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Layered crystalline materials, such as graphene, boron nitride, tungsten sulfate, phos-
phorene, etc., have attracted enormous attentions, due to their unique crystal structures
and superior mechanical, thermal, and physical properties. Making use of mechanical
buckling is a promising route to control their structural morphology and thus tune their
physical properties, giving rise to many novel applications. In this paper, we employ
molecular dynamics (MD) simulations and theoretical modeling to study the compressive
buckling of a column made of layered crystalline materials with the crystal layers parallel
to the compressive direction. We find that the mechanical buckling of the layered crys-
talline materials exhibits two anomalous and counter-intuitive features as approaching
the zero slenderness ratio. First, the critical buckling strain εcr has a finite value that is
much lower than the material's elastic limit strain. A continuum mechanics model (by
homogenizing the layered materials) is proposed for the εcr, which agrees well with the
results of MD simulations. We find that the εcr solely depends on elastic constants without
any structural dimension, which appears to be an intrinsic material property and thus is
defined as intrinsic buckling strain (IBS), εcr

IBS, in this paper. Second, below a certain na-
noscale length, l0, in the compressive direction (e.g., about 20 nm for graphite), the critical
buckling strain εcr shows a size effect, i.e., increasing as the column length L decreases. To
account for the size effect, inspired by our recently developed multi-beam shear model
(Liu et al., 2011), a bending energy term of individual crystal layer is introduced in our
continuum model. The theoretical model of εcr agrees well with the size effects observed
in MD simulations. This study could lay a ground for engineering layered crystalline
materials in various nano-materials and nano-devices via mechanical buckling.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Buckling, as a mechanical instability, is a common phenomenon in nature (Gere and Timoshenko, 1998; Price and
Cosgrove, 1990; Zartman and Shvartsman, 2010). It is often treated as a nuisance to be avoided. This view is changing with
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the growing knowledge of this phenomenon (Biot, 1957; Bowden et al., 1998; Brau et al., 2010; Budd et al., 2003; Efimenko
et al., 2005; Gere and Timoshenko, 1998; Hohlfeld and Mahadevan, 2011; Huang et al., 2005; Hunt et al., 2000; Kim et al.,
2011; Pocivavsek et al., 2008; Wadee et al., 2004) and the emerging successful cases of employing mechanical buckling in
real applications (Efimenko et al., 2005; Guo et al., 2011; Kim et al., 2008; Kim et al., 2009; Kim et al., 2010; Koo et al., 2010;
Rogers et al., 2010; Stafford et al., 2004; Wang et al., 2011; Zang et al., 2013). For example, utilizing buckled interconnecting
components in electronic devices leads to “stretchable electronics” that can accommodate large stretching and compressive
loads without breaking (Kim et al., 2008; Rogers et al., 2010). Mechanical buckling of a thin stiff film on a soft substrate
under an in-plane compression can alter the surface morphology and thus modulate the surface physicochemical properties,
giving rise to various applications, such as artificial skins (Efimenko et al., 2005), micro-devices to measure mechanical
properties of thin polymer and nanoparticle films (Leahy et al., 2010; Stafford et al., 2004), dynamically controlled surface
wettability (Zang et al., 2013), enhancement of light extracting efficiency from organic light-emitting diodes (Koo et al.,
2010), and dynamic display of biomolecule micropatterns (Kim et al., 2009). The surface ripples also have many applications
in micro-fluidic devices (Efimenko et al., 2005) and artificial muscle actuators (Zang et al., 2013).

The discovery of graphene (Novoselov et al., 2004) has stimulated intensive research interests for two dimensional
crystalline materials, such as BN, MoS2, WS2, silicene, graphyne, and so on (Golberg et al., 2010; Malko et al., 2012; Nicolosi
et al., 2013; Vogt et al., 2012; Wang et al., 2012; Wilson and Yoffe, 1969). For this class of materials, atoms distributed in a
layered crystal lattice are bonded via strong chemical bonds, whereas different crystal layers interact with each other
through weak van der Waals or electrostatic forces. Such a two dimensional crystalline material has a unique combination of
structural, mechanical and physical properties, enabling great potentials for applications in electronic devices, catalysts,
batteries, and super-capacitors, as seen in recent extensive experimental and theoretical studies (Geim and Novoselov,
2007). In practice, these materials are often fabricated in a form with multiple crystal layers stacked together, either for the
convenience of fabrication or intentionally. For example, tuning either the number of layers or the stacking sequence of
different types of crystal layers can modulate electronic properties of the resultant van der Waals heterostructures (Geim
and Grigorieva, 2013; Haigh et al., 2012). It turns out that using multi-layers of graphene as a building block of graphene
cellular foams is essential for the observed super-elasticity under a large compressive strain up to 80% in experiments (Qiu
et al., 2012).

In addition to the widely studied approaches to tailor the physical properties of layered crystalline materials, e.g., scis-
soring graphene into different shapes (Ci et al., 2008), chemical doping (Ci et al., 2010), chemical or physical adsorption
(Elias et al., 2009; Nair et al., 2010; Schedin et al., 2007; Xu et al., 2009), mechanical buckling caused by a compressive load
parallel to the basal planes can serve as a promising method to enable new applications. There are already several successful
experimental studies. It has been reported that the reversible mechanical buckling of a stack of graphene-oxide layers is the
origin for the hydration responsive property of graphene oxide liquid crystal in experiments (Guo et al., 2011). The peri-
odically rippled graphene ribbons formed on a pre-stretched elastomer substrate can be used as high performance strain
sensors (Wang et al., 2011). A super-hydrophobic surface with a reversibly tunable wettability has been realized using
crumpled graphene films (Zang et al., 2013). However, employing mechanical buckling of layered crystalline materials in
applications is still hampered by inadequate understanding of this phenomenon.

The most well-known elastic buckling is the bending mode of instability studied back to Euler's era (Gere and Ti-
moshenko, 1998). For a slender structure, such as a beam, plate, or thin film, being subject to a longitudinal compression,
lateral deflection will occur beyond a critical load. This is because bending is energetically less costly than compression for
these slender structures. Most of the applications described previously are based on this type of instability. It should be
noted that the unique atomistic structures of layered materials, i.e., strong in-plane covalent chemical bonds, giving rise to a
very high in-plane elastic modulus, and weak out-of-plane van der Waals or electrostatic interactions, yielding a very small
interlayer shear modulus, imply that the interlayer shear effect plays an important role in the mechanical behaviors of
layered materials (Ghosh and Arroyo, 2013; Li et al., 2007; Liu et al., 2001; Liu et al., 2011; Yu, 2004). For the layered
materials, above a critical compressive load along in-plane directions, shear mode instability occurs. The shear deformation
among adjacent atomic layers generates a lateral displacement and then releases the compressive strain. Such a shear mode
of instability was observed in wood (Byskov et al., 2002), fiber reinforce composites (Budiansky et al., 1998; Kyriakides et al.,
1995), and geological strata (Price and Cosgrove, 1990). However, there are very few experimental and theoretical studies for
the shear mode instability of the layered crystalline solids (Cranford, 2013; Liu et al., 2010; Ren et al., 2015), particularly in
terms of the critical buckling load. It should be noted that the internal buckling of anisotropic medium was theoretically
studied previously, as reviewed in Biot's book (Biot, 1965) and a recent book from Bažant (Bažant and Cedolin, 2010). But
there are two limitations. First, these previous theoretical studies are continuum mechanics models and the validation of
continuum modeling to the layered crystalline materials at nanoscale is ambiguous. Second, the previous theoretical studies
of internal buckling usually assumed the anisotropic materials incompressible (Bažant and Cedolin, 2010; Biot, 1965), which
is inconsistent to most layered crystalline materials.

