 131.7, 129.6, 129.3, 129.2, 122.8, 122.7, 122.5, 122.4, 118.3, 117.7, 111.6, 111.2, 62.2, 61.9, 61.1, 53.8, 48.5, 42.6, 28.9, 13.8; selected NMR data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H})$,
$4.58(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.52(\mathrm{~m}, 1 \mathrm{H})$, $3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.2, 201.0, 199.6, 166.4, 144.5, 141.8, 140.7, 139.4, 138.9, 135.1, 127.0, 122.9, 122.6, $122.5,122.3,111.4,111.0,63.0,60.8,59.0,51.9,45.7,13.7 ;$ HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$645.2020, found 645.2009.

Compound 3g: following the general procedure, the reaction of $1 \mathrm{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathrm{~g}(112 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give 3 g as an inseparable diastereomeric mixture (dr 9:1), 55 mg , 40% yield; as a yellow oil; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H})$, 7.70-7.64 (m, 2H), 7.64-7.59 (m, 2H), 7.58-7.52 (m, 3H), $7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ $(\mathrm{s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$ (d, $J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.6$, 199.8, 199.4, 199.0, 166.0, 147.8, 147.2, 143.0, 142.8, 140.92, 140.87, 140.5, 139.2, 136.2, 136.1, 135.4, 135.3, 135.2, 129.5, 129.11, 129.07, 123.7, 123.0, 122.8, 122.7, 122.6, 122.5, 122.4, 62.3, 62.0, 61.2, 53.5, 47.8, 42.6, 29.2, 13.8; HRMS-ESI calcd for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$685.1817, found 685.1822.

Compound $3 \mathbf{h}$: following the general procedure, the reaction of 1a ($56 \mathrm{mg}, 0.3 \mathrm{mmol}$), $2 \mathrm{~h}(121 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give 3 h as an inseparable diastereomeric mixture ($\mathrm{dr} 9: 1$), 134 mg , 91% yield; as a white semi-solid; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.68-7.63 (m, 1H), 7.62-7.53 (m, 3H), 7.48-7.42 (m, 3H), $7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.33$ $(\mathrm{s}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=$ $12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 202.1, 200.3, 199.7, 199.6, 166.2, 143.10, 143.08, 141.0, 140.8, 140.0, 139.5, 136.0, 135.7, 135.3, 135.2, 135.0, 132.3, 129.3, 128.6, 128.5, 125.6 (q, $J=7.3 \mathrm{~Hz}$), 124.2 (q, $J=$ $7.3 \mathrm{~Hz}), 124.0(\mathrm{q}, J=7.3 \mathrm{~Hz}), 122.8,122.6,122.5,122.2,62.7$, 61.9, 61.1, 54.0, 48.4, 42.5, 29.3, 13.4; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 731.1863$, found 731.1865.

Compound $3 \mathbf{j}$: following the general procedure, the reaction of $\mathbf{1 a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathbf{j}(94 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give product $3 \mathbf{j}$ (dr > $20: 1$), $104 \mathrm{mg}, 87 \%$ yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (s, 1H), 7.93 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70-7.57 (m, 5H), 7.51-7.41 (m, 3H), 7.17 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11-7.05 (m, 1H), 6.62-6.56 (m, 1H), 6.16 (s, 1H), 5.87 (s, 1H), $4.30(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.7$, 199.9, 199.7, 199.5, 166.0, 151.0, 149.7, 148.9, 148.3, 143.0, 142.8 , 141.0, 140.7, 139.4, 136.6, 136.1, 135.9, 135.3, 135.2,
134.8, 130.1, 129.3, 123.1, 122.9, 122.8, 122.64, 122.61, 122.58 , 62.3, 62.0, 61.1, 51.3, 46.0, 42.7, 29.1, 13.8; HRMS-ESI calcd for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$597.2020, found 597.2023.

Compound $3 \mathbf{k}$: following the general procedure, the reaction of $\mathbf{1 b}$ ($64 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2a ($94 \mathrm{mg}, 0.4 \mathrm{mmol}$), and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give product $3 \mathbf{k}$ ($\mathrm{dr}>20: 1$), $83 \mathrm{mg}, 64 \%$ yield; as a white semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.69-6.58 (m, 3H), $6.05(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.04$ $(\mathrm{q}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.0, 200.9, 200.3, 200.2, 165.6, 143.5, 143.4, 141.3, 141.13, 141.06, 139.3, 135.5, 135.1, 134.6, 134.5, 134.3, 128.9, 128.5, 128.2, 127.9, 127.8, 127.2, 126.9, 122.6, 122.3, 122.1, 81.0, 63.2, 62.3, 54.5, 49.0, 42.8, 29.8, 27.6; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$623.2428, found 623.2435.

