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Three-dimensional mechanical
metamaterials with a twist
Tobias Frenzel,1 Muamer Kadic,1,2,3 Martin Wegener1,2*

Rationally designed artificial materials enable mechanical properties that are inaccessible with
ordinary materials. Pushing on an ordinary linearly elastic bar can cause it to be deformed in
manyways. However, a twist, the counterpart of optical activity in the static case, is strictly zero.
The unavailability of this degree of freedom hinders applications in terms of mode conversion
and the realization of advancedmechanical designs using coordinate transformations. Here,we
aim at realizing microstructured three-dimensional elastic chiral mechanical metamaterials
that overcome this limitation. On overall millimeter-sized samples, we measure twists per axial
strain exceeding 2°/%. Scaling up the number of unit cells for fixed sample dimensions, the
twist is robust due to metamaterial stiffening, indicating a characteristic length scale and
bringing the aforementioned applications into reach.

T
he concept of rationally designed human-
made compositematerials ormetamaterials,
togetherwith advances in three-dimensional
(3D)micro- andnanofabrication, has recent-
ly opened the door tomechanical properties

that were previously inaccessible (1). By virtue of
mechanicalmetamaterials, applicationshave come
into reach that require ultralow mass densities
(2–4), ultrastrongmaterials (5), deployable mate-
rials for spacemissions (6), protectionbymechanical
cloaking (7) or reusablemechanical shock-absorbing
materials (8–10), programmablemechanical prop-
erties (11), reconfigurability (12), or nonreciprocal
one-way isolation of forces (13). In addition to these
quasistatic examples, mode conversion between
longitudinal and transverse in-plane elasticwaves
has recently been achieved in 2Dmetamaterials
(14). However, the elastic counterpart of optical
activity in 3D chiral structures (15, 16), converting
one transverse linearly polarized elastic wave into
the orthogonal transverse one, has been elusive.
In the static case, such “mechanical activity”

is connected to the fact that an elastic solid can-
not twist upon pushing or pulling on it within
ordinary (Cauchy) continuummechanics (Fig. 1),
implying zero force-torque coupling. In essence,
the solid cannot twist because the atomic unit
cells in macroscopic bodies are so small that they
can be seen as infinitesimally small volumes (17).
Hence, there is no spatial scale. A pointlike object
canbe displaced, but there is nomeaning in saying
that it rotates or deforms.
Mathematically, Cauchy continuummechanics

is the generalization of Hooke’s law in 1D, which
states that the force is the product of the Hooke’s
spring constant and the displacement. In 3D, the
stress tensor s

↔
becomes the inner product of the

elasticity tensor C
↔

and the strain tensor D
↔
—i.e.,

sij ¼ Cijkl Dkl, where we use the Einstein summa-

tion convention (17).C
↔
is invariant under space

inversion, which converts left-handed structures
into right-handed structures, whereas boths

↔
and

D
↔
change their sign (17). Therefore, Cauchy elasticity

does not describe any chiral effects. The under-
lying approximation of treating a crystal unit cell
as pointlike works if the unit cell is much smaller
than the sample size and much smaller than the
wavelength/l of an elastic wave. In the static
case, the wavelength is formally infinitely large,
and only the ratio of sample size L to unit-cell
size amatters. For Cauchy continuummechan-
ics, this means that the number of unit cells with-
in a bar does not influence its properties because
there is no spatial reference scale (mathematically,
the scale is infinitesimally small). Cauchy con-
tinuum mechanics has been generalized toward
linearmicropolar continuummechanics (18–20),
which we will use below, and further toward
higher-order gradients (21). Finally, outside of the
linear regime, instabilities can lead to further
unusual behavior (22). Here, however, we aim at
the linear elastic regime.
We designed, fabricated, characterized, and

mappedontomicropolar effective-mediumparam-
eters 3D chiralmicrostructuredmechanicalmeta-
materials with twist degrees of freedom going
qualitatively beyond Cauchy elasticity and repre-
senting the counterpart of optical activity (15, 16)
in mechanics. We focus on the static case. The
rational designmakes our work distinct from pre-
vious experimental studies characterizing existing
materials, suchasbone (23,24) or granular compos-
ites (25), with respect to micropolar elasticity in
the dynamic regime. There, any unusual observa-
tion alsoneeds to bedistinguishedunambiguously
from both viscoelasticity (23) and/or from the
effects of a generally anisotropic dynamic mass-
density tensor (26).
We designed the metamaterial unit cell (Fig.