In this paper, we firstly employ molecular dynamics (MD) simulations to simulate the mechanical buckling of graphite,
hexagonal boron nitride (h-BN), virtual graphite, and virtual h-BN (i.e., parameters of Lennard-Jones potential used to de-
scribe the interlayer van der Waals interaction are altered to tune the interlayer shear modulus) at a nanometer scale in
Section 2. In Section 3, a continuum mechanics model is developed to describe the buckling behaviors of a column with an
infinite width (i.e., zero slenderness ratio) made of layered crystalline materials. In this model, the layered materials are
assumed as homogenous medium of transversely isotropic elasticity. This continuum mechanics model provides accurate
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Fig. 1. (a) Molecular model for mechanical buckling of a graphite column in NEMD simulations. Graphene basal planes are parallel to the x–y plane. The
box enclosed by dashed lines represents the super-cell. Periodic boundary conditions are applied in all three directions. Note that the periodic boundary
conditions applied in lateral directions imply an infinite gyration radius ρ and thus lead to a zero slenderness ratio L/ρ. The super-cell is compressed in x
direction at a constant velocity which varies from 10�5 up to 1 Å/ps in different simulations, meanwhile the y and z dimensions of the super-cell are fixed
and the three super-cell vectors remain perpendicular to each other through the simulations. The color map illustrates relative magnitude of the lateral
displacement (z) after mechanical buckling, in which the blue color denotes a larger displacement than the red color. (b) A sketch of the buckling shape.
(c) Potential energy and stress sx versus compressive strain εx in MD simulations. At the critical point, the potential energy and stress results show an
abrupt change, indicating the happening of mechanical buckling. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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predictions for the critical buckling strain εcr down to a column length L of about 20 nm in MD simulations. A theoretical
model for a more general case (orthorhombic crystalline symmetry) is presented in appendix. Section 4 presents a con-
tinuummodel to explain the observed size effect of the εcr in MD simulations. A length parameter l0 is defined. In case of the
column length L being larger than l0, the size effect is becoming negligible. Section 5 discusses the implications of such
elastic buckling in layered crystalline materials and its potential applications. Conclusions are drawn in Section 6.
2. MD simulations

In light of great potentials of utilizing mechanical buckling in nano devices (Koo et al., 2010; Rogers et al., 2010; Zang
et al., 2013), it is of great interests to investigate this phenomenon at a nanometer scale for the layered crystalline materials.
In this section, non-equilibrium molecular dynamics (NEMD) simulations is employed to study the elastic buckling of the
hexagonal layered crystalline materials, e.g. graphite, h-BN, virtual-graphite, and virtual h-BN columns with a length L down
to 2 nm.

Fig. 1(a) depicts our molecular system: a graphite column composed of periodic A/B stacked graphene layers (normal to
the z-axis) with their basal planes parallel to the longitudinal axis (the x-axis) and the transverse axis (the y-axis). Long-
itudinal length L is selected between 2 nm and 40 nm. Periodic boundary conditions (PBC) are applied in all three coordinate
directions. The dashed box in Fig. 1(a) represents the super-cell used in our MD simulations. The super-cell is compresed in
the x direction at a constant velocity which varies from 10�5 to 1 Å/ps in different simulations, meanwhile the y and z
dimensions of the super-cell are fixed and the three super-cell vectors remain perpendicular to each other through the
simulations. The PBC along the x-axis restricts wavelength of the first-order buckling as L. The PBC in the y and z directions
result in an infinite radius of gyration ρ of the cross-section (i.e., ρ�1). Thus our molecular models have a ratio of slen-
derness L/ρ¼0.

NEMD simulations are performed using the LAMMPS code (Plimpton, 1995). The adaptive intermolecular reactive em-
pirical bond order (AIREBO) potential (Stuart et al., 2000) is adopted to describe the interatomic interactions of the graphite
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Fig. 2. Critical elastic buckling strain εcr of a graphite column (Fig. 1(a)) as a function of loading velocity in NEMD simulations. Results for different
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section (i.e., ρ�1). Thus all MD models have a ratio of slenderness L/ρ¼0. Prediction from the continuum mechanics model Eq. (12) in Section 3 is shown
as the dashed line for a comparison.
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column. Temperature of the whole system is fixed at 0.1 K using the Berendsen thermostat, with the temperature calculated
after removing the center-of-mass velocity. A time step of 1.0 fs is used and the simulations are continued until the elastic
buckling took place. Although the interlayer delamination has been observed in the post-buckling of multilayer graphene
(Cranford, 2013), in this work we just care about the critical buckling strain and the interlayer delamination does not occur
for all of the cases in our MD simulations.

For a column with L¼4.6 nm, Fig. 1(c) shows the results of potential energy and stress sx as functions of compressive
strain εx in the x direction, at two different loading velocities 10�4 Å/ps and 10�2 Å/ps. The strain is defined as εx¼δ/L,
where δ is the change of the unit cell in x-dimension. The results of potential energy and the stress in the x-direction can be
directly output from LAMMPS. In the beginning, both potential energy results appear as a parabolic function of the strain εx.
This is consistent to the obtained linear stress–strain relations in Fig. 1(c). At the critical point, the energy curves start to
deviate from the parabolic relation and accordingly the stress curves exhibit a significantly drop, indicating the happening of
mechanical buckling. Indeed, the carbon atoms exhibit a clear lateral displacement in the z direction after the critical point.
Color-map in Fig. 1(a) shows the relative magnitude of lateral displacement obtained at a loading velocity of 10�4 Å/ps, in
which the blue color denotes a relatively larger displacement than the red color. Fig. 1(b) sketches the buckling shape. Fig. 1
(c) shows that the determined critical compressive strain value εcr sensitively depends on the loading velocity. At 10�2 Å/ps,
the εcr equals to 0.250%, whereas at a lower loading velocity of 10�4 Å/ps the critical strain result significantly reduces to
εcr¼0.124%. This is a common phenomenon in dynamic buckling (Lindberg, 2003). After release of the compressive load, the
buckled graphite column bounces back, fully recovering its original shape.

