Ethoxide-Mediated Condensation of γ-tert-Butylallenoate and Aldehydes: Facile Stereoselective Synthesis of Conjugated Dienes and Enynes

Silong Xu, ${ }^{1, a}$ Liyi Wang, ${ }^{1, b}$ Yuhai Tang, ${ }^{\text {a }}$ Zhengjie He*b
${ }^{\text {a }}$ Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. of China
${ }^{\text {b }}$ The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Department of Chemistry, Nankai University, Tianjin 300071, P. R. of China
Fax $+86(22) 23501520$; E-mail: zhengjiehe@nankai.edu.cn
Received: 12.03.2014; Accepted after revision: 18.03.2014

Abstract

The condensation reaction of a γ-tert-butylallenoate, ethyl 5,5-dimethylhexa-2,3-dienoate, and aldehydes in the presence of sodium ethoxide is described. A range of aldehydes readily reacts with γ-tert-butylallenoate and ethoxide providing a straightforward synthesis of 1,2,3,4-tetrasubstituted conjugated dienes in moderate to good yields and exclusive E, E selectivity. For some aldehydes, the condensation chemoselectively delivers conjugated enynes in good yields and exclusive E selectivity.

Key words: conjugated diene, enyne, allenoate, condensation, tandem reaction

Conjugated dienes (1,3-dienes) are important organic compounds since they are embedded as key backbones in many biologically active molecules ${ }^{2}$ and serve as intermediates for many important chemical transformations, ${ }^{3}$ especially the Diels-Alder reaction. ${ }^{3 \mathrm{~d}}$ Due to the great utility of 1,3-dienes, many methods have been developed for their synthesis, these include: elimination reactions, ${ }^{4}$ P-, S-, and Si-based carbonyl olefinations, ${ }^{5}$ and transition-metal-mediated diene formations, ${ }^{6}$ and others. ${ }^{7}$ Despite the effectiveness of these processes, developing new, efficient, and stereoselective syntheses of 1,3-dienes, especially polysubstituted examples, remains an important objective. ${ }^{8}$
Allenoates (α-allenic esters) ${ }^{9}$ are a class of readily available and highly versatile intermediates in organic synthesis. Over the past two decades, a number of new reactivity patterns of allenoates have been disclosed and utilized in the assembly of a range of molecular scaffolds of high diversity and complexity. ${ }^{10}$ In this context, allenoates have also emerged as attractive precursors for building conjugated dienes. ${ }^{11}$ In our investigations on the new reactivity of allenoates toward aldehydes, ${ }^{11 i-m}$ we have reported several olefination reactions between allenoates and aldehydes under the mediation of stochiometric phosphines, which provide an efficient synthetic method for polysubstituted 1,3-dienes. Recently, Ma and co-workers ${ }^{12}$ developed an elegant strategy involving a $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-type addition/elimination of α-carbinol-substituted allenoates with halide nucleophiles, which provides an easy synthesis of 2-halo-1,3-dienes [Scheme 1 (a)]. Similar $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reac-

[^0]tions of acetylated α-carbinol-substituted allenoates with isatin-derived oximes are documented by Shi and coworkers. ${ }^{13}$ Very recently, Lee and co-workers ${ }^{14}$ employed γ-carbinol-substituted allenoates in reactions with trimethylsilyl triflate or chlorotrimethylsilane for the facile generation of (E, E)-1,3-dien-2-yl triflates and halides, respectively [Scheme 1 (b)]. As part of our continued interest in exploring the new reactivity of allenoates toward various electrophiles, ${ }^{11 \mathrm{i}-\mathrm{m}, 15}$ we herein disclose a new condensation reaction of a γ-tert-butylallenoate, ethyl 5,5-di-methylhexa-2,3-dienoate, with aldehydes in the presence of sodium ethoxide, which provides a straightforward and highly stereoselective synthesis of 1,2,3,4-tetrasubstituted conjugated dienes [Scheme 1 (c)]. In a substrate-dependent manner, the condensation can also chemoselectively deliver conjugated enynes from some aldehydes.

Scheme 1 Synthesis of conjugated dienes from allenoates

Originally, we were in the process of exploring possible annulation reactions of γ-tert-butylallenoate $1 \mathbf{1 a}$ with 2chlorobenzaldehyde (2a) under Lewis base catalysis. ${ }^{15 a}$ Unexpectedly, in the presence of 1,8-diazabicy-clo[5.4.0]undec-7-ene (DBU), the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ in ethanol at room temperature afforded 1,3-diene 3a in 39% yield as a single E, E-stereoisomer (Table 1 , entry 1). The structure of $\mathbf{3 a}$ was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, HRMS, and X-ray crystallographic analysis (Figure 1).

Apparently, the diene 3a was generated via a base-mediated three-component condensation between allenoate 1a, aldehyde $\mathbf{2 a}$, and ethanol with loss of one molecule of water. To our knowledge, this reaction unveils a new reactivity pattern of allenoates with aldehydes, and also provides a straightforward synthesis of functionalized conjugated dienes.