Compound 31: following the general procedure, the reaction of $\mathbf{1 b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathbf{k}(80 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give product 3 l ($\mathrm{dr}>20: 1$), $100 \mathrm{mg}, 72 \%$ yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 3 \mathrm{H})$, 7.56-7.50 (m, 1H), 7.49-7.42 (m, 2H), 7.41-7.34 (m, 1H), 7.14 $(\mathrm{s}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.66$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H})$, $4.16(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,200.4,199.8,199.6,165.4$, 143.3, 143.2, 141.2, 140.91, 140.86, 136.4, 135.8, 135.6, 134.9, 134.8, 133.8, 133.7, 129.2, 129.1, 129.0, 128.4, 127.7, 127.28, $127.25,122.8,122.7,122.5,122.3,81.2,62.7,62.0,53.9,48.3$, 42.6, 29.5, 27.6; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 691.1649, found 691.1654.

Compound 3 m : following the general procedure, the reaction of $\mathbf{1 b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), 21(94 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give product 3 m ($\mathrm{dr}>20: 1$), $68 \mathrm{mg}, 44 \%$ yield; as a white semisolid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{dd}, J=6.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33$ (s, 1H), 7.09 (dd, $J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.75$ $(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.78$ (s, 1H), 4.17 ($\mathrm{s}, 1 \mathrm{H}$), $3.96(\mathrm{q}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=12.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, 1H), 1.33 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.2, 200.4, 199.8, 199.5, 165.4, 143.3, 143.2, 141.5, 140.89, 140.85, 140.8, 136.6, 135.8, 135.6, 135.0, 134.8, 131.8, 130.6, 130.2, 129.5, 129.4, 128.5, 127.7, 122.8, 122.7, 122.4, 122.3, 122.1, 121.9, 81.2, 62.7, 62.0, 53.8, 48.3, 42.6, 29.5, 27.6; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 779.0639$, found 779.0624.

Compound 3 n : following the general procedure, the reaction of $\mathbf{1 b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathrm{~m}(76 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 48 h to give
product 3 n (dr > 20:1), $55 \mathrm{mg}, 56 \%$ yield; as a white semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67-7.54 (m, 4H), 7.51-7.39 (m, 3H), 7.16-7.10 (m, 2H), 6.82-6.75 (m, 2H), $6.71(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72$ (dd, $J=12.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=12.6,2.1 \mathrm{~Hz}$, 1 H), 1.81 (dd, $J=10.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.32 (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.9,200.8,200.2,200.1,165.4,162.8$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}), 160.3(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 143.3,143.2,141.0,135.7$, $135.5,134.9,134.8,130.5,130.4,128.3,122.8,122.7$, 122.4, 122.2, $114.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 81.1$, 63.1, 62.3, 53.4, 48.1, 42.8, 29.9, 27.6; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$659.2240, found 659.2233.

Compound 30: following the general procedure, the reaction of $\mathbf{1 b}$ ($64 \mathrm{mg}, 0.3 \mathrm{mmol}$), $2 \mathbf{n}(81 \mathrm{mg}, 0.3 \mathrm{mmol}$), and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 48 h to give product 3 o ($\mathrm{dr}>20: 1$), $75 \mathrm{mg}, 72 \%$ yield; as a white solid, mp $224-226{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.44$ $(\mathrm{m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.77$ $(\mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=12.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=12.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, 1H), $1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.7, 200.6, 200.03, 200.01, 165.3, 143.3, 143.1, 141.0, 140.9, 137.7, 135.8, 135.7, 135.00, 134.96, 133.3, 133.1, 132.8, 130.3, 128.4, 128.2, 128.1, 122.9, 122.7, 122.5, 122.3, 81.2, 62.8, 62.2, 53.4, 48.2, 42.8, 29.7, 27.6; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 691.1649, found 691.1651.

Compound 3 p : following the general procedure, the reaction of $\mathbf{1 b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathbf{c}(94 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 48 h to give product $3 \mathbf{p}$ ($\mathrm{dr}>20: 1$), $61 \mathrm{mg}, 52 \%$ yield; as a white solid, mp $153-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1H), 7.67 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.56$ (m, 3H), 7.54-7.43 (m, 3H), 7.15 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.76$ (s, 1H), $4.23(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.6, 200.5, 200.01, 199.97, 165.3, 143.3, 143.1, 141.0, 140.9, 138.2, 135.9, 135.8, $135.03,135.00$, 133.6, 131.11, 131.06, 130.6, 128.4, 122.9, 122.7, 122.5, 122.3, 121.6, 121.1, 81.2, 62.7, 62.2, 53.5, 48.2, 42.8, 29.6, 27.7; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 779.0639, found 779.0640.

Compound 3q: following the general procedure, the reaction of $\mathbf{1 b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathrm{~d}(108 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 48 h to give product $3 \mathbf{q}$ ($\mathrm{dr}>20: 1$), 44 mg , 34% yield; as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64$ $(\mathrm{m}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.75$ $(\mathrm{s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=12.6$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H})$, 1.31 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.6, 200.5, 200.0,
199.9, 165.3, 143.3, 143.1, 141.0, 140.9, 138.9, 138.2, 137.1, 137.0, 135.6, 135.7, 135.00, 134.96, 134.2, 130.9, 128.4, 122.9, 122.7, 122.5, 122.3, 93.6, 92.8, 81.2, 62.7, 62.2, 53.6, 48.3, 42.8, 29.6, 27.6; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$875.0361, found 875.0357 .