Fig. 2 summarizes the dependence of εcr on the loading velocity for a graphite columnwith different length L from about
2–40 nm. Reduction of the loading velocity generally leads to a decrease of obtained εcr values. Apparently, a convergence is
achieved below 10�4 Å/ps. A close inspection of the data in Table 1 indicates the difference of εcr is indeed very small for
loading velocity of 10�4 Å/ps and 10�5 Å/ps. In addition, it is found that a shorter column has a higher convergent εcr result.
Above L�20 nm, only a minor difference is observed in the εcr value at loading velocity of 10�4 Å/ps, i.e., between 0.038%
and 0.034%. In the following, we will denote the critical strain determined for a graphite column with length LZ20 nm and
at a loading velocityr10�4 Å/ps in MD simulations as the converged εcr.

The NEMD simualtions were also carried out for a column made of h-BN, some virtual graphite, and virtual h-BN (similar to
Fig. 1(a)) to determine their critical buckling strain. The virutal material models were created by artificially changing the para-
meter ε or s in the LJ potential that were used to describe the interlayer van der Waals interaction. Table 2 lists the parameters of
the original LJ potentials. Given that the predicted C44 value from the AIREBO force field for graphite is far smaller than the
experimental results (discussed later), the value of ε is increased by 2–10 times (Table 3). The in-plane interaction of a graphene
Table 1
The critical buckling strain εcr of a graphite column with different length L under a (low) loading velocity of 10�4 or 10�5 Å/ps.

L (nm) 2.09 4.61 9.63 19.68 29.73 39.78

10-4 Å/ps 0.464% 0.124% 0.0525% 0.0378% 0.0353% 0.0334%
10-5 Å/ps 0.464% 0.122% 0.0498% 0.0337% – –



Table 2
Parameters of the Lennard-Jones potential used to describe the interlayer van der Waals interactions for
graphite and h-BN in our NEMD simulations.

Atom pair ε (meV) s (Å) References

C-C 2.84 3.40 (Stuart et al., 2000)
B-B 4.116 3.45 (Baowan and Hill, 2007)
N-N 6.281 3.365 (Baowan and Hill, 2007)
B-N 5.085 3.41 (Baowan and Hill, 2007)

Table 3

A comparison of the converged εcr results from NEMD simulations (L¼19.69 nm and low loading velocity of 10�5 Å/ps) and our theoretical model εcr
IBS [Eq.

(12)]. The calculated elastic modulus C11 and C44 are shown as well.

L-J parameter C11 (GPa) C44 (GPa) Continuum mechanics
model

MD simulation

Graphitea 980 0.3442 0.03512% 0.03370%
Graphite (ε, r)b 1221 0.3329 0.02727% 0.03482%
Virtual Graphite (2ε, r)b 1248 0.6671 0.05343% 0.06115%
Virtual Graphite (5ε, r)b 1273 1.677 0.1317% 0.1425%
Virtual Graphite (7ε, r)b 1288 2.3563 0.1829% 0.1899%
Virtual Graphite (10ε, r)b 1309 3.3844 0.2586% 0.2656%
Virtual Graphite (10ε, 1.1r)b 1204 2.5678 0.2133% 0.2359%
Virtual Graphite (10ε, 1.2r)b 1110 2.0176 0.1817% 0.2048%
Virtual Graphite (10ε, 1.3r)b 1035 1.7493 0.1691% 0.1912%
Virtual Graphite (10ε, 1.4r)b 971 1.5497 0.1596% 0.1863%
h-BNc 832 0.6254 0.07518% 0.1082%
Virtual h-BN (10ε, r)c 884 6.3725 0.7211% 0.7441%

a modeled by AIREBO force field.
b modeled by Tersoff and LJ potentials. The value of parameter ε in LJ potential is increased by 2, 5, 7, and 10 times, respectively and the value of

parameter s in LJ potential is increased by 1.1, 1.2, 1.3, and 1.4 times, respectively. Before the NEMD simulations and the calculations for C44, interlayer
distances and C–C bond lengths are optimized to remove residual stresses.

c modeled by Tersoff and LJ potentials. The value of parameter ε in LJ potential is increased by 1 and 10 times, respectively. Before the NEMD simu-
lations and the calculations for C44, interlayer distances and B–N bond lengths are optimized to remove residual stresses.
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layer or h-BN layer is described using the Tersoff potentials (Kınacı et al., 2012; Tersoff, 1989). To avoid the dynamic effect, we
adotped a low loading velocity of 10�5 Å/ps. Note that for the graphite columns, the results of εcr determined using Tersoff and LJ
potentials are similar to those using AIREBO potential (Table 3). A similar dependence of εcr on the column length L is observed in
Fig. 3. As L increases above �20 nm, the critical buckling strain approaches to a converged value εcr.
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Table 3 summarises the converged εcr values for all different material models at L¼19.68 nm and a loading velocity of
10�5 Å/ps. Interestingly, the buckling strain values are lower than 1%, which is far lower than the mechanical strength of
graphene and h-BN (Lee et al., 2008; Song et al., 2010). This suggests such a mechanical buckling is, in principle, achievable
in experiments. More interestingly, this mechanical buckling phenomenon takes place at a zero slenderness ratio, which is
believed to be highly unlikely for conventional isotropic materials. For the virtual materials, increasing the parameter ε of
the LJ potential (i.e., enhancing interlayer binding strength) leads to a higher converged εcr value, whereas increasing the
parameter s in the LJ potential (i.e., enlarging the equilibrium interlayer distance) results in a lower converged εcr value. This
observation will be explained in Section 3.

According to the continuum mechanics models derived in Sections 3 and 4, the interlayer shear modulus and the elastic
modulus in the compressive direction, namely C44 and C11, are the determinant parameters for the converged εcr value.
These two moduli should be calculated using the same force fields adopted in MD simulations. The C11 modulus is de-
termined by fitting the potential energy curve as a fucntion of strain U¼1/2C11εx2 prior to the buckling. For graphite [Fig. 1
(b)], it gives a value of 980 GPa that is close to the experimental result 1060 GPa (Kelly, 1981). Results for the virtual gra-
phites, h-BN, and virtual h-BN are shown in Table 3.

The shear modulus C44 was calculated using an in-house FORTRAN code. A simple shear deformation was applied to an
A/B stacked 11-layers-graphene or h-BN (with periodic boundary conditions along the two directions of basal plane). That is,
each layer is kept rigid and displaced with respect to each other in a direction parallel to the basal plane. The shear dis-
placement is a linear function of the layer's position (out-of-plane direction) in the stack. Coordinates of the atoms in the
sheared graphite were then fed into the in-house FORTRAN code that calculated LJ potential energy of the 6th layer with the
same cut-off distance as used in the LAMMPS simulations. The magnitude of shear strains γ were selected to ensure the
deformation is within a linear elastic region, i.e., �0.003oγo0.003. The obtained LJ potential energy of the graphene or h-
BN layer in the middle of the stack exhibits a nearly perfect parabolic relation with respect to γ. For graphite, fitting the
results using U¼1/2C44γ2 yielded the shear modulus C44¼0.3442 GPa.