Table 1 Optimization of Reaction Conditions ${ }^{a}$

	 2a	$\underset{\mathrm{EtOH}, \text { r.t. }}{\text { base }} \mathrm{E}$	
Entry	Base	Time (h)	Yield ${ }^{\text {b }}$ (\%)
1	DBU	24	39
2	DMAP	24	40
3	DABCO	24	0
4	$\mathrm{Et}_{3} \mathrm{~N}$	24	0
5	HMT	24	0
6	$\mathrm{Ph}_{3} \mathrm{P}$	24	trace
7	$\mathrm{Bu}_{3} \mathrm{P}$	24	trace
8	$\mathrm{K}_{2} \mathrm{CO}_{3}$	24	61
9	KOH	24	87
10	$\mathrm{Et}_{4} \mathrm{NOH}^{\text {c }}$	24	77
11	EtONa	1	81
$12^{\text {d }}$	EtONa	0.5	93
$13^{\text {d,e }}$	EtONa	0.5	93

${ }^{\text {a }}$ Reaction conditions: allenoate $\mathbf{1 a}(0.75 \mathrm{mmol}), 2$-chlorobenzaldehyde (0.5 mmol), base (0.5 mmol), EtOH (2 mL), r.t., stirring, N_{2} atmosphere.
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ As an aqueous 25% solution.
${ }^{\mathrm{d}} \mathrm{EtONa}$ (1.5 equiv) was used.
${ }^{\mathrm{e}}$ The reaction was conducted under an air atmosphere.

A screening of base promoters was carried out using the reaction of γ-tert-butylallenoate 1a with 2-chlorobenzaldehyde (2a) to optimize conditions (Table 1). It was found that 4-(dimethylamino)pyridine could also promote the reaction to give 3a in 40% yield, while 1,4-diazabicyclo[2.2.2]octane, triethylamine, and hexamethylenetetramine (HMT) were ineffective (entries 2-5). Phosphoruscontaining Lewis bases such as triphenylphosphine and tributylphosphine were also unsuitable, only giving trace amounts of the product (entries 6 and 7). However, inorganic bases, such as potassium carbonate, potassium hydroxide, tetraethylammonium hydroxide, are more effective providing $\mathbf{3 a}$ in $61 \%, 87 \%$, and 77% yields, re-

Figure 1 ORTEP drawings for diene $\mathbf{3 a}$ and enyne $\mathbf{4 b}$
spectively (entries 8-10). As conceivably the ethoxide anion generated in situ from base and ethanol could initiate the reaction, we directly employed 1.0 equivalents of sodium ethoxide as the mediator. ${ }^{16}$ The model reaction proceeded much faster giving an 81% yield of $\mathbf{3 a}$ (entry 11). The reaction was complete in 30 minutes when the amount of sodium ethoxide was increased to 1.5 equivalents and the product 3a was obtained in 93\% yield (entry 12). The sodium ethoxide mediated reaction was conducted under an air atmosphere without loss of efficiency (entry 13). It is noteworthy that employing other solvents (e.g. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, and toluene) instead of ethanol is detrimental, giving lower yields.
Under the optimized conditions, the scope of the condensation reaction was investigated. Some typical results are summarized in Table 2. Halobenzaldehydes worked well giving the corresponding dienes $\mathbf{3 a - d}$ in 33-93\% yields (entries 1-4). Electron-poor aldehydes such as nitro- or trifluoromethyl-substituted benzaldehydes as well as pyridinecarbaldehydes were also effective delivering dienes $\mathbf{3 e - i}$ in moderate yields ($34-81 \%$) (entries 5-9). For relatively electron-rich aromatic or alkyl aldehydes, the reactions gave low to moderate yields only of the corresponding dienes (entries 10-13). The lowered yields are mainly due to the competitive Michael reaction of ethanol with the allenoate 1a generating the alkene 5 (Figure $2)$.

5

Figure 2 Structure of 5

Table 2 Substrate Scope of the Condensation Reaction ${ }^{\text {a }}$

 $1 a$							
Entry $\mathrm{R}^{1} \mathrm{CHO}$		R^{1}	R^{2}	Yield ${ }^{\text {b }}$ (\%)			
		3		4	$5{ }^{\text {c }}$		
1	2 a		$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Et	3a, 93	-	n.d.
2	2b	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	Et	3b, 73	-	n.d.	
3	2 c	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	Et	3c, 43	-	20	
4	2d	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	Et	3d, 33	-	33	
5	2 e	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	Et	3e, 54	4a, 9	n.d.	
6	2 f	$2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	Et	3f, 81	trace	n.d.	
7	2 g	4-F3 $\mathrm{CC}_{6} \mathrm{H}_{4}$	Et	3g, 63	-	n.d.	
8	2h	2-pyridyl	Et	3h, 53	-	n.d.	
9	2 i	4-pyridyl	Et	3i, 34	-	n.d.	
10	2j	Ph	Et	3j, 32	-	28	
11	2k	1-naphthyl	Et	3k, 48	-	10	
12	21	4- $\mathrm{MeC}_{6} \mathrm{H}_{4}$	Et	31, 16	-	41	
13	2m	Pr	Et	3m, 19	-	18	
14	2a	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Me	3n, 40	-	n.d.	
15	2 n	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	Et	-	4b, 98	n.d.	
16	20	2-furyl	Et	-	4c, 71	n.d.	
17	2p	2-thienyl	Et	-	4d, 68	n.d.	
18	2 q	(E) $-\mathrm{PhCH}=\mathrm{CH}$	Et	-	4e, 67	n.d.	

