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ABSTRACT
Geographically weighted regression (GWR) is an important tool for explor-
ing spatial non-stationarity of a regression relationship, in which whether
a regression coefficient really varies over space is especially important in
drawing valid conclusions on the spatial variation characteristics of the
regression relationship. This paper proposes a so-called GWGlasso method
for structure identification and variable selection in GWR models. This
method penalizes the loss function of the local-linear estimation of the
GWR model by the coefficients and their partial derivatives in the way of
the adaptive group lasso and can simultaneously identify spatially varying
coefficients, nonzero constant coefficients and zero coefficients. Simula-
tion experiments are further conducted to assess the performance of the
proposed method and the Dublin voter turnout data set is analysed to
demonstrate its application.
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1. Introduction

Geographically weighted regression (GWR) [1,2] has been a very popular local modelling method
that seeks to discover potential patterns of spatial non-stationarity in a regression relationship. In this
methodology, the spatially varying coefficient model

yi =
p∑

j=1
βj(ui, vi)xij + εi, i = 1, . . . , n, (1)

is calibrated by the kernel smoothing technique, where yi and xi1, xi2, . . . , xip are respectively the
observations of the response variable Y and those of the explanatory variables X1,X2, . . . ,Xp at the
geographical location (ui, vi), εi is the random error term associated with (ui, vi) and βj(u, v) (j =
1, . . . , p) are unknown regression coefficients to be estimated. Generally, X1 = 1 is assumed to
make the model include a spatially varying intercept. The model (1) with its calibration method is
henceforth called GWR model as usual.

In the GWR literature, non-stationarity of the regression relationship is uncovered and explained
by spatial variation patterns of the coefficient estimates. As a local modellingmethod, however, GWR
always produces for each coefficient a set of local estimates which are generally different from one
location to another no matter whether the coefficient is actually spatially varying or not. In some
practical problems, however, it is possible that certain explanatory variables influencing the depen-
dent variable are global in nature, whilst others are local [3], which leads to the consequence that
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some coefficients in the GWR model are constant and the others are spatially varying. Furthermore,
it is also possible that constant coefficients are zero, indicating that the corresponding explanatory
variables are irrelevant to the dependent variable. As pointed out by Wheeler [4], including some
irrelevant explanatory variables in the model will degrade the estimation efficiency. In order to avoid
a misleading explanation on non-stationarity of the underlying regression relationship, it is essential
to know which coefficients in the GWR model really vary over the space and which coefficients are
nonzero constant or zero, which belongs to structure identification and variable selection in a GWR
model.

In fact, since the inception of GWR, much effort has been paid to the study of structure identifi-
cation or model specification from the perspective of hypotheses testing. In the pioneering papers on
GWR [1,5,6], a permutation test was proposed to check whether the coefficients in a GWRmodel are
constant over the space. Furthermore, a residual sum of squares based test with the null distribution
of the test statistics approximated by an F-distribution was also suggested by Brunsdon et al. [3] and
Leung et al. [7] to check whether a GWRmodel or an ordinary linear model is appropriate for a given
geo-referenced data set. However, it should be noted that the aforementioned kinds of tests focus
on identifying global stationarity of the regression relationship. After introducing the mixed GWR
model with its back-fitting calibration procedure, Brunsdon et al. [3] extended the residual sum of
squares based test to identify constant coefficients in the GWR model. Furthermore, based on the
same type of the test statistic and with the improved calibration method of a mixed GWR model in
Fotheringham et al. [2] (Chapter 3), Mei et al. [8] proposed a bootstrap test to check whether some
constant coefficients in a mixed GWR model are zero. Recently, considering some shortcomings of
the residual sum of squares based test in the F-distribution approximation to the null distribution of
the test statistic and normality assumption on the model error term, Mei et al. [9] suggested a boot-
strap procedure to calculate the p-value of the test and the simulation study showed that the bootstrap
method performs well. The above tests can be used to achieve the tasks of structure identification in
a GWR model and variable selection in a mixed GWR model. In practice, however, there is gener-
ally not enough priori information for the analysts to know that which coefficients should be chosen
to be tested for constants or zero. As a result, all possible combinations of the coefficients should be
considered and a series of the tests should be performed, which is not an easy task especially when
the number of the explanatory variables is large. Based on the sample variance of each estimated
coefficient at all of the locations, Leung et al. [7] proposed an F-distribution to approximate the null
distribution of the test statistic. Although this test can identify the constant coefficients in a GWR
model one by one, as demonstrated in Mei et al. [9], it suffers from very high type I error. Therefore,
it is worthwhile to develop some alternative methods for structure identification and variable selec-
tion in a GWRmodel in view of their importance in validly exploring spatial non-stationarity of the
regression relationship.