Compound 3r: following the general procedure, the reaction of $\mathbf{1 b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathbf{h}(91 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 48 h to give product $3 \mathbf{r}$ (dr > 20:1), $81 \mathrm{mg}, 71 \%$ yield; as a white solid, mp $213-215{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.41-7.36$ (m, 2H), 7.23 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05$ (s, 1H), 7.01 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.33$ $(\mathrm{s}, 1 \mathrm{H}), 4.14-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.84$ $(\mathrm{m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.2, 200.3, 199.8, 199.6, 165.4, 143.2, 141.0, 140.8, 140.1, 135.9, 135.7, 135.4, 135.0, 134.9, 132.3, 130.4, 130.2, 130.1, 129.9, $128.5,125.7(\mathrm{q}, J=3.5 \mathrm{~Hz}), 124.2(\mathrm{q}, J=3.5 \mathrm{~Hz}), 123.9(\mathrm{q}, J=$ $3.5 \mathrm{~Hz}), 122.8,122.5,122.2,81.3,62.7,62.0,54.0,48.5,42.5$, 29.4, 27.6; HRMS-ESI calcd for $\mathrm{C}_{43} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 759.2176$, found 759.2182.

Compound 3s: following the general procedure, the reaction of $1 \mathbf{b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathrm{j}(71 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 48 h to give product 3 s ($\mathrm{dr}>20: 1$), $68 \mathrm{mg}, 54 \%$ yield; as a white semisolid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.52-7.47$ (m, 2H), 7.44 (d, $J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}$, 1H), 6.61-6.56 (m, 1H), 6.09 (s, 1H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H})$, $4.04(\mathrm{q}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.8, 199.9, 199.8, 199.5, 165.1, 151.0, 149.7, 1489, 148.2, 143.0, 142.8, 140.9, 140.6, 136.7, 136.0, 135.9, 135.18, 135.15, 134.9, 130.2, 128.6, 123.1, 123.0, 122.8, $122.6,122.58,122.55,81.3,62.3,62.0,51.3,46.0,42.7,29.2$, 27.6; HRMS-ESI calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$625.2333, found 625.2335.

Compound $3 \mathbf{t}$: following the general procedure, the reaction of $1 \mathrm{c}(52 \mathrm{mg}, 0.3 \mathrm{mmol})$, $2 \mathrm{a}(94 \mathrm{mg}, 0.4 \mathrm{mmol})$, and DABCO ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was conducted for 12 h to give product $3 \mathbf{t}$ as an inseparable diastereomeric mixture ($\mathrm{dr} 1: 1$), 60 mg , 52% yield; as a white semi-solid; NMR data for the mixture: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.51(\mathrm{~m}, 6 \mathrm{H})$, 7.46-7.39 (m, 4H), 7.39-7.34 (m, 4H), 7.18 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.11 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 5 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.01(\mathrm{~m}, 1 \mathrm{H})$, 3.87-3.79 (m, 2H), 3.73-3.68 (m, 1H), 3.56 (s, 3H), 3.43-3.32 $(\mathrm{m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.1, 202.7, 202.1, 201.1, 200.4, 200.3, 200.1, 167.0, 166.9, 143.5, 143.4, 143.2, 142.7, 142.1, 141.4, 141.2, 141.1, 139.82, 139.75, 139.5, 139.2, 135.6,
135.13, 135.06, 134.8, 134.7, 134.41, 134.39, 133.6, 129.3, 128.9, 128.5, 128.0, 127.92, 127.86, 127.3, 127.1, 127.0, 126.93, 126.87, 122.7, 122.4, 122.3, 122.2, 122.1, 64.0, 63.2, 62.2, 59.6, 54.6, 52.4, 51.9, 51.2, 49.0, 45.9, 42.8, 41.8, 29.7, 27.7; HRMS-ESI calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$581.1959, found 581.1955.

Compound 5a: following the general procedure, the reaction of $1 \mathbf{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol})$, $\mathbf{4 a}(78 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give 5 a in 99% combined yield ($\mathrm{dr} 2: 1$); the major isomer: 63 mg , 65% yield; as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 1 \mathrm{H})$, 3.46-3.33 (m, 2H), 3.29-3.16 (m, 2H), 2.78 (s, 3H), 2.71 (s, 3H), $1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.3,178.0,171.1,170.8,170.5,167.9,166.4,140.7,140.3$, $138.5,130.9,129.2,128.9,127.7,126.8,125.0,121.6$, 116.4, 115.7, 61.5, 61.2, 61.1, 57.0, 56.8, 52.7, 48.6, 45.6, 26.74, 26.66, 26.4, 14.0, 13.6, 12.8; the minor isomer: 33 mg , 34% yield; as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=13.3,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 1 \mathrm{H})$, 3.16-3.03 (m, 2H), $2.85(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.55(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.5,181.4,171.6$, 171.0, 170.8, 167.7, 165.7, 141.4, 141.1, 140.6, 129.1, 128.82, 128.77, 128.4, 126.5, 125.7, 125.2, 124.4, 124.2, 115.9, 115.6, 61.4, 61.3, 60.9, 58.1, 51.6, 50.7, 49.9, 43.8, 26.9, 26.7, 24.9, 13.9, 13.8, 12.9; HRMS-ESI calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 645.2442 , found 645.2443 .