This value is significantly smaller than the experimental results: 4.3–4.5 GPa (Kelly, 1981; Tan, 2012a) and first-principles
density functional theory (DFT) calculation results: 3.9–4.5 GPa (Mounet and Marzari, 2005). The book from Kelly (Kelly,
1981) has provided a review on elastic properties of graphite measured using different experimental techniques. They
concluded that neutron scattering experiments gave the most reliable C44 value, 4.670.2 GPa, because it is also consistent
with the specific heat data. Recently Tan et.al. (Tan, 2012b) used Raman spectroscopy to study the phonon properties of high
quality few layer graphene flakes and concluded that the C44 is around 4.3 GPa, where structural defects should be minor.
The DFT simulations were carried out for a perfect graphite crystal (Mounet and Marzari, 2005). Thus these experiments and
first-principles calcualtions indicate that the reported and widely accepted C44 value �4.5 GPa should arise from the in-
trinsic van der Waals interaction among graphene layers in bulk graphite. Our C44 result was also calculated for a perfect
graphite crystal but using empirical force fields. In these force fields, the Lennard-Jones potential ULJ(r)¼4ε[(s/r)12� (s/r)6]
is used to describe the interlayer van der Waals interations. The two free parameters ε and s were fitted to reproduce two
experimental results: interlayer distance 3.4 Å and elastic modulus C33¼36.5 GPa in z direction. Thus the LJ force field often
provides unsatisfactory predictions of other physical properties, e.g., binding energy between graphene layers and cleavage
energy of graphite (Gould et al., 2013; Lebègue et al., 2010; Liu et al., 2012; Sorella et al., 2009). We believe that the observed
big difference of our calculated shear modulus C44 from other experiments and first-principles calculations should originate
from the same reason. The C44 results for other materials are listed in Table 3 as well. Generally, the increasing of LJ potential
parameter ε will significantly increase the interlayer shear modulus C44.
3. Continuum mechanics model of intrinsic buckling strain

In this section, a continuum mechanics model is developed for the critical elastic buckling strain of a column made of the
layered materials with a zero slenderness ratio and under a quasi-static loading. Here, the layered materials are modeled as
homogenous mediums with hexagonal crystal symmetry (i.e., transversely isotropic elastic). This is because graphite and h-
BN have such crystal symmetry. Theoretical model for a more general case – orthorhombic symmetry – is presented in
Appendix. Fig. 1(b) depicts our coordinate system, in which the basal planes of the crystal layers are parallel to the x–y plane.
The origin point is placed in the center of the column and the y–z plane overlaps with the middle cross-section plane. A
periodic boundary condition is applied in the lateral direction (z-axis), yielding ρ-1 and thus L/ρ¼0. This system is
modeled as a plane-strain problem (in the x–z plane), aiming to be consistent with some popular experimental setups, i.e.,
utilizing strain mismatch between a film made of layered crystalline materials and a pre-stretched substrate to drive the
elastic buckling (Bowden et al., 1998; Efimenko et al., 2005; Kim et al., 2011; Koo et al., 2010; Zang et al., 2013) or bending
induced periodic stripe/kinking microstructures during mechanical peeling of graphite flakes (Liu et al., 2010). Given that
the z-axis in our model is the vertical direction of the film/substrate system in experiments, a compressive strain (via release
of the pre-stretch deformation of substrate) is applied along the basal plane direction (x-axis). Under the constraint from the
substrate, deformation in y direction is negligible, leading to the plane-strain condition.

For the column model shown in Fig. 1(b), we use the tensor index notation x1¼x, x2¼y, x3¼z. Thus, the displacement (ui)
and stress (sij) boundary conditions are
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displacements are consistent with those of the MD simulations, in which both ends are fixed. The displacement fields can be
expressed as
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where ε¼δ/L represents the homogeneous compressive strain in the x-direction prior to elastic buckling. Clearly, u1 is an
odd function of coordinate x. Thus, a series composed of sine functions is used to represent the displacement after the elastic
buckling. Note that u1 is independent of z because of the periodic boundary condition in the z direction. The displacement u2
is set as zero to be consistent to the plane strain condition discussed early. The displacement u3 is an even function of
coordinate x. It is thus expressed as a series made of cosine functions. The first term of u3 accounts for the lateral expansion
in the z-direction. The periodic boundary condition suggests such a lateral expansion should be uniform. Hence the first
term is expressed as a linear function of the coordinate z. It is also natural to assume the lateral expansion linearly depends
on the applied compressive strain ε along the x-direction. The coefficient b0 should be taken as a parameter that represents
different types of boundary conditions in the z-direction. In our MD simulations, the lateral expansion is fixed. Therefore, the
coefficient b0¼0. In the case of a freely relaxed boundary condition in z direction, b0 should be equal to b0¼C13/C33.

These displacement fields [Eq. (2)] satisfy the boundary conditions [Eq. (1)], with undetermined coefficients an and bn.
Only when the load is above the critical buckling value δcr, the an and bn will have nonzero solutions.

Deformation gradient F and the Green strain E can be derived based on the displacement fields as
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A hexagonal layered crystalline material has a transversely isotropic elasticity. In our model, since its basal plane is in the
x–y plane, the constitutive law of linear elasticity can be expressed as
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where Cij are the stiffness constants. For investigating instability problem, we use the Green strain Eij instead of the in-
finitesimal strain εij in order to take account nonlinearity and consequently we use the second Piola-Kirchhoff stress, Tij,
instead of the conventional stress sij. Substituting Eq. (4) into Eq. (5) yields

= + = + = ( )T C E C E T C E C E T C E, , 2 . 611 11 11 13 33 33 13 11 33 33 13 44 13

Then the strain energy density U is

= ( + + ) ( )U T E T E T E1/2 2 . 711 11 13 13 33 33

Integrating the energy density U in the column leads to the potential energy as

∫=
( )−

W
L

Udx
1

,
8L

L

/2

/2

in which a unit length is taken along the y and z directions, owing to the plane strain condition and the periodic boundary
condition, respectively.