1C) by extensive numerical optimization (figs. S1
to S4), bearing inmind fabrication restrictions in
regard to the minimum accessible ratio of fea-
ture size to unit-cell size a. This makes our blue-
print distinct from other recent ones (27). Our
unit cell has four-fold rotational symmetry upon
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Fig. 1.Twist degrees of freedom in mechanics.
(A) Pushing on an elastic material bar (red arrow)
can make it expand or contract isotropically or
anisotropically in the orthogonal directions. (B) A
twist, however, is forbidden in ordinary linear
(Cauchy) continuum mechanics. (C) Unit cell of a
metamaterial crystal enabling the twist degree
of freedom.The lattice constant a, the angle d, the
radii r1 and r2, and the widths b and d are
indicated. (D) Calculated deformed cell and
displacement under uniaxial loading. The arrows
aid the discussion of the mechanism: 1. The arms
connecting the corners with the rings move
downward. 2. This motion leads to a rotation of
the rings. 3. This rotation exerts forces onto
the corners in the plane normal to the pushing
axis, resulting in an overall twist of the unit
cell around this axis (also see fig. S1).
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rotation around the three principal cubic axes. It
is chiral—hence noncentrosymmetric—because it
does not superimpose on its mirror image. Figure
1D illustrates the mechanism. We assembled an
artificial metamaterial crystal by placing this unit
cell onto a simple-cubic translational lattice with
lattice constant a. We fabricated a large number
of correspondingpolymermicrostructures byusing
3D lasermicroprinting (Fig. 2) (28). For the static
case, all twist effects must vanish in the limit of
large sample extent L with respect to the unit-
cell sizea. Furthermore,withinCauchy continuum
mechanics, the Hooke’s spring constant of a bar
with fixed extent is strictly independent of the
number of unit cells within the bar. Thus, the cru-
cial test is to investigate the effective mechanical
properties upon changing the size of the unit cell,
while fixing the shape and aspect ratios. After
process optimization, we obtained a maximum
scaling factor of N = L/a = 5 (Fig. 2).
To test our material experimentally, we fab-

ricated a left-handed chiral metamaterial bar on
top of an otherwise identical right-handed bar to
keep the total torque at zero. This circumvents
the problem of allowing for twist while pushing
on a material bar (Fig. 1). Sliding boundary con-
ditions can solve this issue in principle, but they
are problematic on the microscale. Our setup al-
lowed the middle of the sample to rotate while
the top and bottom were fixed. We employed
image cross-correlation analysis to trackmarkers
arranged onto a plate in themiddle of the sample
(Fig. 2C) to visualize the twist. We derived twist
angles by tracking the displacement vectors of all

markers and by analyzing these data in terms of
a common rotation around the sample center axis
(Fig. 2C and movie S1). Independently, we mea-
sured the axial displacement of the stamppushing
on the sample—hence the sample strain—and the
axial force by a force cell. The derived azimuthal
components of the displacement vectors (blue ar-
rows) are comparable to the axial components (red
arrows)—that is, the usually forbidden degrees of
freedom have become as large as the ordinary ones.
A maximum twist angle exceeding 2°/% of

axial strain is found for N = 1, with a total of
(N×N× 2N ) × 2= 4unit cells (Fig. 3A). This value
decreases by about 50% toward the maximum of
N = 5, corresponding to a total of 500 unit cells. At
the same time, the effective Young’s modulus (i.e.,
Hooke’s spring constant times the sample height,
4L, divided by the sample cross section, L2) in-
creases by a factor of 10 when going from 4 to
500 unit cells. Within Cauchy continuum me-
chanics, the twist would be strictly zero and the
stiffness constant. We repeated all experiments
for achiral structures as controls—i.e., for d = 0
(comparewith Fig. 1C) andwith otherwise identical
design parameters. As expected from Cauchy
continuum mechanics and from symmetry, we
found zero twist angleswithin the noise (blue data
points in Fig. 3A) and constant effective Young’s
modulus (Fig. 3B) upon varying N = 1,2,3,4,5.
We compared our results for both chiral and

achiral structures with numerical finite-element
calculations for the same design parameters and
fixed constituent material Young’s modulus E =
2.6 GPa and Poisson’s ratio v = 0.4 (28) (Fig. 3).

We found agreement with our experiments in
terms of the overall qualitative behavior. The re-
maining differences between experiment and
theory are likely due to imperfections in sample
fabrication in regard to the size scaling.
To interpret the observed twist in terms of

effective material parameters, we needed to map
the behavior onto a generalized effective-medium
description. Such description must grasp the fact
that the unit cell itself can rotate with respect to
the lattice or be deformed. For negligible deforma-
tions in micropolar materials, a rotational vector
field f suffices, in addition to the usual displace-
ment vector field u, leading to the generalized
linear elasticity equations (18–20)

sij ¼ Cijkl Dkl þ Dijklϕkl ð1Þ

mij ¼ Aijklϕkl þ BijklDkl ð2Þ
Here,s

↔
is the usual stress tensor,m

↔
is the coupled

stress tensor, Dkl ¼ @ul
@xk

� eklm fm and ϕkl ¼ @fk
@xl

are the elements of the generalized strain tensors,
and eijk is the Levi-Civita symbol. A

↔
, B
↔
, C
↔
, and

D
↔
are the generalized rank-four elasticity tensors,

with Bijkl ¼ Dklji. In general, these four tensors
contain 196 independentmaterial parameters. For
the special case of cubic chiral materials relevant
here, this number is reduced to 12 (28). For achiral
micropolarmedia, the force-torque coupling terms
vanish—i.e., B