Compound $5 \mathbf{b}$: following the general procedure, the reaction of $\mathbf{1 a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{4 b}(82 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give $\mathbf{5 b}$ in 86% combined yield (dr $2: 1$); the major isomer: 59 mg , 59% yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.92(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.90 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.60 (dd, $J=12.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46-3.34 (m, 2H), 3.29-3.16 (m, 2H), 2.76 (s, 3H), 2.70 (s, 3H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=12.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.18$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,178.3,170.9,170.6$, 167.8 , 166.4, 138.5, 138.4, 138.0, 134.7, 134.6, 130.9, 129.7, 129.3, 128.9, 128.3, 126.6, 122.2, 116.2, 115.4, 61.4, 61.2, 61.0, $57.2,56.9,52.7,48.5,45.6,26.6,21.3,21.2,14.0,13.6,12.8$; the minor isomer: $28 \mathrm{mg}, 28 \%$ yield; as a white solid, mp $165-167{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 1H), 7.01 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ ($\mathrm{s}, 1 \mathrm{H}$), 6.23 ($\mathrm{s}, 1 \mathrm{H}), 5.79$
$(\mathrm{s}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.82-3.69$ $(\mathrm{m}, 2 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.01$ $(\mathrm{m}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{dd}, J=12.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 182.7,181.7,171.6,170.7,170.6,167.6,165.7,141.3$, $139.0,138.2,134.6,133.7,129.4,129.2,128.6,128.3$, $127.2126 .3,124.1,115.5,115.3,61.3,61.2,60.8,58.3,51.7$, 50.6, 49.8, 43.8, 26.8, 26.7, 25.0, 21.4, 21.1, 13.81, 13.78, 12.9; HRMS-ESI calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$673.2756, found 673.2755.

Compound 5c: following the general procedure, the reaction of $1 \mathbf{1 a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathbf{c}(88 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give 5 c in 88% combined yield (dr $1: 1$); the major isomer: 47 mg , 44% yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.29 (m, 1H), $5.99(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H})$, 4.04-3.99 (m, 2H), $3.93(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H})$, 3.52-3.42 (m, 2H), 3.28-3.13 (m, 2H), 2.77 (s, 3H), $2.70(\mathrm{~s}, 3 \mathrm{H})$, $2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.61(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,177.5,170.9,170.6,170.2,167.4,166.2,139.4,138.9$, 138.3, 132.6, 130.7, 130.3, 129.4, 129.1, 128.5, 128.0, 122.0, $117.8,116.9,61.9,61.5,61.2,56.8,56.7,52.5,48.5,45.7,26.63$, $26.58,26.3,14.0,13.7,12.9$; the minor isomer: $47 \mathrm{mg}, 44 \%$ yield; as a white solid, mp $185-187{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H})$, 4.07-3.96 (m, 3H), $3.90(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.31$ $(\mathrm{m}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$, $2.75(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 181.9,180.7,171.2,170.8,170.5,167.3,165.7,140.7$, $140.0,139.3,130.54,130.48,130.1,129.6,129.2,128.9,127.0$, 125.7, 125.0, 117.1, 116.9, 61.7, 61.1, 58.0, 51.5, 50.7, 49.6, 43.8, 26.7, 26.6, 24.8, 13.9, 13.8, 13.0; HRMS-ESI calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 713.1664$, found 713.1664 .

Compound 5d: following the general procedure, the reaction of $1 \mathbf{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathrm{~d}(101 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give $\mathbf{5 d}$ in 91% combined yield ($\mathrm{dr} 1: 1$); the major isomer: 62 mg , 52% yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.77(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H})$, $4.06-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 1 \mathrm{H})$, 3.52-3.42 (m, 2H), 3.24-3.13 (m, 2H), 2.78 (s, 3H), 2.70 (s, 3H), 2.03-1.98 (m, 1H), $1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.61(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3$, $177.5,171.0,170.6,170.2,167.4,166.2,140.0,139.4,138.2$, $132.9,132.3,132.0,130.8,129.5,128.8,124.8,118.3,118.1$, 117.7, 117.3, 61.9, 61.6, 61.3, 56.8, 56.7, 52.5, 48.4, 45.7, 26.7, 26.6, $26.3,14.0,13.7,12.9$; the minor isomer: $47 \mathrm{mg}, 39 \%$ yield; as a white solid, mp $194-196{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.84$ $(\mathrm{s}, 1 \mathrm{H}), 4.07-3.97(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 3 \mathrm{H})$, $3.40-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.84$ (s, 3H), $2.74(\mathrm{~s}, 3 \mathrm{H}), 2.18$ (ddd, $J=13.6,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.8,180.6,171.2,170.8$, $170.5,167.2,165.7,140.7,140.5$, 139.8, 132.1, 131.8, 130.8, $130.4,129.9,128.5,125.0,118.1,117.4,117.2,117.0$, 61.68 , 61.66, 61.1, 58.1, 51.4, 50.6, 49.6, 43.8, 26.8, 26.6, 24.8, 13.9, 13.8, 13.0; HRMS-ESI calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 801.0653, found 801.0659.