${ }^{\text {a }}$ Reaction conditions: allenoate $\mathbf{1 a}(0.75 \mathrm{mmol})$, aldehyde (0.5 $\mathrm{mmol}), \mathrm{R}^{2} \mathrm{ONa}(0.75 \mathrm{mmol}), \mathrm{R}^{2} \mathrm{OH}(2 \mathrm{~mL})$, r.t., air atmosphere, 30 min.
${ }^{\mathrm{b}}$ Isolated yields based on aldehydes 2.
${ }^{\text {c }}$ For the structure of $\mathbf{5}$ see Figure 2. Isolated yields based on allenoate 1a; n.d. $=$ not determined.

Interestingly, some aldehydes favor the formation of conjugated enyne products 4^{17} under the given conditions. For example, while 2- and 4-nitrobenzaldehydes predominantly produced the diene products $\mathbf{3 f}$ and $\mathbf{3 e}$, respectively (entries 5 and 6), 3-nitrobenzaldehyde gave exclusively enyne 4b in an excellent 98% yield (entry 15), whose structure was unequivocally determined by X-ray crystallographic analysis (Figure 1). Furan-2-carbaldehyde, thio-phene-2-carbaldehyde, and cinnamaldehyde also favor the formation of enynes $\mathbf{4 c - e}$ (entries 16-18). Another unexpected reaction was observed from 2-cyanobenzaldehyde (2r) and allenoate 1a under standard conditions, which produced isoindolinone $\mathbf{6}$ in 35% yield [Scheme 2 (1)]. ${ }^{18}$ In contrast to aldehydes, ketones such as acetone,
acetophenone, and 2,2,2-trifluoro-1-phenylethanone were unreactive under standard conditions. In these cases, the generation of the byproduct 5 from ethanol and allenoate 1a dominated.

Scheme 2

Variation of the alcohols and allenoates was investigated. Using methanol and sodium methoxide as the mediator, the corresponding methoxy-substituted diene $\mathbf{3 n}$ with a methyl ester group was generated in 40% yield from allenoate 1a and 2-chlorobenzaldehyde (2a) (Table 2, entry 14). However, structurally similar allenoates including γ -methyl-, γ-ethyl-, γ-isopropyl-, and γ-phenylallenoates as well as the unsubstituted parent all failed to produce the expected dienes and instead afforded complex mixtures, presumably due to their high susceptibility under the strong basic conditions. The result clearly implies the special role of the bulky γ-tert-butyl group of the allenoate in the condensation.
It is noteworthy that the above ethoxide-mediated condensations are clean and fast, and manifest exclusive regioand stereoselectivity. Condensation of the aldehydes occurred regioselectively at the α-carbon of the allenoate. All dienes and enynes listed in Table 2 were also obtained as single E, E and E stereoisomers, respectively. Their structures were identified by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR, MS, and HRMS, and the stereochemistry was confirmed by X-ray crystallographic analysis for representative products 3a and $\mathbf{4 b}{ }^{19}$ (Figure 1).
To verify possible interconversion relationship between the diene and the enyne products, we treated diene $\mathbf{3 e}$ and enyne $\mathbf{4 a}$ under standard conditions in the absence of the allenoate and aldehydes [Scheme 2 (2)]. Interconversion between $\mathbf{3 e}$ and $4 \mathbf{4}$ was not observed. This result indicates that neither the diene nor the enyne serves as an intermediate en route in the reactions. ${ }^{20}$ On the basis of the current observation and related literatures, ${ }^{17,21}$ a plausible mechanism for the condensation reactions is depicted in Scheme 3. A tandem oxa-Michael/aldol/elimination process is postulated for the formation of $\mathbf{3}$. Initially, ethoxide anion (generated in situ from the base and ethanol) undertakes oxa-Michael addition to the allenoate 1a. Subsequently, the resulting anionic intermediate 7 undergoes an aldol

Scheme 3 A plausible mechanism for the formations of $\mathbf{3}$ and 4
condensation at the α carbon with aldehydes to give intermediate 8. Finally, elimination of water under basic conditions produces dienes 3. Previously, electron-deficient olefins were employed as Michael acceptors in a similar tandem process to deliver trisubstituted alkenes. ${ }^{21 b-d}$
Accordingly, the byproduct 5 in those condensations of less reactive aldehydes or ketones may be generated by a competitive protonation of the intermediate 7 . For the formation of $4,{ }^{17 \mathrm{a}}$ it can be rationalized that the enolate intermediate 7 preferentially undertakes an elimination reaction to give propargyl anion $9,{ }^{22}$ which undergoes a sequential aldol reaction with aldehydes and elimination of water to produce the enynes 4 . Nevertheless, the chemoselectivity between the formation of dienes $\mathbf{3}$ and enynes 4 from different aldehydes shown in Table 2 could not be well understood in terms of the steric and electron
properties of aldehydes at this moment; more efforts are needed to reach a precise mechanism. ${ }^{23}$
In conclusion, we present a new reactivity of allenoates toward aldehydes under base mediation. In the presence of sodium ethoxide, a three-component condensation reaction of γ-tert-butylallenoate and aldehydes readily provides 1,2,3,4-tetrasubstituted conjugated dienes $\mathbf{3}$ in moderate to good yields and excellent E, E selectivity. The reaction is believed to proceed in an oxa-Michael-aldolelimination sequence, which represents a new and straightforward synthesis of polysubstituted 1,3-dienes starting from allenoates. In a substrate-dependent manner, the condensation reaction also chemoselectively delivers trisubstituted 1,3-enynes $\mathbf{4}$ in good yields and E selectivity with several aldehydes. Further efforts in our laboratory will focus on tuning this novel reactivity of allenoates into a useful synthetic method.

