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Abstract—In this supplementary material, we provide more
details on the computations involved in the proposed variational
inference algorithm and more experiment results.

I. NIID-MSL MODEL
A. Model Formulation

Basically, we decompose the observed data into:
=S"+ EY, (1
where EY = {e”}dxn denotes the residual term (i.e., noise
component) and S” € R¥*™ is the expected data located on
the latent subspace, d and n represent the dimensionality and
the number of samples in each view.
Firstly, we model the noise term E" as follows:

& ~ Gam(eo, fo), ey ~N(0, (6, )7), ()
ij
¢! ~ Multi(3), 2% ~ Multi(r?), (2b)
k—1 , t—1 ,
B=8 [[0=8), ===y [J-7Y), Qo)
=1 s=1
B, ~ Beta(1,7), 7" ~ Beta(1,a"), (2d)
~ ~ Gam(mg, ng), o' ~ Gam(go, ho). (2e)

where o and -y are the concentration parameters, which mainly
affect the number of Gaussian components of the second-level
GMM in each view and the first-leve]l GMM for the entire
dataset, respectively.

As for the expected data S, we embedded each view into
a latent space R with a dictionary L” as conventional MSL
methods, i.e.,

1
=> LR, (3a)
r=1

1
R, ~N(0,—1,), (3b)

T
L?. ~ N(0, /\U 1), (3c)

/\: ~ Gam(ao, bo),

7, ~ Gam(cg, do). (3d)

Combining Egs. (1) - (3), the goal of our proposed NIID-
MSL turns to infer the posteriors of all involved variables:

p(L7R7£7C7 Z7677r7a7A7T77‘X)7 (4)
where C = {c¢{'}, Z = {z}}}.

B. Variational Assumption

The full likelihood of the proposed NIID-MSL model is
expressed as:

p(L,R,E,C,Z,B, 7, a, A\, 7,7, X)
=p(XI|L,R,&,C, Z)p(LIX)p(A)p(R|T)p(T)p(§)p(C|B)
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In the main text, we have introduced the variational inference
to calculate the posterior of this model and assumed the ap-
proximation of posterior have a factorized form as follows:
q(L,R,E,C,Z,B8, 7, a,\,T,7)
d
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Next, we give detailed deductlon of each factorized distribu-
tion involved in posterior of Eq. (6). Eg\,,[f(x)] denotes the
expectation of f(x) on set of & with z; removed. For notations
convenience, we introduced ® to denote all the parameters that
need to be inferenced, i.e.,

@ = {L’R?E7C’Z7ﬁ77‘-’aﬂA7T’77X}'
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Infer C and Z:

Ing(zi;)
= E@\Z [p(L7 R7£7 C7 Z>B7 ™ &, >‘7 T, X)} + const

=Y 1= t]{ S ehBevz [V (o — LT R ;0,67 )]
¢ k
+E[1n7rf]}+const
= gl[z;’] = t]{ ;@fk ( — %111271' + %E[lngk}

_%E[gk]E {(mfj - L;{TR];)T > + E[Inn] } + const,
O

Ing(c;)
= Eo\c[p(L,R,&,C,Z,8,m,a,\, 7,7, X)] + const

— Z 1lc; = k]{ prth@\c [N (:rfj — Lf.TRAj 0,5;1)]
k 2%

+E[lnﬁk} } + const
" v 1 1
= %1[0,5 = k‘]{;p“t<— §1n27'r—|— §E[ln£k]

_%E[gk}E [(xfj — L;{TRJ-')Q} > + E[lnﬁk]} + const,

®)
Taking the exponential of both sides of Eq. (7), Eq. (8) and
normalizing the right side, we obtain

q(cilepy) = Multi(py), (9

q(z;1pi;) = Multi(p3;),
where , )
p;}]t v @?k
ﬁ7 thk - 7,0/5
Dos Pijs > s Pis

v ! v/ (1 1
Pijt ocexp{ngt,C (21n27r+2E[1n§k]
k

(10)

v
Pijt =

,%E[fk]E {(:pyj - Lf.TRj)Q} ) + E[lnx}] } (11)
v v tmor+ e
Ptk X €xXp me R 7l'+§ [In ]
2,]
_%Ekk]E[(x;}j - L;’_TR.]-)2D +E[lnﬁk]}‘ (12)
Infer &:

In q(&x)
= Fe\¢ [p(lu REC, Z B, 7w, a, A\, T,7, X)} + const

= 3 plshBee, [V (o — LT R; J0,6.7)]

v,1,7,t
+(eo — 1) In&k — fols

1 v v
(2 Z PijtPik + €0 — 1) In &

v,1,5,t

1 v v v v
- {2 D pipeinE [(l’ij - Li»R-j)Z] + fo} &k + const,
v,%,7,t
’ (13)