Compound $5 \mathbf{5}$: following the general procedure, the reaction of $1 \mathbf{1 a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathbf{e}(101 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give $5 \mathbf{e}$ in 87% combined yield (dr 1:1); the major isomer: 56 mg , 47% yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}$, $1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 2 \mathrm{H})$, $3.25-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,177.6,170.8$, $170.6,170.2,167.6,166.3,141.7,141.3,138.2,129.8,129.3$, 129.1, 128.1, 128.0, 125.6, 123.0, 122.8, 119.8, 119.0, 61.8, 61.5, 61.3, 56.8, 56.5, 52.6, 48.4, 45.8, 26.62, 26.55, 26.3, 14.0, 13.7, 13.0; the minor isomer: $48 \mathrm{mg}, 40 \%$ yield; as a white semisolid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (s, 1H), 5.79 (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.95$ $(\mathrm{m}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 1 \mathrm{H})$, $3.21-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{q}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.74$ $(\mathrm{s}, 3 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $0.63(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 182.0,180.9,171.3,170.7,170.5,167.5,165.8,142.3$, $141.6,140.9,128.3,127.8,127.7,127.3$, 127.2, 126.7, 124.5, 123.1, 122.8, 119.3, 118.9, 61.6, 61.3, 57.7, 51.3, 50.6, 49.9, 43.9, 26.7, 26.6, 24.8, 13.9, 13.8, 13.0; HRMS-ESI calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$801.0653, found 801.0642.

Compound 5 f: following the general procedure, the reaction of $\mathbf{1 b}(64 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{4 a}(78 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give $\mathbf{5 f}$ in 70% combined yield ($\mathrm{dr} 1: 1$); the major isomer: $39 \mathrm{mg}, 39 \%$ yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53$ (dd, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.28 (m, 2H), 7.26-7.20 (m, 2H), 5.92 (s, 1H), $5.23(\mathrm{~s}, 1 \mathrm{H})$, $4.20(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.31$ $(\mathrm{m}, 2 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.56(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,178.1,171.1,170.9$, $170.6,168.0,165.5,140.7,140.4,139.4,130.9,129.2$, 129.1, 128.9, 127.6, 127.1, 125.0 (overlap), 121.6, 116.4, 115.8, 81.2, 61.5, 61.2, 57.1, 56.7, 52.8, 48.6, 44.7, 27.8, 26.9, 26.8, 26.7,
13.6, 12.8 ; the minor isomer: $32 \mathrm{mg}, 32 \%$ yield; as a white solid, mp 158-160 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}$, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}$, $J=13.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.01(\mathrm{~m}, 2 \mathrm{H})$, $2.85(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.11$ (ddd, $J=13.4,5.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.12(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.6,181.4,171.6,171.0,170.8$, $167.6,164.8,142.3,141.4,140.5,129.02,128.98,128.6,128.5$, 126.6, 125.8, 125.2, 124.3, 124.1, 116.3, 115.6, 81.1, 61.3, 61.2, 58.4, 51.7, 50.8, 50.0, 43.4, 27.6, 26.9, 26.7, 25.3, 13.8, 13.0; HRMS-ESI calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$673.2756, found 673.2756.

Compound 5 g : following the general procedure, the reaction of 1a ($56 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathbf{4 f}(96 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give 5 g in 84% combined yield (dr 2:1); the major isomer: 61 mg , 53% yield; as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 4 \mathrm{H})$, 7.03-6.98 (m, 2H), $6.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.18$ $(\mathrm{s}, 1 \mathrm{H}), 4.85(\mathrm{q}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ $(\mathrm{s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, 2.01-1.91 (m, 1H), $1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.7,177.9,171.0,170.4,167.8,166.3,140.7,140.3$, 138.3, 134.6, 133.3, 130.7, 129.3, 128.93, 128.90, 128.8, 128.7, $128.5,128.4,128.2,127.6,126.5,125.1,124.9,121.7$, 116.6, 115.9, 67.9, 67.1, 61.1, 57.0, 56.9, 52.7, 48.4, 45.8, 26.7, 26.5, 26.3, 13.9; the minor isomer: $36 \mathrm{mg}, 31 \%$ yield; as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.04$ $(\mathrm{m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.22$ (s, 1H), $5.79(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{q}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.76(\mathrm{~m}$, $2 \mathrm{H}), 3.75-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{q}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.2,180.9,171.3,170.9,170.4$, $167.5,165.6,141.3,141.0,140.5,134.7,133.5,129.1,128.9$, 128.6 , 128.5, 128.4, 128.2, 128.1, 126.6, 125.7, 125.2, 124.5, $124.3,115.9,67.4,67.2,60.9,58.2,51.6,50.7,49.6,43.7,26.8$, 26.4, 24.8, 13.8; HRMS-ESI calcd for $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 769.2756, found 769.2754.