Following the principle of minimum total potential energy, partial derivatives of W with respect to the undetermined
coefficients an and bn should be equal to zero. Thus,
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where the quadratic and higher order terms of strain ε are omitted. Note that derivatives with respect to bn (n¼1, 2, …)
always yield the same equation as

( )ε− − − = ( )C C C b C b2 0. 1044 11 44 0 13 0

The derivatives with respect to an (n¼1, 2, …) lead to another equation as

( )ε− − = ( )C C b C3 0. 1111 11 0 13

From Eqs. (10) or (11), we obtained the critical strain as
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In our homogeneous continuummechanics model, the displacement fields are expressed as infinite series that satisfy the
boundary conditions, so that the solution Eq. (12) or Eq. (13) is the exact solution of the intrinsic buckling strain of the
layered materials without slenderness. Note that Eq. (12) was firstly reported in the PhD thesis of one of the authors (Liu,
2002).

The prediction from Eqs. (12) or (13) is valid only if the magnitude of εcr is small. Otherwise the higher order terms
cannot be neglected in Eq. (9). From the aspect of physics, the adopted linear elasticity model may not be valid in the case of
finite deformation. More importantly, only when the predicted εcr is lower than the material's elastic limit strain, the
mechanical buckling could take place. Since Eq. (13) predicts a critical buckling strain εcr41/3, its prediction should not be
considered reliable.

It is interesting to notice that the Eq. (12) only includes the elastic constants of materials without any structural di-
mensions suggesting that such a mechanical buckling is an intrinsic property of materials. It is reasonable to understand this
feature because in the case of L/ρ¼0, the column [Fig. 1(a)] is inherently “structure-less”. Here we define the critical
buckling strain at L/ρ¼0 [Eq. (12)] as the intrinsic buckling strain (IBS) εcr

IBS. The parameter n in displacement fields [Eq. (2)]
represents different buckling modes. Interestingly, all the buckling modes share one degenerate eigenvalue, i.e., the εcr

IBS in
Eq. (12).
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Fig. 4. A comparison of the intrinsic buckling strain εcr
IBS [Eq. (12) by setting b0¼0] with those converged εcr results from MD simulations. Each symbol

represents one type of hexagonal layered crystalline materials simulated in Section 2.



Table 4

Elastic constants, continuum mechanics model predictions of the εcr
IBS [Eq. (12) or Eq. (13) with b0¼C13/C33] of selected hexagonal layered crystalline

materials with a high degree of elastic anisotropy. Most of the materials are adopted from Table 1 in reference (Wang and Zheng, 2007). Elastic constants of
h-BN are from reference (Duclaux et al., 1992). Elastic constants of WS2 are from reference (Volkova et al., 2012).

Materials C11 C12 C13 C33 C44 Continuum mechanics prediction

Graphite (C) 1060 180 15 36.5 4.5 0.0043
Molybdenum sulfide (MoS2) 238 �54 23 51 18.6 0.0882
Biotite [K(Mg,Fe)3AlSi3O10(OH,F)2] 186 32 12 54 5.8 0.0321
Phlogopite [KMg3AlSi3O10(OH,F)2], B 178 30 15 51 6.5 0.0383
Phlogopite [KMg3AlSi3O10(OH,F)2], A 179 32 26 51.7 5.6 0.0349
Muscovite [KAl2Si3O10(OH,F)2] 178 42.4 14.5 54.9 12.2 0.0727
Gallium sulfide (peizoel) (GaS) 126.5 35.7 14.3 41.6 12 0.1059
Gallium selenide (peizoel) (GaSe) 106.4 30 12.1 35.8 10.2 0.1069
Rubidium nickel chloride (RbNiCl3) 35.2 10.0 22 72.2 2.5 0.0927
Indium selenide (InSe) 118.1 47.5 32 38.2 11.7 0.3606
Hexagonal Boron Nitride (h-BN) 750 150 – 18.7 2.52 0.0034
Tungsten sulfide (WS2) 236 61 8 42 12 0.0522
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The value of εcr
IBS for graphite is plotted in Fig. 2 (the dashed line) to compare with MD simulation results using the

AIREBO force field. The value of b0 should be zero to be consistent with the boundary conditions in MD simulations, as
discussed before. Thus we obtain the IBS εcr

IBS¼C44/C11¼0.34416/980¼0.03512%, in which the C11 modulus and C44 modulus
are the values calculated in Section 2. Fig. 2 shows that the theoretical IBS agrees with the converged εcr from MD simu-
lations very well (for LZ20 nm and under a loading velocity lower than 10�4 Å/ps). The theoretical εcr

IBS values are also
compared with MD simualtion results for graphite, h-BN, virtual graphite, and virtual h-BN (with Tersoff and LJ force fields)
in Fig. 3. For each case, the predicted εcr

IBS agrees well with the converged εcr result in MD simulations. A detailed comparison
is summarized in Table 3 and Fig. 4. We can, therefore, conclude that the IBS model accurately describes the critical elastic
buckling strain of the studied layered crystalline mateirals at a zero slendness ratio, at a sufficiently large length scale L,
under a quasi-static loading condition.

Prior to ending this section, the theoretical IBS results under the freely relaxed side boundary condition (b0¼C13/C33) of a
list of hexagonal layered crystalline materials are calculated and shown in Table 4. These materials are selected based on a
thorough survey done by Wang and Zheng for hexagonal crystal materials with an extreme elastic anisotropy degree (Wang
and Zheng, 2007). Owing to the intrinsic layered atomic structures, most of the hexagonal layered crystalline materials have
an in-plane elastic constant C11 much larger than other elastic constants, particularly the shear modulus C44. Thus, Eq. (12)
often yields a smaller value of εcr

IBS than that of Eq. (13), with only one exception in the materials that we visited, InSe, for
which Eq. (13) leads to a smaller value. However, this predicted εcr

IBS appears to be much higher than its material's yield
strain and thus the elastic buckling is practically impossible. It is listed here just for theoretical interests. For those layered
materials that attract enormous attentions at present, such as graphite, h-BN, MoS2, and WS2, their εcr

IBS results are smaller
than 15%. It is thus feasible to manipulate morphologies of these layered materials via the intrinsic buckling mode and thus
tune their physical properties in experiments for novel applications. It should be noted that elastic constants in Table 4 are
from experiments. For graphite and h-BN, the results are different from Table 3.

We note that critical strain εcr
IBS predicted in Eq. (12) becomes ε ν ν= ( − ) ( − )1 / 1 2cr

IBS for isotropic materials, where ν is the
Poisson's ratio. Because of the thermodynamics restriction: ν− ≤ ≤1 1/2, this critical value of strain would exceed elastic
limit strains for most real materials, and therefore is impractical.