Allenoate 1a was prepared according to a reported procedure. ${ }^{24}$ EtONa and MeONa were prepared with Na and abs EtOH or MeOH . All other reagents were purchased from commercial sources and used without further purification. NMR spectra were recorded on a Bruker AV 400 or AV 300 spectrometer in CDCl_{3} with TMS as the internal standard. IR spectra were recorded on a Nicolet 380 FT-IR spectroscopy (KBr). Low-resolution MS spectra (EI, 70 eV) were measured by a Thermo Finnigan Polaris-Q mass spectrometer. HRMS data were obtained on an IonSpec QFT-ESI instrument. Column chromatography was performed on silica gel (200-300 mesh) using petroleum ether- $\mathrm{Et}_{2} \mathrm{O}$.

Ethoxide-Mediated Condensation of γ-tert-Butylallenoate 1a

 and Aldehydes; General ProcedureA 1 M EtONa in EtOH soln $(0.75 \mathrm{~mL}, 0.75 \mathrm{mmol})$ was added to a mixture of γ-tert-butylallenoate 1a $(126 \mathrm{mg}, 0.75 \mathrm{mmol})$ and aldehyde $(0.5 \mathrm{mmol})$ in $\mathrm{EtOH}(1.25 \mathrm{~mL})$ at r.t. under an air atmosphere. The mixture was stirred for 30 min , and then neutralized with aq 1 $\mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ soln $(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, gradient petroleum ether- $\mathrm{Et}_{2} \mathrm{O}, 50: 1$ to $10: 1$) to give the corresponding product.

Ethyl (2E,3E)-2-(2-Chlorobenzylidene)-3-ethoxy-5,5-dimethyl-hex-3-enoate (3a)
Colorless sheet crystal; yield: 156 mg (93\%); mp 56-58 ${ }^{\circ} \mathrm{C}$.
IR (KBr): 2957, 2904, 1716, 1618, 1470, 1245, 1202, 1140, 1068, $751 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H}), 7.38$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.79(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 6 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.6,145.8,138.4,134.8,133.2$, $131.0,130.5,130.2,129.2,126.3,114.5,63.0,60.9,30.8,29.7$, 14.7, 14.1 .

MS (EI, 70 eV): $m / z(\%)=169.1$ (51), 197.1 (80), 237.1 (74), 247.0 (100), 337.1 (11) $[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClNaO}_{3}: 359.1384$; found: 359.1390 .

Ethyl (2E,3E)-2-(4-Chlorobenzylidene)-3-ethoxy-5,5-dimethyl-hex-3-enoate (3b)
Colorless oil; yield: 123 mg (73\%).
IR (KBr): 2956, 2904, 1712, 1662, 1491, 1249, 1199, 1145, 1092, $825 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2$ $\mathrm{H}), 3.80(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.9,145.9,140.5,135.6,133.0$, 131.6, 129.2, 128.5, 114.4, 63.0, 61.0, 31.1, 30.8, 14.7, 14.2.

MS (EI, 70 eV): $m / z(\%)=83.1(57), 169.1(68), 237.1(100), 247.1$ (83), 336.0 (17) $[\mathrm{M}]^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClNaO}_{3}: 359.1384$; found: 359.1387.

Ethyl (2E,3E)-2-(4-Bromobenzylidene)-3-ethoxy-5,5-dimethyl-hex-3-enoate (3c)
Colorless oil; yield: 82 mg (43\%).
IR (KBr): 2956, 2921, 2864, 1712, 1656, 1483, 1253, 1069, 746 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.64(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 4 \mathrm{H}), 4.76$ $(\mathrm{s}, 1 \mathrm{H}), 4.28(\mathrm{qd}, J=7.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.31(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.0,145.9,140.6,133.5,131.9$, 131.6, 129.3, 124.1, 114.3, 63.0, 61.1, 31.2, 30.9, 14.7, 14.2.

MS (EI, 70 eV$): m / z(\%)=83.1$ (62), 197.1 (68), 213.0 (72), 281.0 (100), 291.0 (56), 380.0 (10) [M] ${ }^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrNaO}_{3}: 403.0879$; found: 403.0875.

Ethyl (2E,3E)-3-Ethoxy-2-(3-fluorobenzylidene)-5,5-dimethyl-

 hex-3-enoate (3d)Colorless oil; yield: 53 mg (33\%).
IR (KBr): 2957, 2911, 1712, 1654, 1486, 1251, 1109, 1086, 807 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.02$ $(\mathrm{m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{qd}, J=7.1,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2$ H), $1.31(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9,162.6\left(\mathrm{~d}, J_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right)$, $145.8,140.6,136.8\left(\mathrm{~d}, J_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right), 130.1,129.7\left(\mathrm{~d}, J_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right)$, $126.5,116.6,116.3\left(\mathrm{~d}, J_{\mathrm{CF}}=4.0 \mathrm{~Hz}\right), 114.3,63.0,61.1,31.1,30.9$, 14.7, 14.2 .

MS (EI, 70 eV$): m / z(\%)=83.1(67), 197.1(75), 221.1(100), 320.1$ (14) $[\mathrm{M}]^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{FNaO}_{3}: 343.1680$; found: 343.1686.