Compound $5 \mathbf{h}$: following the general procedure, the reaction of $\mathbf{1 a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathrm{~g}(95 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give $\mathbf{5 h}$ as an inseparable diastereomeric mixture (dr $6: 1$), 69 mg , 61% yield; as a colorless oil; NMR data for the major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.70$ $(\mathrm{m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.22 (m, 1H), 7.19-7.14 (m, 2H), $5.89(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H})$, $4.15(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58$ (dd, $J=13.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H})$, $3.14(\mathrm{dd}, J=12.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$
(s, 9H), $1.64(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3 H), $0.60(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,175.7,170.2,167.8,166.1,149.1,148.9,140.4,140.0$, 138.7, 131.0, 128.8, 128.6, 128.3, 126.7, 124.4, 124.1, 122.0, 114.9, 114.0, 84.1, 83.7, 61.2, 61.0, 60.9, 57.0, 56.8, 53.0, 48.5, 46.0, 28.2, 28.0, 26.4, 14.0, 13.6, 12.8; selected NMR data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 0.74$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,166.5$, 114.7, 113.9, 83.9, 60.7, 53.5, 28.1, 14.0, 13.3, 12.9; HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+} 761.3280$, found 761.3268.

Compound $5 \mathbf{i}$: following the general procedure, the reaction of $\mathbf{1 a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathrm{~h}(95 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give product $5 \mathbf{i}$ (dr > 20:1), $102 \mathrm{mg}, 84 \%$ yield; as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.99(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.29$ (m, 2H), 7.28-7.27 (m, 1H), 7.24 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H})$, $5.24(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.64(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 2 \mathrm{H})$, $3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.57$ (dd, $J=13.6,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.0$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.84$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 178.4,176.0,170.3,167.6,166.3,142.4,142.2,138.6$, 135.9, 135.3, 133.7, 129.9, 129.3, 129.2, 128.58, 128.57, 128.41, $128.35,128.0$, 127.9, 127.8, 127.5, 127.3, 122.7, 109.7, 109.1, 61.03, 60.97, 60.7, 56.2, 54.9, 52.0, 49.0, 46.3, 44.8, 44.6, 26.2, 14.1, 13.6, 12.9; HRMS-ESI calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$ 809.2391, found 809.2396.

Compound $\mathbf{5 j}$: following the general procedure, the reaction of $1 \mathbf{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathbf{i}(116 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give product $5 \mathbf{j}$ (dr > $20: 1$), $90 \mathrm{mg}, 67 \%$ yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.22$ (m, 4H), $6.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (s, 1H), 5.25 (s, 1H), $5.02(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07-3.98(\mathrm{~m}, 3 \mathrm{H}), 3.85-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.51-3.41 (m, 2H), 3.28-3.19 (m, 1H), 3.17-3.12 (m, 1H), 1.96 $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,175.9,170.3,167.5,166.3,142.9,142.6,138.5,135.9$, $135.2,134.0,132.5,131.31,131.28,129.5,129.3,128.57$, 128.56, 127.93, 127.88, 127.8, 127.5, 125.3, 115.4, 114.5, 110.1, 109.7, 61.1, 61.0, 60.7, 56.2, 54.9, 51.9, 48.8, 46.4, 44.8, 44.6, 26.1, 14.1, 13.6, 12.9; HRMS-ESI calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$ $[\mathrm{M}+\mathrm{H}]^{+}$897.1381, found 897.1383.

Compound $5 \mathbf{k}$: following the general procedure, the reaction of $1 \mathbf{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathbf{~}(98 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give product $5 \mathbf{k}$ ($\mathrm{dr}>20: 1$), $101 \mathrm{mg}, 87 \%$ yield; as a white semisolid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{dd}, J=9.8,2.6 \mathrm{~Hz}$,

1H), 7.47 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.29 (m, 6H), 7.28-7.25 (m, 2H), 7.18 (dd, $J=7.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.60$ (dd, $J=8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (s, 1H), $5.24(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=$ $13.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H})$, $3.28-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.22$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4(\mathrm{~d}, J=$ $230.2 \mathrm{~Hz}), 170.3,167.7,166.3,160.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 157.7$ (d, $J=$ 8.2 Hz), 139.7, 138.7, 136.1, 135.5, 133.7 (d, $J=7.6 \mathrm{~Hz}), 129.1$, 128.6, 128.0, 127.9, 127.7, 127.4, 117.9, 117.6, 114.7, 114.5, $110.6,110.4,109.3,109.2,108.5,61.0,60.9,60.7,56.4,54.7$, 52.0, 49.3, 45.9, 44.9, 44.7, 26.1, 14.1, 13.6, 12.8; HRMS-ESI calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 777.2982$, found 777.2977 .