Aftering taking exponential of both side of Eq. (13), we
have:

q(&kler, fr) = Gam(&xlex, fr), (14)
where .
ek =3 Zt Pl + €0, (15)
'U,Z,J,
1 v v v vT 2
I = B Z PijtPen (%’j - L; R~j) + fo.  (16)
v,1,7,t

Infer = and ,8/:
Ing(m;")
= E@\ﬂ.' [p(Lv R7 Ea Ca Za 187 ™ Qy )‘7 T, X)] + const
=" phinat + (Ela”] — 1) In(1 — 7)) + const

4]

= < Z pijs + Ela’] — 1) In(1 — wf/)
i,7,s=t+1
+ (Z pfjt) 1n7rf’ + const, (17)

0,3
then we take exponential of both side of Eq. (17) and can
get:

q(m; |ry,wy) = Beta(m, |r,wy), (18)
where
re= pl+ 1 (19)
i,
w? = Z pyje + Ela]. (20)
i,J,8=t+1
Similarly, we have:
q(Bklsk, 1) = Beta(B|sp, s7), 1)
where
sk=Y_ o +1, (22)
v,t
ss= Y. en+EQ (23)

vt l=k+1
Infer o and ~:

Ing(a”)
= E@\a I:p(L7R7€aCa Z7/877T7a7A7Ta’77X):| + const

= Z ((av —1)E[n(1 — 71':5}/)] + lnav) + (mo — 1) Ina”
t
—noa’ + const
=T +mo—1)Ina"” — (no - ZE[ln(l - 712’/)] + const,
t

(24)

From Eq. (24), We can easily get the following equations of
a:

q(a’lm”,;n") = Gam(a’|m”,n"), (25)
where
m® = T + m, (26)
n’ =ng— Y E[ln(l—n})]. Q27
t
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Similarly, we can update variable v as follows:

q(vlg, h) = Gam(vl|g, h), (28)
where
h=hy-Y E [1n(1 - 3;)} : (30)
k

Infer L and R:

Ing(L3.)
= E@\L [p(L7R7£7C7Z7ﬁ7ﬂ5a7)‘7T7’77X)} + const

2
= 3 st |-y Pl6E | (5 - LRy )
gtk
—%L;%TA,GLZ? + const, (31)
where AL = diag(E[\?]). Taking exponential of both sides

of Eq. (31), and normalizing the result, we obtain the posterior
distribution of L} :

q(Li.|pui, 57) = N (L |pi, X)), (32)
where
-1
=7 = | Yo sl E[G] BIRGRY + A7 | (33)
gtk
itk

Similarly, each column of R is also a Gaussian distribution,
ie.,

a(R.jlp;, ;) = N (R|p;, %)), (35)
where
-1
= Y Bl EILLLY ]+ AR ) (36)
v,%,t,k
pi =25 Y plueiEléelEILY). (37)
v,1,t,k
and A" = diag(E[T]).
Infer A\ and 7:
In g(A7)

= E@\A [p(L7R7€aCa Z7ﬂaﬂ-aaaA7Ta77X)j| + const

Similarly, we can update 7 as following:

q(TT‘Cm dT) = Gam(Tr|CTa dr)v (42)
where
e = Z + co, (43)
1
dr = 5B [RLR,.| + do. (44)

C. Calculation of Expectations

The expectation in the variational update equations can be
calculated with respect to the current variational distributions,
as listed in the followings:

Elg] = =%, (45)
Tk

Ené] = (ex) —In fi, (46)

By = 07) = (o} +up), (7)

E (1= )| = (w)) = (7 +w}). (48)
t—1

Emm]=Emr | +> Em(-=)], @)
s=1

Elng] =v(s) = v (sh+53), (50)

E{ln (1—5,;)] = (s2) — o (s} + s2) (51)
k—1

EMmg] =E g+ > Em-8)], <2
=1

BLyLy™] = wimy™ + 5, (53)

E[R;RY] = pjp;" +%;, (54)

ELLTLL] = () + (), (55)

E :R,,.TRT.} =3 (i) + (2)),, (56)

J
E (‘r;jj - L;)TRJ)Q:| - 21’13”},}71“]‘

Ttr (E {L;{L;T} E [R.jR,Tj]) . (57)

where pf. and pj, represent the rth element of vector py
and p; respectively, () is the digamma function defined by

Y(z) = 4L Inl(z)