Ethyl (2E,3E)-3-Ethoxy-5,5-dimethyl-2-(4-nitrobenzyli-
dene)hex-3-enoate (3e)
Yellow oil; yield: 94 mg (54\%).
IR (KBr): 2959, 2903, 2870, 1716, 1595, 1522, 1345, 1250, 1200, 1146, 1069, $854 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~m}$, $2 \mathrm{H}), 1.33(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.4,147.8,145.3,140.9,138.9$, $132.7,130.7,123.4,114.7,63.2,61.3,31.1,30.8,14.6,14.1$.
MS (EI, 70 eV$): m / z(\%)=197.1$ (52), 248.1 (98), 258.0 (100), 347.0 (13) $[\mathrm{M}]^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaO}_{5}: 370.1625$; found: 370.1621 .

Ethyl (2E,3E)-3-Ethoxy-5,5-dimethyl-2-(2-nitrobenzyli-

dene)hex-3-enoate (3f)
Yellow oil; yield: 141 mg (81\%).
IR (KBr): 2958, 2900, 1717, 1525, 1344, 1246, 1201, 1143, 1069, $810 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.10(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,148.0,145.2,139.5,137.7$, $132.9,132.0,131.2,129.4,124.3,115.6,63.1,61.1,30.7,30.2$, 14.7, 14.1 .

MS (EI, 70 eV$): m / z(\%)=83.2(64), 134.2(80), 174.2(65), 188.2$ (100), 217.1 (65), 258.2 (62), 347.1 (10) [M] ${ }^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaO}_{5}: 370.1625$; found: 370.1628.

Ethyl (2E,3E)-3-Ethoxy-5,5-dimethyl-2-[4-(trifluorometh-yl)benzylidene]hex-3-enoate (3 g)
Colorless oil; yield: $117 \mathrm{mg}(63 \%)$.
IR (KBr): 2958, 2901, 2855, 1716, 1324, 1249, 1130, $1067 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~m}$, $6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,145.7,140.1,138.1,131.2$, $130.4,129.6\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 125.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.9\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ 272.0 Hz), 114.6, 63.2, 61.2, 31.2, 30.9, 14.7, 14.2.

MS (EI, 70 eV$): m / z(\%)=197.1$ (51), 271.1 (90), 281.0 (100), 370.1 (13) [M] ${ }^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}_{3}: 393.1648$; found: 393.1647.

Ethyl (2E,3E)-3-Ethoxy-5,5-dimethyl-2-(pyridin-2-ylmeth-

 ylene)hex-3-enoate (3h)Slightly blue oil; yield: 80 mg (53\%)
IR (KBr): 2975, 2954, 1709, 1492, 1367, 1211, 1163, 1080, 769 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ $(\mathrm{m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.36(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.6,153.9,149.4,145.7,142.0$, $135.9,131.8,124.5,123.3,114.6,63.1,61.0,31.0,30.8,14.7,14.1$. MS (EI, 70 eV$): m / z(\%)=172.3(51), 246.2(100), 302.9(2)[\mathrm{M}]^{+}$. HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NNaO}_{3}: 326.1727$; found: 326.1724

Ethyl (2E,3E)-3-Ethoxy-5,5-dimethyl-2-(pyridin-4-ylmeth-ylene)hex-3-enoate (3i)
Yellow oil; yield: 52 mg (34\%)
IR (KBr): 2974, 2949, 1710, 1486, 1377, 1208, 1179, 1080, 761 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3,150.0,145.2,141.9,138.9$, $133.4,123.8,114.6,63.2,61.3,30.9,30.4,14.6,14.1$.
MS (EI, 70 eV$): m / z(\%)=83.1(57), 172.1(51), 246.1(100), 304.1$ (8) $[\mathrm{M}+1]^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}: 304.1907$; found: 304.1902

Ethyl (2E,3E)-2-Benzylidene-3-ethoxy-5,5-dimethylhex-3-eno-

 ate (3j)Colorless oil; yield: 48 mg (32\%)
IR (KBr): 2956, 2902, 2864, 1713, 1616, 1248, 1199, 1143, 1067 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72$ (s, 1 H), 7.61 (m, 2 H), 7.34 $(\mathrm{m}, 3 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.31$ (m, 6 H$), 0.88$ (s, 9 H$)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.3,146.3,142.2,134.6,130.5$, 129.7, 128.7, 128.3, 114.3, 63.0, 61.0, 30.9, 30.8, 14.8, 14.2.

MS (EI, 70 eV): $m / z(\%)=83.1(51), 145.1(62), 203.1(100), 213.1$ (98), 273.1 (50), 302.1 (19) [M] ${ }^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{3}: 325.1774$; found: 325.1776.

Ethyl (2E,3E)-3-Ethoxy-5,5-dimethyl-2-(naphthalen-1-ylmeth-ylene)hex-3-enoate (3k)
Yellow oil; yield: 85 mg (48\%).
IR (KBr): 2956, 2903, 1712, 1616, 1469, 1233, 1138, 1090, 1064, $801 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.52(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}$ $1 \mathrm{H}), 7.83(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~m}, 3 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.80(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.1,146.4,139.8,133.3,131.9$, $131.6,130.8,129.7,128.7,127.4,126.6,125.8,125.2,123.7,114.0$, $63.0,61.0,31.0,30.8,14.8,14.3$.

MS (EI, 70 eV$): m / z(\%)=207.1(100), 296.1(65), 352.1(20)[\mathrm{M}]^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NaO}_{3}: 375.1931$; found 375.1933.