Compound 51: following the general procedure, the reaction of $1 \mathbf{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathbf{k}(106 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give product 5 l ($\mathrm{dr}>20: 1$), $69 \mathrm{mg}, 54 \%$ yield; as a white semi-solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17$ (dd, $J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 8 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.74$ $(\mathrm{m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=13.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=12.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.13$ $(\mathrm{m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 178.8,176.7,169.8,167.4,166.1,150.0,149.2,143.4$, $142.9,138.3$, 135.1, 134.5, 133.0, 129.8, 128.9, 128.8, 128.3, 128.12, 128.08, 127.9, 126.0, 125.7, 125.4, 117.9, 108.4, 108.0, 61.4, 61.3, 61.2, 56.0, 54.9, 51.8, 48.6, 46.5, 45.2, 45.0, 26.2, 14.1, 13.7, 13.0; HRMS-ESI calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 848.3137, found 848.3147.

Compound 5 m : following the general procedure, the reaction of $1 \mathrm{a}(56 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathrm{l}(116 \mathrm{mg}, 0.3 \mathrm{mmol})$ and DABCO ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was conducted for 12 h to give product $5 \mathrm{~m}(\mathrm{dr}>20: 1), 70 \mathrm{mg} ; 52 \%$ yield; as a white semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=7.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.86(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05(\mathrm{~s}, 1 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.71$ (m, 2H), 3.60-3.51 (m, 1H), 3.49-3.34 (m, 2H), 3.31-3.22 (m, 1H), 3.13 (dd, $J=$ $12.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.7,176.5,170.3,167.8,166.3,145.2$, 145.1, 138.5, 135.7, 135.2, 131.0, 129.1, 128.7, 128.0, 127.9, $127.8,127.6,126.4,125.3,124.9,123.5,122.2,122.1,112.1$, 111.6, 61.03, 61.00, 60.8, 55.8, 54.9, 52.0, 48.7, 46.1, 44.9, 44.7, 26.3, 14.1, 13.6, 12.9; HRMS-ESI calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$ $[\mathrm{M}+\mathrm{H}]^{+}$897.1381, found 897.1359.

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant no. 21272119; 21121002; 21402149), the Fundamental Research Funds for the Central Universities (08143076), and the China Postdoctoral Science Foundation funded project (2014M550484) are gratefully acknowledged.

Notes and references

1 (a) D. Basavaiah, B. S. Reddy and S. S. Badsara, Chem. Rev., 2010, 110, 5447; (b) Y. Wei and M. Shi, Chem. Rev., 2013, 113, 6659; (c) T.-Y. Liu, M. Xie and Y.-C. Chen, Chem. Soc. Rev., 2012, 41, 4101.
2 Y. H. Du, X. Y. Lu and C. M. Zhang, Angew. Chem., Int. Ed., 2003, 42, 1035.
3 (a) S. Zheng and X. Lu, Org. Lett., 2008, 10, 4481; (b) S. Q. Zheng and X. Y. Lu, Tetrahedron Lett., 2009, 50, 4532; (c) S. Q. Zheng and X. Y. Lu, Org. Lett., 2009, 11, 3978; (d) Y. H. Du, J. Q. Feng and X. Y. Lu, Org. Lett., 2005, 7, 1987; (e) L.-W. Ye, X.-L. Sun, Q.-G. Wang and Y. Tang, Angew. Chem., Int. Ed., 2007, 46, 5951; (f) X. Han, L.-W. Ye, X.-L. Sun and Y. Tang, J. Org. Chem., 2009, 74, 3394.

4 (a) Z. Chen and J. Zhang, Chem. - Asian J., 2010, 5, 1542; (b) P. Z. Xie, Y. Huang and R. Y. Chen, Org. Lett., 2010, 12, 3768; (c) J. Tian, R. Zhou, H. Sun, H. Song and Z. He, J. Org. Chem., 2011, 76, 2374; (d) X. N. Zhang, H. P. Deng, L. Huang, Y. Wei and M. Shi, Chem. Commun., 2012, 48, 8664; (e) J. Tian, H. Sun, R. Zhou and Z. He, Chin. J. Chem., 2013, 31, 1348; (f) R. Zhou, C. Duan, C. Yang and Z. He, Chem. - Asian J., 2014, 9, 1183.
5 S. Xu, R. Chen, Z. Qin, G. Wu and Z. He, Org. Lett., 2012, 14, 996.
6 R. Chen, S. Xu, L. Wang, Y. Tang and Z. He, Chem. Coттип., 2013, 49, 3543.
7 (a) S. V. Karthikeyan, B. D. Bala, V. P. A. Raja, S. Perumal, P. Yogeeswari and D. Sriram, Bioorg. Med. Chem. Lett., 2010, 20, 350; (b) R. S. Kumar, S. M. Rajesh, S. Perumal, D. Banerjee, P. Yogeeswari and D. Sriram, Eur. J. Med. Chem., 2010, 45, 411; (c) R. Ranjith Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari and D. Sriram, Eur. J. Med. Chem., 2009, 44, 3821.
8 (a) R. Suresh Kumar and S. Perumal, Tetrahedron Lett., 2007, 48, 7164; (b) P. Shanmugam, B. Viswambharan, K. Selvakumar and S. Madhavan, Tetrahedron Lett., 2008,