There are many interesting layered crystalline materials that have other types of crystal symmetry (Geim and Grigorieva,
2013). For example, the perovskite-type material LaNb2O7, (Ca,Sr)2Nb3O10, Bi4Ti3O12 and Ca2Ta2TiO10 have an orthorhombic
symmetry. Thus a continuum mechanics model for an orthorhombic crystalline material is presented in Appendix. Note that
for this symmetry, the column could undergo a mechanical buckling in either of the two lateral directions [i.e., y or z-axis in
Fig. 1(b)], in comparison with only one direction (i.e., z-axis) for the hexagonal crystalline materials. Consequently, there is
one more result for the εcr

IBS. Please refer to Appendix for details.
4. Size effect of the critical buckling strain

Fig. 2 and Fig. 3 demonstrate a significant size effect for the critical buckling strain of a columnwith length L smaller than
20 nm (meanwhile the slenderness ratio equals to zero). Indeed, for a graphite column length L reducing from 20 nm to
2 nm, the magntiude of εcr increases from 0.03343% to 0.4635%, i.e., more than 10 times increse. The continuum theoretical
model presented in Section 3 cannot explain this size-dependent phenomenon. In this section, we will extend the con-
tinuum model in Section 3 to explain the observed size effect.

Careful analysis of the atomistic structures of the buckled layered crystalline materials reveals five types of deformation
modes: (1) stretch/compression of the chemical bonds and (2) change of bond angles in the layer plane, (3) interlayer
compression, (4) interlayer shear, and (5) bending of the dihedral bond angles out of the layer plane. In our continuum
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mechanics model for a homogeneous media (Section 3), the strain term E11 can describe deformation modes (1) and (2), the
E33 term accounts for mode (3), and the E13 term corresponds to mode (4). It appears that the mode (5), i.e., the out-of-plane
bending of each atomically thin layer, is not considered. Previous studies showed that the mechanical strain energy arising
from the bending of atomically thin materials generally follows κ~U Db

1
2

2, where Db is the bending stiffness and κ is the
curvature. For a bulk layered crystalline material, this energy term is negligible for two reasons. First, the value of Db is
normally very small. Second, the deformation of a column under compression at a large size scale yields a small κ value.
However, when L value reduces down to nanometer range, the κ value in the buckled structure becomes more significant.
The bending energy term, which accounts for the mode (5), should not be omitted anymore. It should be noted that the
above bending energy term should be distinguished from the bending energy in the classic Euler or Timoshenko beam
model, in which the bending effect arises from the stretch and compression on the opposite sides of a beam. We believe this
is an inherent limitation of using classic continuum mechanics theory to describe the deformation of the layered crystalline
materials at nanometer scale.

Then we add the bending energy term to Eq. (8):
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Based on the displacement fields in Eq. (2), the curvature can be expressed as
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The equilibrium state requires that the partial derivatives of W with respect to the undetermined coefficients an and bn
should be equal to zero. Thus,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )
( )
( )

( )

( )

( )
( )

( )
( )

( )

( )

( )
( )

ε π

ε

ε π

ε

ε ε

ε ε

= ∂ ∂ = − − − + ( )

+ + + =

= ∂ ∂ = − − − + ( )

+ + + =

= ∂ ∂ = − − + + =

= ∂ ∂ = − − + + =
( )

W

W

W

W

g b b C C C b C b
D

hL

b C C b C b

g b b C C C b C b
D

hL

b C C b C b

f a a C C b C a C C b

f a a C C b C a C C b

/ 2
2

O 2 /4 0

/ 2
4

O 2 /4 0
......

/ 3 /2 O 3 /4 0

/ 3 /2 O 3 /4 0
...... . 16

b

b

1 1 1 44 11 44 0 13 0

2

2

1 11 13 0
2

44 0
2 2

2 2 2 44 11 44 0 13 0

2

2

2 11 13 0
2

44 0
2 2

1 1 1 11 11 0 13 1 11 13 0
2 2

2 2 2 11 11 0 13 2 11 13 0
2 2

Note that adding the bending energy term in Eq. (14) leads to an extra term π( )D n

hL

2b
2

2
in Eq. (16) compared with Eq. (9). The

critical buckling strain now becomes
Table 5
The bending stiffness Db, the equilibrium interlayer distance h, and the calculated length parameter l0 of h-BN, graphite and
virtual graphite are summarized.

LJ parameter Db (eV) h (nm) l0 (nm)

Graphitea 1.46c 0.3369 8.918
Graphite (ε, r)b 0.336 9.08
Virtual Graphite (2ε, r)b 0.336 6.414
Virtual Graphite (5ε, r)b 0.336 4.046
Virtual Graphite (7ε, r)b 0.336 3.413
Virtual Graphite (10ε, r)b 0.336 2.848
Virtual Graphite (10ε, 1.1r)b 0.3691 3.119
Virtual Graphite (10ε, 1.2r)b 0.4031 3.367
Virtual Graphite (10ε, 1.3r)b 0.4372 3.473
Virtual Graphite (10ε, 1.4r)b 0.4712 3.554
h-BNb 1.29c 0.3357 6.23

a Modeled by AIREBO force field (Stuart et al., 2000).
b Modeled by Tersoff and LJ potentials (Kınacı et al., 2012; Tersoff, 1989).
c Calculated using modified Tersoff potential for h-BN (Kınacı et al., 2012; Singh et al., 2013).
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By defining a length parameter π=l D C h2 /b0 44 , the Eq. (17) can be written as
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The difference between Eq. (18) and the IBS critical buckling strain in Eq. (12) is a geometry dependent pre-factor, where
the size effect clearly manifests itself. For a large L value, Eq. (18) reduces to the εcr

IBS in Eq. (12). Reducing the column length L
leads to an enhancement of the critical buckling strain. In addition, Eq. (18) shows that the different buckling modes n do
not share a degenerated critical buckling strain value any more.

For the graphite column (AIREBO force field) in Section 2, we have the parameters Db¼1.46 eV (Singh et al., 2013), C44
¼0.3442 GPa, h¼0.3369 nm. Thus the l0 can be calculated as 8.9 nm. The theoretical model [Eq. (18)], shown as the solid
black line in Fig. 3, is compared with MD simulation results. The agreement is very good. For the cases of h-BN, graphite
(Tersoff and LJ potentials), and virtual graphite, Table 5 lists the bending stiffness Db results, the equilibrium interlayer
distance h, and the calculated length parameter l0. Fig. 3 compares the theoretical model Eq. (18) with MD simulations of
these cases as well. The agreement is also good, indicating the bending of atomic layers as origin of the observed size effect.
Overall the l0 value is quite small, varying from 2–10 nm. Only when the column length L (i.e., buckling wavelength) close or
below l0, the critical buckling strain will significantly deviates from the intrinsic buckling strain εcr

IBS.
5. Discussions

Before we draw conclusions, this section will provide some in-depth discussions and implications.
The mechanical buckling of anisotropic materials has been a topic of interests for a quite long time. The recent book from