Ethyl (2E,3E)-3-Ethoxy-5,5-dimethyl-2-(4-methylbenzyli-
 dene)hex-3-enoate (3I)
 Colorless oil; yield: 25 mg (16\%).

IR (KBr): 3552, 3406, 2954, 2859, 1710, 1611, 1387, 1249, 1144 $1076,801 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.4,162.3,146.5,142.2,140.1$, $131.8,130.6,129.1,127.4,114.3,62.9,60.9,31.2,30.9,21.4,14.8$, 14.3.

MS (EI, 70 eV$): m / z(\%)=159.3$ (66), 217.1 (100), 227.1 (75), 316.0 (18) [M] ${ }^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NaO}_{3}: 339.1931$; found: 339.1935.

Ethyl (E)-2-[(E)-1-Ethoxy-3,3-dimethylbut-1-enyl]hex-2-enoate (3m)
Colorless oil; yield: 25 mg (19\%)
IR (KBr): 2956, 2863, 1712, 1617, 1461, 1366, 1259, 1132, 1056, $810 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}$, $1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2$ H), $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 6 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.6,147.6,146.0,131.0,114.7$, $62.8,60.5,32.2,31.2,30.1,21.5,14.7,14.2,14.0$.

MS (EI, 70 eV$): m / z(\%)=137.1$ (60), 193.1 (100), 267.1 (38) [M-1].
HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NaO}_{3}: 291.1931$; found: 291.1931.

Methyl (2E,3E)-2-(2-Chlorobenzylidene)-3-methoxy-5,5-di-methylhex-3-enoate (3n)
Slightly yellow oil; yield: $62 \mathrm{mg}(40 \%)$
IR (KBr): 2961, 2913, 1720, 1599, 1470, 1243, 1204, 1096, 1065, $774 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.08(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1$ H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.0,146.4,139.1,134.8,133.0$, $130.9,130.44,130.37,130.3,129.3,126.5,113.5,54.6,52.3,30.8$, 30.0 .

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClNaO}_{3}: 331.1071$; found: 331.1073.

Ethyl (E)-5,5-Dimethyl-2-(4-nitrobenzylidene)hex-3-ynoate (4a)
Yellow oil; yield: $14 \mathrm{mg}(9 \%)$
IR (KBr): 2969, 2930, 2851, 1721, 1593, 1463, 1292, 1246, 1187, $723 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.25(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.18$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41$ (s, 9 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.1,147.8,140.8,140.2,130.5$, 123.4, 117.9, 110.2, 74.8, 62.0, 30.4, 28.7, 14.0.

MS (EI, 70 eV): $m / z(\%)=286.0(100), 301.0(36)[\mathrm{M}]^{+}$.
HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{4}: 324.1206$; found: 324.1208.

Ethyl (E)-5,5-Dimethyl-2-(3-nitrobenzylidene)hex-3-ynoate (4b)
Yellow solid; yield: $148 \mathrm{mg}(98 \%)$; $\mathrm{mp} 96-99^{\circ} \mathrm{C}$.
IR (KBr): 2968, 2917, 2863, 1717, 1587, 1427, 1320, 1264, 1193, $725 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.29(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~m}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1$ H), $4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2,148.3,140.0,136.34$, $136.28,129.2,124.3,123.4,117.0,110.7,74.4,61.8,30.5,28.7$, 14.0.

MS (EI, 70 eV$): m / z(\%)=286.1(100), 301.1(55)[\mathrm{M}]^{+}, 302.0(56)$ $[\mathrm{M}+1]^{+}$.
HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{4}: 324.1206$; found: 324.1207.

Ethyl (E)-2-(Furan-2-ylmethylene)-5,5-dimethylhex-3-ynoate (4c)
Colorless oil; yield: 87 mg (71\%).
IR (KBr): 2971, 2929, 1717, 1596, 1472, 1269, 1245, 1181, 1023, $749 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.5,151.7,144.2,130.9,114.6$, 112.4, 110.6, 109.1, 75.2, 61.2, 30.7, 28.5, 14.0.

MS (EI, 70 eV): $m / z(\%)=246.0(100)[\mathrm{M}]^{+}, 247.0(47)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{3}: 269.1148$; found: 269.1155.

Ethyl (E)-5,5-Dimethyl-2-(thiophen-2-ylmethylene)hex-3-yno-

 ate (4d)Colorless oil; yield: 89 mg (68\%).
IR (KBr): 2966, 2918, 2864, 1711, 1585, 1368, 1264, 1200, 725 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=5.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.8,139.3,137.0,133.4,130.0$, $126.8,110.9,110.7,75.3,61.3,30.5,28.7,14.1$.
MS (EI, 70 eV): $m / z(\%)=219.1$ (50), 247.1 (100), 261.9 (41) [M] ${ }^{+}$. HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}: 285.0920$; found: 285.0926.

Ethyl (E)-5,5-Dimethyl-2-[(E)-3-phenylprop-2-enylidene]hex-3-ynoate (4e)
Colorless oil; yield: 95 mg (67\%).
IR (KBr): 2965, 2901, 2865, 1705, 1577, 1368, 1278, 1239, 987, $752 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3$ H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.6,145.0,140.8,136.4,129.1$, $128.8,127.4,125.8,115.8,108.0,73.6,61.2,31.0,28.5,14.2$.