49, 2611; (c) B. Tan, N. R. Candeias and C. F. Barbas, Nat. Chem., 2011, 3, 473; (d) W. Sun, G. Zhu, C. Wu, L. Hong and R. Wang, Chem. - Eur. J., 2012, 18, 6737; (e) W.-Y. Han, S.-W. Li, Z.-J. Wu, X.-M. Zhang and W.-C. Yuan, Chem. Eur. J., 2013, 19, 5551; (f) Y.-L. Liu, X. Wang, Y.-L. Zhao, F. Zhu, X.-P. Zeng, L. Chen, C.-H. Wang, X.-L. Zhao and J. Zhou, Angew. Chem., Int. Ed., 2013, 52, 13735; (g) H. Wu, L.-L. Zhang, Z.-Q. Tian, Y.-D. Huang and Y.-M. Wang, Chem. - Eur. J., 2013, 19, 1747; (h) J.-A. Xiao, H.-G. Zhang, S. Liang, J.-W. Ren, H. Yang and X.-Q. Chen, J. Org. Chem., 2013, 78, 11577; (i) H. H. Kuan, C. H. Chien and K. M. Chen, Org. Lett., 2013, 15, 2880; (j) W. Sun, L. Hong, G. Zhu, Z. Wang, X. Wei, J. Ni and R. Wang, Org. Lett., 2014, 16, 544; (k) L.-J. Lu, Q. Fu, J. Sun and C.-G. Yan, Tetrahedron, 2014, 70, 2537.
9 (a) L. Cai, B. Zhang, G. Wu, H. Song and Z. He, Chem. Commun., 2011, 47, 1045; (b) J. Tian and Z. He, Chem. Commun., 2013, 49, 2058; (c) S. Xu and Z. He, Chin. J. Org. Chem., 2012, 32, 1159; (d) S. Xu, L. Zhou, R. Ma, H. Song and Z. He, Chem. - Eur. J., 2009, 15, 8698; (e) B. Zhang, L. Cai, H. Song, Z. Wang and Z. He, Adv. Synth. Catal., 2010, 352, 97; (f) R. Zhou, J. Wang, C. Duan and Z. He, Org. Lett., 2012, 14, 6134; (g) R. Zhou, J. Wang, J. Tian and Z. He, Org. Biomol. Chem., 2012, 10, 773; (h) R. Chen, X. Fan, J. Gong and Z. He, Asian J. Org. Chem., 2014, 3, 877.

10 (a) C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 46, 8748; (b) N. R. Ball-Jones, J. J. Badillo and A. K. Franz, Org. Biomol. Chem., 2012, 10, 5165.

11 (a) R. Dalpozzo, G. Bartoli and G. Bencivenni, Chem. Soc. Rev., 2012, 41, 7247; (b) L. Hong and R. Wang, Adv. Synth. Catal., 2013, 355, 1023; (c) D. Cheng, Y. Ishihara, B. Tan and C. F. Barbas, ACS Catal., 2014, 4, 743; (d) G. S. Singh and Z. Y. Desta, Chem. Rev., 2012, 112, 6104.
12 (a) F. Hu, Y. Wei and M. Shi, Tetrahedron, 2012, 68, 7911; (b) B. Tan, N. R. Candeias and C. F. Barbas, III, J. Am. Chem. Soc., 2011, 133, 4672.
13 (a) X.-Y. Chen, R.-C. Lin and S. Ye, Chem. Commun., 2012, 48, 1317; (b) L. B. Saunders and S. J. Miller, ACS Catal., 2011, 1, 1347; (c) C. Li, Q. Zhang and X. Tong, Chem. Comтип., 2010, 46, 7828; (d) G.-T. Huang, T. Lankau and C.-H. Yu, J. Org. Chem., 2014, 79, 1700.

14 A. Patel, D. Giles, G. Basavarajaswamy, C. Sreedhar and A. Patel, Med. Chem. Res., 2012, 21, 4403.

15 Y. Cao, X. Jiang, L. Liu, F. Shen, F. Zhang and R. Wang, Angew. Chem., Int. Ed., 2011, 50, 9124.

[^0]: ${ }^{a}$ The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 94 Weijin Road, Tianjin 300071, P. R. China. E-mail: zhengjiehe@nankai.edu.cn; Fax: (+86) 22-23501520
 ${ }^{b}$ Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China. E-mail: silongxu@mail.xjtu.edu.cn; Fax: (+86) 2982655399 \dagger Electronic supplementary information (ESI) available. CCDC 1012038 and 1011983. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ob01927j