II. SUPPLEMENTARY EXPEIMENTS

d 1
= (2 +aop — 1> In A, — (2E [LZ’TL??} + bo) Ay +const, A, Baseline Methods

(38)
Thus, we can get the following Updated equations:
q(Arlay, b)) = Gam(AL[ay, by), 39)
where
ay = 5 + ao, (40)
b = ;E [L“ TL”} + bo. (41)

In the main text, we assume that the noise of pratical multi-
view data is with three characteristics, i.e., complex, non-
identical and non-independent. Some previous noise modeling
literatures [1]-[3] had proved the effectiveness of complex
noise assumption in different real applications, thus we con-
sider the non-identical and non-independent assumptions in
these experiments. In order to demonstrate the marginal benefit
of improving on these two assumptions, we design two differ-
ent noise models as baselines compared with the NIID-MSL
model, in which the first one fits the noise using one single
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TABLE I
RRSE COMPARISON OF NIID-MSL AND TWO BASELINE METHODS ON
CMU MULTI-PIE FACE DATASETS WITHOUT ANY SYNTHETIC NOISE. THE
BEST RESULTS IN EACH EXPERIMENT ARE HIGHLIGHTED IN RED.

Ind Methods

NAeX " Baseline T Baseline 2 NIID-MSL

RRSE 0.0121 0.0106 0.0002

RRAE | 0.0680 0.0680 0.0671
TABLE II

F-MEASURE VALUE OF NIID-MSL AND TWO BASELINE METHODS ON
WALLFLOWER DATASET. THE BEST RESULTS IN EACH EXPERIMENT ARE
HIGHLIGHTED IN RED.

Video - Met}_lods
Baseline 1 ~ Baseline 2 NIID-MSL

Bootstrapping 0.7326 0.7325 0.7326
Camouflage 0.7205 0.7239 0.7413
Apertu 0.9593 0.9592 0.9593
SwitchLight 0.6826 0.6804 0.6852
TimeOfDay 0.7641 0.7681 0.7594
WavingTrees 0.7180 0.6647 09119
Mean 0.7628 0.7548 0.7982

DPGMM for all the views (complex but i.i.d.) while the second
one different DPGMM for each view of data (complex, non-
identical, but independent). Since the latent subspace modeling
part of these two baselines are the same with the NIID-MSL
as shown in Eq. (3), we only list the noise modeling part of
them as follows.

Baseline 1:

& ~ Gam(eo, fo), ey ~N(0,(&2) ™), (58a)
—1
2 ~Multi(n),  mp=m [[(1 - 7). (58b)
1
7"1; ~ Beta(1,7), ~ ~ Gam(mg, ng). (58¢)
Baseline 2:
E}c) ~ Gam(e()a f0)7 6’:3 ~ N(07 (5323)_1)7 (59&)
’ k_l ’
zy ~Multi(7"), = my (I—mp ), (59b)
1
Tr};/ ~ Beta(1,7"), " ~ Gam(mqg,ng). (59¢)

B. Experimental Results

We compare our proposed NIID-MSL methods with two
baselines in Eq. (58) and Eq. (59) to validate the effectiveness
of our non-identical and non-independent assumptions on the
noise of multi-view data. And some experiments were carried
on the real face image recovery (No noise’ case of Table III
of main text) and real application of foreground detection on
RGB data (part C of Section VI), becasue they can be more
representative of the characteristics of noise in practical multi-
view data.

Theoretically, Baseline 1 and Baseline 2 are both special
cases of our proposed NIID-MSL. As shown in Fig. 2 of the
main text, the NIID-MSL degenarated into Baseline 1 when
the MoGs in each view of the second-level all share the same
Gaussian components from the first-level. On the contrary, if

they do not share any same Gaussian component, the NIID-
MSL is equivalent to Baseline 2. The Tabel I and Table II list
the quantitative comparison of RRSE and RRAE in face image
recovery and F-Measure in foreground detection experiments,
respectively. It is easy to see that NIID-MSL obtains the best
or the second best performance in most of the cases, which
validates the above theoretical analysis experimently.

REFERENCES

[1] D. Meng and F. De La Torre, “Robust matrix factorization with unknown
noise,” in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 1337-1344.

[2] Q. Zhao, D. Meng, Z. Xu, W. Zuo, and L. Zhang, “Robust principal
component analysis with complex noise,” in International conference on
machine learning, 2014, pp. 55-63.

[3] X. Cao, Y. Chen, Q. Zhao, D. Meng, Y. Wang, D. Wang, and Z. Xu, “Low-
rank matrix factorization under general mixture noise distributions,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1493-1501.