MS (EI, 70 eV$): m / z(\%)=178.3$ (60), 179.3 (67), 193.3 (100), 267.0 (80), 282.0 (38) [M] ${ }^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{2}: 305.1512$; found: 305.1513.

Ethyl (2E,3E)-5,5-Dimethyl-2-(3-oxoisoindolin-1-ylidene)hex-

 3-enoate (6)Yellow solid; yield: $52 \mathrm{mg}(35 \%)$; $\mathrm{mp} 91-93{ }^{\circ} \mathrm{C}$.

IR (KBr): 3443, 3298, 2953, 2857, 1719, 1688, 1607, 1465, 1322, $1256,1102,773 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.20(\mathrm{~m}, 1 \mathrm{H})$, $7.96(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 0.99 (s, 9 H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0,167.8,146.9,142.3,136.7$, $132.1,130.6,130.5,126.2,123.8,117.9,106.3,61.1,34.9,29.8$, 14.2 .

MS (EI, 70 eV$): m / z(\%)=210.1$ (56), 226.1 (100), 238.1 (58), 253.1 (52), 299.0 (30) [M] ${ }^{+}$.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{3}: 322.1414$; found: 322.1407.

Ethyl (E)-3-Ethoxy-5,5-dimethylhex-2-enoate (5)

As a byproduct in the condensation reactions; as a colorless oil. IR (KBr): 2955, 2928, 1712, 1617, 1372, 1132, $1057 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.02(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3$ H), $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.1,167.9,92.5,63.3,59.2$, 43.3, 32.1, 30.0, 14.4, 14.3 .

MS (EI, 70 eV$): m / z(\%)=153.1$ (100), 158.0 (50), 169.1 (53), $215.1(56)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3}: 215.1647$; found: 215.1646.

Acknowledgment

Financial support from National Natural Science Foundation of China (21072100; 21121002), Research Fund for the Doctoral Program of Higher Education of China (20110031110012), and the Fundamental Research Funds for the Central Universities (08143076), are gratefully acknowledged.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