↔ ¼ D
↔ ¼ 0, and the twist angle is

zero. If additionally A
↔ ¼ 0andCijkl ¼ Cjikl ¼ Cijlk,

ordinary Cauchy continuummechanics is recovered.
Micropolar continuum mechanics also repro-

duced the overall measured behavior (Figs. 3 and
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Fig. 2. Gallery of electron micrographs. (A to E) Polymer samples following the blueprint shown in Fig. 1C, fabricated using 3D laser microprinting.
Arranging a left-handed metamaterial bar on top of a right-handed one enables twists without the need for sliding boundary conditions. (G to K)
Changing the number of unit cells within the bars, while fixing all aspect ratios and outer dimensions, is crucial to investigate the breakdown of scalability
associated with mechanical chirality. (F) and (L) are achiral controls. The measured azimuthal displacement vectors (blue) added in (C) indicate a twist
upon pushing on the metamaterial bar. The axial displacement vectors are shown as red arrows (movie S1). All arrows are stretched by a factor of 5.
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4B). Numerical calculations, extended to L=a≫1
(fig. S5), showed that the twist angle asymptot-
ically decreases asºðL=aÞ�1 ¼ 1=N . Upon axial
loading, eachunit-cell facet generates a transverse
displacement, which adds up to a rotational defor-
mation of the unit cell (fig. S1). Intuitively, the
rotational displacement vectors of touching unit-
cell facets in the bulk cancel each other, such that
the overall material twist stems from open unit-
cell facets at the metamaterial surface, leading to
a scalingº surface/volumeº1/N. The same com-
petition between displacements of neighboring
unit cells in the bulk also leads to an initial
stiffening of the metamaterial with increasingN
until the Young’s modulus saturates when these
competitions in the bulk become the dominat-
ing contribution.
Finally, dynamic band structure (fig. S6) and

eigenmode calculations for the full microstructure
(Fig. 1C) revealed a lifting of degeneracy for the
two lowest-frequency transverse modes and cor-
responding circular eigen polarizations with op-
posite sense of rotation (fig. S7). In contrast to
the static case with finite L/a and l/a→1, l/a

is finite and L/a → 1 for the band structures.
Therefore effects beyond Cauchy continuumme-
chanics are allowed. As described in the introduc-
tion, Cauchy continuummechanics is recovered in
the limit that both l/a→1 and L/a→1.
In conclusion, we have presented 3D chiral

mechanical metamaterials showing twists per
axial strain as large as 2°/%. The twist only de-
creases by a factor of two upon increasing the
total number of unit cells from 4 to 500 for fixed
sample dimensionsdue to a simultaneous increase
of the metamaterial stiffness. This stiffening in-
dicates a finite characteristic length scale. In sharp
contrast, within Cauchy continuum mechanics,
the twist would be strictly zero and the stiffness
constant. We see our work as a step toward ra-
tionally designed artificial materials for which
we can choose specific components of general-
ized elasticity tensors to obtain awanted behavior,
especially including degrees of freedom beyond
Cauchy elasticity. Conversion of transversemodes
by “mechanical activity” in analogy to optical ac-
tivity in chiral opticalmaterials is an examplewith
immediate potential applications. Furthermore, it
has been shown theoretically (29) that additional
freedom in the elasticity tensors is needed in
mechanics—for example, to steer force fields or
mechanical waves around obstacles using static
or dynamic cloaking structures, respectively, de-
signed by coordinate transformations (30).
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Fig. 3. Measured and calculated results.We
vary the total number of unit cells (N × N ×
2N) × 2 with N = L/a = 1,2,3,4,5 while fixing the
outer dimensions of the samples (compare
Fig. 2). (A) Twist angle per axial strain versus N.
(B) Effective Young’s (E) modulus of the meta-
material bar versus N. Red (blue) symbols
correspond to chiral (achiral) samples. Circles
(0.5% strain), squares (1.0% strain), and tri-
angles (1.5% strain) are measured. The statisti-
cal error bars are on the scale of the size of the
symbols. The crosses are calculated in the
linear regime. The solid red curves result from
micropolar continuum mechanics (28) (Fig. 4B);
the solid blue straight lines are the expectation
from Cauchy continuum mechanics.

Fig. 4. Finite-element calculations. Structure and modulus of the displacement vector field on a
false-color scale are overlaid. (A) Microstructure calculation for N = 3 (compare Fig. 2C). (B)
Calculation following chiral micropolar continuum mechanics for L = 3a with a = 500 mm (28). In
both cases, the axial strain is 1%. The black lines indicate the sample boundaries for zero strain.
For better visibility, the deformations have been multiplied by a factor of 10. The false-color scale
shows the true displacements. All other parameters are as in Fig. 3 (28).
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strategyCoulais). Designing this type of chirality for a macroscopic material is unexpected, but it points to a more general 
 designed a mechanical metamaterial with a pronounced twist to the left or right when pushed (see the Perspective byal.

etthe degrees of freedom. For instance, when you push on a material, you do not expect it to twist in response. Frenzel 
In the classical picture of solid mechanics, deformation in response to stress is constrained owing to limitations on

Getting twisted with metamaterials
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