Bažant provides an excellent review on relevant topics (Bažant and Cedolin, 2010). Several different cases have been studied.
The internal buckling happens for a continuum block/column under a uniaxial compression and being constrained by rigid
and perfectly lubricated side edges (Biot, 1965). As the slenderness ratio approaching to zero, this case appears to be similar
to our MD simulations. But it should be aware that previous models usually assumed the anisotropic materials to be in-
compressible. The incompressibility should inevitably bring the effects of the rigid side boundary to the buckling that
happens in the internal part of the block. In order to directly compare with our theoretical model, we did some derivations
of the Biot's original model (Biot, 1965). Indeed, the critical buckling strain εcr of such internal buckling, i.e., 4C44/(3C11–C13)
is quite different from our model C44/C11 that is derived from Eq. (12) in accordance to the fixed side boundary condition in
MD. The second case studied previously is the buckling of a thick slab under a uniaxial compression with free side
boundaries. But the materials were also assumed to be incompressible. As the slenderness ratio approaching to zero, Biot
pointed out that it should coincide with the surface buckling of a semi-infinite half space, which clearly is different from our
study. The third case is the buckling of a thick beam. As early as in 1889, Engesser proposed a model that took both the
bending and shearing effect into account (Bažant and Cedolin, 2010). The critical buckling strain can be expressed as:
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where Y is Young's modulus of the column along longitudinal x direction. Here η is a factor related to the geometry of the
cross-section (Timoshenko and Gere, 2012). It is usually taken 1.12 and 1.11 for rectangular and circular cross-sections,
respectively. Taking the slenderness ratio L/ρ approaching zero in Eq. (19) leads to a critical strain εcr¼G/ηY. It should be
noted that the thick beam can deform in the transverse direction under the uniaxial compression, which is analogous to the
freely relaxed side boundary condition we discussed in Section 3, i.e., b0¼C13/C33. The clear difference can be easily un-
derstood since a beam theory was used in Engesser's model that is not appropriate for a very thick three-dimension block.
More importantly, it should be aware that previous homogeneous continuum mechanical models cannot explain the size
effect, which is observed in our MD simulations and has been successfully explained using our model.

It is worth noting that our homogeneous continuum mechanical model Eq. (12) embodies neither an intrinsic length
scale nor internal atomistic microstructures. The graphite column is simply described as a homogeneous continuum bulk.
The IBS agrees very well with those determined by MD simulations (down to 20 nm). This excellent agreement suggests that
the critical buckling point of a thick graphite column (� zero slenderness ratio) above tens of nanometer scale is governed
by its macroscopic elastic properties. This should be true for other hexagonal layered crystalline materials (Table 4). This
conclusion is also consistent with previous studies of multi-walled carbon nanotubes (Liu et al., 2001; 2003), which
modeled the multi-walled carbon nanotube (MWCNT) as a homogeneous continuum beam and successfully explained the
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rippling in MWCNT under bending in experiments (Poncharal et al., 1999). It should be noted that to model the post-
buckling of the layered crystalline materials, such as the formation of kinking band, we may still require atomistic simu-
lations (Li et al., 2007; Liu et al., 2011), thin shell/plate FEA models (Liu et al., 2005), or those atomistic-based FEA techniques
(Arroyo and Belytschko, 2003).

From our homogeneous continuum mechanics model, we can conclude that the drastically low interlayer shear modulus
C44 in comparison with the in-plane modulus C11 is the origin for the observed profound shear mode of instability and the
anomalous elastic buckling of a column with an infinitesimal slenderness ratio. For a crystal material, the concept of elastic
anisotropy degree δ(C) is often adopted to quantify the difference of elastic modulus along different crystalline directions
(Nye, 1985; Wang and Zheng, 2007). The special crystal structure of a layered material implies a high δ(C). Indeed, among
the top 20 hexagonal crystal materials with a high δ(C), most of them are layered crystalline materials (Wang and Zheng,
2007). It is natural to expect that a high elastic anisotropy degree δ(C) should lead to a small IBS εcr. However, a comparison
between the IBS εcr results and the anisotropy degree shows several exceptions. For instance, in Table 4, MoS2, Muscovite
[KAl2Si3O10(OH,F)2], or Rubidium nickel chloride (RbNiCl3) has a similar IBS εcr, i.e., 0.1583, 0.1622, and 0.1552, but they show
a significant difference in δ(C), i.e., 0.608, 0.5, and 0.408. Another example is that although Muscovite [KAl2Si3O10(OH,F)2]
has a larger δ(C) in comparison with Biotite [K(Mg,Fe)3AlSi3O10(OH,F)2], i.e., 0.608 vs. 0.557, its IBS εcr result is much higher
as well, i.e., 0.1583 vs. 0.0643. Here we propose that the εcr

IBS [Eq. (12)] under the freely relaxed side boundary condition (b0
¼C13/C33) could serve as an alternative measure to characterize the degree of elastic anisotropy for hexagonal crystal
materials. In the same spirit, Eqs. (A13) and (A14) could be used to measure the degree of elastic anisotropy for orthor-
hombic crystalline materials. One clear advantage is that such a measure has a clearer physical meaning.

In light of the very weak interlayer physical interactions, it is intuitively reasonable to approximate the critical buckling
stress/strain of a multi-layered stack by that of a mono-crystal-layer (Guo et al., 2011). Our study shows that such an
approximation is problematic. For example, based on Euler model, for a graphene layer with length L¼20, 30, or 40 nm, the
εcr is 0.00358%, 0.00159%, and 0.000896% given the thickness of graphene monolayer as 0.066 nm (Wang et al., 2005;
Yakobson et al., 1996), But in our MD simulations for a multi-layer stack, they share a similar εcr¼0.0351%. It clearly shows
that despite its small magnitude, the interlayer modulus C44 plays a decisive role in determining the mechanical buckling of
a multi-layered stack of graphenes.

Employing elastic buckling to tune the physical properties of layered crystalline materials has several clear advantages.
First, there are no chemical or physical damages to the crystal integrity. It could avoid some undesired side effects that often
occur when tailoring the physical properties via methods such as cutting, chemical or physical adsorptions. Second, in
principle, the elastic buckling is recoverable. That means utilizing buckling under a cyclic loading/unloading condition can
repeatedly control the material morphologies and thus their properties. This is highly desirable in nanotechnology, which
can enable many new applications, such as the mechanical sensor, and the responsive materials.