(1) These authors contributed equally to this work.
(2) (a) Pereira, A. R.; Cabezas, J. A. J. Org. Chem. 2005, 70, 2594. (b) de Figueiredo, R. M.; Berner, R.; Julis, J.; Liu, T.; Türp, D.; Christmann, M. J. Org. Chem. 2007, 72, 640.
(3) (a) Winkler, J. D. Chem. Rev. 1996, 96, 167. (b) The Chemistry of Dienes and Polyenes; Vol. 1; Rappoport, Z., Ed.; John Wiley \& Sons: Chichester, 1997. (c) The Chemistry of Dienes and Polyenes; Vol. 2; Rappoport, Z., Ed.; John Wiley \& Sons: Chichester, 2001. (d) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction; Wiley: New York, 1990.
(4) Larock, R. C. Comprehensive Organic Transformations; VCH: Weinheim, 1989, 241.
(5) (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (b) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563. (c) van Staden, L. F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 195.
(6) (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (d) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442. (e) Hansen, E. C.; Lee, D. Acc. Chem. Res. 2006, 39, 509.
(7) (a) Trost, B. M.; Bridges, A. J. J. Am. Chem. Soc. 1976, 98, 5017. (b) Bloch, R.; Benecou, C.; Guibé-Jampel, E. Tetrahedron Lett. 1985, 26, 1301. (c) Trost, B. M.; Sorum, M. T.; Chan, C.; Rühter, G. J. Am. Chem. Soc. 1997, 119, 698. (d) Welker, M. E. Tetrahedron 2008, 64, 11529.
(8) For recent selected examples for diene synthesis, see: (a) Deng, Y.; Gu, Z.; Ma, S. Chin. J. Org. Chem. 2006, 26, 1468. (b) Clark, D. A.; Kulkarni, A. A.; Kalbarczyk, K.; Schertzer, B.; Diver, S. T. J. Am. Chem. Soc. 2006, 128, 15632. (c) Deng, Y.; Yu, Y.; Ma, S. J. Org. Chem. 2008, 73, 585. (d) Paih, J. L.; Bray, C. V.-L.; Dérien, S.; Dixneuf, P. H. J. Am. Chem. Soc. 2010, 132, 7391. (e) O’Connor, J. M.; Chen, M.-C.; Holland, R. L.; Rheingold, A. L.
Organometallics 2011, 30, 369. (f) Zhang, X.; Fu, C.; Ma, S. Org. Lett. 2011, 13, 1920. (g) Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. J. Am. Chem. Soc. 2012, 134, 6928. (h) Moulin, S.; Zhang, H.; Raju, S.; Bruneau, C.; Derien, S. Chem. Eur. J. 2013, 19, 3292.
(9) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
(10) For selected reviews, see: (a) Ma, S. Chem. Rev. 2005, 105, 2829. (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (c) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (d) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (e) Marinetti, A.; Voituriez, A. Synlett 2010, 174. (f) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724. (g) Xu, S.; He, Z. RSC Adv. 2013, 3, 16885. (h) Kwon, O.; Fan, Y. C. Chem. Commun. 2013, 49, 1158.
(11) For selected examples, see: (a) Jung, M. E.; Zimmerman, C. N. J. Am. Chem. Soc. 1991, 113, 7813. (b) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114, 7933. (c) A, J.-M; Lee, P. H. Bull. Korean Chem. Soc. 2009, 30, 471. (d) Eom, D.; Kim, S. H.; Lee, P. H. Bull. Korean Chem. Soc. 2010, 31, 645. (e) Khong, S. N.; Tran, Y. S.; Kwon, O. Tetrahedron 2010, 66, 4760. (f) Li, J.; Wang, N.; Li, C.; Jia, X. Chem. Eur. J. 2012, 18, 9645. (g) Chai, G.; Fu, C.; Ma, S. Org. Lett. 2012, 14, 4058. (h) Wu, X.; Na, R.; Liu, H.; Liu, J.; Wang, M.; Zhong, J.; Guo, H. Tetrahedron Lett. 2012, 53, 342. (i) He, Z.; Tang, X.; He, Z. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 1518. (j) Xu, S.; Zhou, L.; Zeng, S.; Ma, R.; Wang, Z.; He, Z. Org. Lett. 2009, 11, 3498. (k) Xu, S.; Zou, W.; Wu, G.; Song, H.; He, Z. Org. Lett. 2010, 12, 3556. (1) Ma, R.; Xu, S.; Tang, X.; Wu, G.; He, Z. Tetrahedron 2011, 67, 1053. (m) Xu, S.; Chen, R.; He, Z. J. Org. Chem. 2011, 76, 7528.
(12) (a) Deng, Y.; Jin, X.; Ma, S. J. Org. Chem. 2007, 72, 5901. (b) Deng, Y.; Jin, X.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2169.
(13) Yang, Y.-L.; Wei, Y.; Xu, Q.; Shi, M. Tetrahedron 2013, 69, 3593.
(14) Sabbasani, V. R.; Mamidipalli, P.; Lu, H.; Xia, Y.; Lee, D. Org. Lett. 2013, 15, 1552.
(15) (a) Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. Chem. Eur. J. 2009, 15, 8698. (b) Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. Org. Lett. 2010, 12, 544. (c) Xu, S.; He, Z. Sci. China Chem. 2010, 40, 856. (d) Xu, S.; He, Z. Chin. J. Org. Chem. 2012, 32, 1159. (e) Tian, J.; He, Z. Chem. Commun. 2013, 49, 2058. (f) Qin, Z.; Ma, R.; Xu, S.; He, Z. Tetrahedron 2013, 69, 10424.
(16) An alkoxide anion-catalyzed addition of γ-(trimethylsilyl)allenoates to aldehydes for synthesis of carbinol allenoates was reported, see: Maity, P.; Lepore, S. D. J. Am. Chem. Soc. 2009, 131, 4196.
(17) Analogous synthesis of enynes from allenoates and aldehydes was reported, see: (a) Tsuboi, S.; Kuroda, H.; Takatsuka, S.; Fukawa, T.; Sakai, T.; Utaka, M. J. Org. Chem. 1993, 58, 5952. (b) Selig, P.; Turočkin, A.; Raven, W. Adv. Synth. Catal. 2013, 355, 297.
(18) The carbon-carbon double-bond configuration of 6 was determined by ${ }^{1} \mathrm{H}$ NMR and NOESY analysis. A mechanistic rationale for the formation of 6 is outlined in the Supporting Information.
(19) Crystallographic data (excluding structure factors) for the 3a and $\mathbf{4 b}$ in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 955530 and CCDC 955531.
(20) Yu, X.; Ren, H.; Xiao, Y.; Zhang, J. Chem. Eur. J. 2008, 14, 8481.
(21) (a) Zhang, C.; Lu, X. Tetrahedron Lett. 1997, 38, 4831.
(b) Semmelhack, M. F.; Tomesch, J. C.; Czarny, M.; Boettger, S. J. Org. Chem. 1978, 43, 1259. (c) Ciganek, E. J. Org. Chem. 1995, 60, 4635. (d) Habib-Zahmani, H.; Hacini, S.; Bories, C.; Faure, R.; Rodriguez, J. Synthesis 2005, 2151. (e) Shi, M.; Dai, L.-Z.; Shi, Y.-L.; Zhao, G.-L. Adv. Synth. Catal. 2006, 348, 967. (f) Xu, B.; Hammond, G. B. Angew. Chem. Int. Ed. 2008, 47, 689.
(22) The propargyl anion intermediate 9 may also be generated by direct deprotonation on the γ-carbon of the allenoate 1a with sodium ethoxide, see ref. 17a.
(23) Preliminary investigations on the temperature effect on the chemoselectivity indicated that a higher temperature could suppress the formation of enyne products to some degree. For the reaction of allenoate $1 \mathbf{1 a}$ and 4-nitrobenzaldehyde (2e) with sodium ethoxide in ethanol at $60^{\circ} \mathrm{C}$, none of the enyne $4 \mathbf{a}$ could be detected, and the diene $\mathbf{3 e}$ was generated in a modest 36% yield. In contrast, a lower temperature $\left(-10^{\circ} \mathrm{C}\right)$ resulted in a very similar ratio between $\mathbf{3 e}$ and $\mathbf{4 a}$ (23% and 5%, respectively) to that of r.t. (Table 2, entry 5), although the yields were lower.
(24) Castellano, S.; Fiji, H. D. G.; Kinderman, S. S.; Watanabe, M.; de Leon, P.; Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 5843.

[^0]: SYNTHESIS 2014, 46, 000A-000H
 Advanced online publication: 10.04.2014
 DOI: 10.1055/s-0033-1341157; Art ID: SS-2014-H0176-OP
 © Georg Thieme Verlag Stuttgart • New York