Making use of the shear mode of instability has several more advantages. First, a layered crystalline material can undergo
a mechanical buckling with a very low slenderness ratio (L/ρ�0), suggesting that the buckling wavelength L can be tuned to
a very small value. Our MD simulations demonstrate the scale of L down to �20 nm. It can be used to generate periodic
surface structures at a nanometer scale, which is a difficult task by employing the bending mode of instability. Second, a
distinctive kinking morphology is the signature of the shear mode instability at post-buckling stage (Budiansky et al., 1998;
Liu et al., 2010). In the kink, there is a sharp transition corner connecting two consecutive straight segments, which is
potentially useful in some novel applications. For example, an electric current in graphene nano-bubbles can generate a
giant pseudo-magnetic field (Levy et al., 2010). It was found that strength of the magnetic field depended on a change of
curvature. The sharp corners in the kinks could be used to design nano-devices that can generate dynamically tunable giant
pseudo-magnetic fields. Third, under the shear mode of instability, there are no strains in the basal planes of the layered
crystalline materials (only shear deformation occurs among adjacent crystal layers). This could be another benefit, if the
atomistic structure of crystal layers would like to be conserved.
6. Summary

In this paper, we study the elastic buckling of a column made of layered crystalline materials being subject to a uniaxial
compressive load along the basal plane direction, using MD simulations and continuum mechanics modeling. In our MD
simulations for graphite, h-BN, virtual graphite, and virtual h-BN, we found that the columns (at a zero slenderness ratio due
to periodic boundary condition) had a constant critical buckling strain value given that the length L is higher than certain
values. Our continuum mechanics model reveals that such a converged critical bucking strain solely depends on the ma-
terial's elastic constants (without structural dimensions), implying that it is an intrinsic material property. A new concept,
intrinsic buckling strain (IBS), is thus defined. For a set of typical layered crystalline materials, the εcr

IBS is much lower than
elastic limit stain of the materials, indicating the mechanical buckling occurs prior to the failure of the materials. Our results
also reveal that a high degree of elastic anisotropy is the origin for the anomalous mechanical buckling in the absence of
structural slenderness.

In MD simulations, reducing the length L leads to a gradual increase of εcr, deviating from the constant εcr
IBS. We in-

troduced a bending energy term, which describes the bending deformation of each individual atomic layer, in the con-
tinuum mechanics model. The good agreement between our continuum model [Eq. (18)] and the MD simulations indicates
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that the bending deformation of atomic layers is the origin for the observed size effect. A characteristic length parameter l0
is defined, which is an intrinsic material parameter. When the column length L is comparable or smaller than l0, the size
effect on εcr shows up.

Besides the layered crystalline materials, some biomaterials (e.g. nacre, shell, bone, etc.), fiber reinforce composites, or
geological strata also have the similar microstructures and high elastic anisotropy. Our studies could provide some insights
to understand their mechanical buckling behavior. In the end, some in-depth discussions and potential applications in
nanotechnology are provided. This study could provide guidelines for engineering layered crystalline materials in various
nano-materials and nano-devices via mechanical buckling.
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Appendix. Continuum mechanics model for intrinsic buckling strain of orthorhombic crystalline materials

A continuum mechanics model is detailed here for a column made of orthorhombic crystalline materials [Fig. 1(b)]. The
mechanical buckling could occur in either of the two lateral directions. Thus periodic boundary conditions are applied in
both y and z directions. Similar to the previous derivations in Section 3, boundary conditions are
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where δ is the relative displacement of the both ends moving toward each other. The displacement fields can be expressed
as

∑ ∑ ∑ε
π

π ε
π

π ε
π

π= − + = + = +
( )= = =

u x a
L
n

n x
L

u k y k
L
n

n x
L

u b z b
L
n

n x
L2

sin
2

,
2

cos
2

,
2

cos
2

,
A2n

N

n
n

N

n
n

N

n1
1

2 0
1

3 0
1

where ε¼δ/L represents the homogeneous compressive strain in x-direction prior to elastic buckling. Note that u2 has a
different expression compared to the transverse isotropic materials, e.g., hexagonal crystalline materials. The first terms of u2
and u3 are adopted to account for the different types of side boundary conditions in z and y directions, respectively. A fixed
side boundary condition, as used in our MD simulations for graphite etc., means k0 and b0 equal to zero, whereas the freely
relaxed side boundary condition requires k0¼C12/C22 and b0¼C13/C33 in which C12, C13, C22 and C33 are elastic constants.
These displacement fields [Eq. (A2)] satisfy the boundary conditions [Eq. (A1)]. Parameters an, kn and bn are unknown
coefficients. Only when the load is above the critical buckling value δcr, the an, kn and bn will have nonzero solutions.

Deformation gradient F and the first Seth strain E can be derived based on the displacement fields as
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For an orthorhombic crystalline material, the constitutive law of linear elasticity can be expressed as
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where s and τ represent the normal and shear stress components, ε and γ denote the normal and shear strain components,
and Cij are the stiffness constants. Substituting Eq. (A4) into Eq. (A5) yields the second Piola-Kirchhoff stress T as
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Then the strain energy density U is
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Integrating the energy density U in the column leads to the potential energy as
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in which unit lengths are taken along the y and z directions, owing to the periodic boundary conditions.
Following the principle of minimum total potential energy, partial derivatives of W with respect to the undetermined

coefficients an, bn, and kn should be equal to zero. Thus,

( )
( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

ε ε

ε ε

ε ε

ε ε

ε ε

ε ε

= ∂ ∂ = − − − − + =

= ∂ ∂ = − − − − + =

= ∂ ∂ = − − − − + =

= ∂ ∂ = − − − − + =

= ∂ ∂ = − − − + =

= ∂ ∂ = − − − + =
( )

W

W

W

W

W

W

g b b C C C b C k C b O

g b b C C C b C k C b O

m k k C C C k C k C b O

m k k C C C k C k C b O

f a a C C C k C b O

f a a C C C k C b O

/ 2 /2 0

/ 2 /2 0
......

/ 2 /2 0

/ 2 /2 0
......

/ 3 /2 0

/ 3 /2 0
...... , A9

1 1 1 55 11 55 0 12 0 13 0
2

2 2 2 55 11 55 0 12 0 13 0
2

1 1 1 66 11 66 0 12 0 13 0
2

2 2 2 66 11 66 0 12 0 13 0
2

1 1 1 11 11 12 0 13 0
2

2 2 2 11 11 12 0 13 0
2

where the quadratic and higher order terms of strain ε are omitted. Note that derivatives with respect to bn (n¼1, 2, 3, 4 …)
always yield the same equation as
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The derivatives with respect to kn (n¼1, 2, 3, 4 …) lead to an equation as
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The derivatives with respect to an (n¼1, 2, 3, 4 …) lead to an equation as
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From Eq. (A10), (A11) or (A12), we obtained the IBS εcr as
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Knowledge of the perovskite layered crystalline materials is quite limited (Geim and Grigorieva, 2013). A complete set of
elastic constants for LaNb2O7, (Ca,Sr)2Nb3O10, Bi4Ti3O12, Ca2Ta2TiO10 are not available. Therefore, a quantitative comparison
between the theoretical results Eq. (A13) and (A14) and numerical simulations are not feasible at present.

Note that Eq. (A13) and Eq. (A15) can be reduced into Eqs. (12) and (13) for the hexagonal crystalline materials, through
letting C22¼C11, C23¼C13, and C55¼C44 because of the hexagonal crystal symmetry and k0¼0 due to the plane-strain
conditions adopted in Eqs. (12) and (13).
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