The regularization or shrinkage methods developed in statistical learning have great potential to
be used in regression models for model specification and variable selection. In the GWR literature,
Wheeler [4] proposed a geographically weighted lasso method for simultaneous coefficient penal-
ization and model selection mainly for alleviating the effect of collinearity among the explanatory
variables on the coefficient estimates. This method performs local model selection by shrinking the
coefficient estimates to zero at some locations and cannot be directly used for variable selection or
constant coefficient identification. In the statistical literature on varying coefficient models, however,
much attention has been paid to using the penalization methods for model structure identification
and variable selection and many approaches with their own high spots have been developed [10–15].
Especially, based on the local-linear estimation and the smoothly clipped absolute deviation (SCAD,
[16]) penalty,Ma andZhang [17] recently proposed a newmethod for identifying varying coefficients,
nonzero constant coefficients and zero coefficients in a varying coefficient model. In this method,
the values of each coefficient and those of its derivative at all of the designed points are respectively
grouped and taken as the penalty terms of the residual sum of squares of the local-linear estimation
to make the coefficients and their derivatives shrink towards to zero. As a result, the varying, nonzero
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constant and zero coefficients can be simultaneously identified according to the penalized estimates
of the coefficients.

Motivated by the methodology in Ma and Zhang [17] and based on the local-linear estimation
of the GWR model [18] in which the estimates of coefficients and their partial derivatives can be
obtained at any a focal location, we propose in this paper a so-calledGWGlassomethod to achieve the
task of the structure identification and variable selection in GWR models. In the method, the values
of each coefficient and those of its partial derivatives are respectively grouped and the adaptive group
lassomethod [19,20] is employed to penalize the residual sumof squares of the local-linear estimation
of the GWRmodel. In this way, it is expected that, for the nonzero constant coefficients, their partial
derivatives will shrink to zero, while for the zero coefficients, both the coefficients themselves and
their partial derivatives will shrink to zero with which the nonzero constant and zero coefficients can
be adaptively identified.

The remainder of this paper is organized as follows. In Section 2, the local-linear estimation
method for GWRmodels is briefly described to facilitate the subsequent discussions. In Section 3, the
GWGlasso methodology is introduced in detail and an iterative algorithm is formulated to compute
the penalized estimates of the coefficients and their partial derivatives. A simulation experiment is
conducted in Section 4 to assess the performance of the proposed method and a real-life data set is
analysed in Section 5 to demonstrate its application. The paper is concluded with a brief summary
and some possible extensions of the proposed method.

2. Local-linear estimation of the GWRmodel

As the basis of the forthcoming GWGlasso method, the local-linear estimation of the GWR model
proposed byWang et al. [18] is briefly described with the notations used in the current paper in order
to facilitate the subsequent discussions.

Assume that the coefficientsβj(u, v) (j = 1, . . . , p) inmodel (1) have continuous partial derivatives
with respect to u and v which we denote by β(u)j (u, v) and β(v)j (u, v), respectively. Given a designed
location (uk, vk), let dki be the Euclidean distance between (uk, vk) and the ith observation location
(ui, vi). According to Wang et al. [18], the local-linear estimates of the coefficients and their partial
derivatives are the minimizer of the following objective function:

Lh(uk, vk) =
n∑

i=1

⎧⎨
⎩yi −

p∑
j=1

[βj(uk, vk)+ β
(u)
j (uk, vk)(uk − ui)+ β

(v)
j (uk, vk)(vk − vi)]xij

⎫⎬
⎭

2

Kh(dki),

(2)
where Kh(·) = K(·/h) with K(·) being a kernel function and h being a bandwidth. Let

X =

⎛
⎜⎜⎜⎝
x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp

⎞
⎟⎟⎟⎠ , y =

⎛
⎜⎜⎜⎝
y1
y2
...
yn

⎞
⎟⎟⎟⎠ , (3)

Wh(uk, vk) = Diag[Kh(dk1),Kh(dk2), . . . ,Kh(dkn)],

U(uk) = Diag[u1 − uk, u2 − uk, . . . , un − uk],

V(vk) = Diag[v1 − vk, v2 − vk, . . . , vn − vk],

aTr (k) = [β1(uk, vk),β2(uk, vk), . . . ,βp(uk, vk)],

bTr (k) = [β(u)1 (uk, vk),β
(u)
2 (uk, vk), . . . ,β

(u)
p (uk, vk)],

bTr (n + k) = [β(v)1 (uk, vk),β
(v)
2 (uk, vk), . . . ,β

(v)
p (uk, vk)].

(4)
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The objective function in Equation (2) can be rewritten as

Lh(uk, vk) = (y − Xar(k)− U(uk)Xbr(k)− V(vk)Xbr(n + k))T

· Wh(uk, vk)(y − Xar(k)− U(uk)Xbr(k)− V(vk)Xbr(n + k)). (5)

Taking the potential derivatives ofLh(uk, vk)with respect to the vectors ar(k), br(k) and br(n + k)
respectively, letting each of them to be zero, and solving the equation, we can obtain the minimizer
of Lh(uk, vk) as

[âTr (k), b̂
T
r (k), b̂

T
r (n + k)]T = P̂h(uk, vk)y, (6)

where P̂h(uk, vk) is⎛
⎜⎜⎜⎝
XTW(0,0)

h (k)X XTW(1,0)
h (k)X XTW(0,1)

h (k)X

XTW(1,0)
h (k)X XTW(2,0)

h (k)X XTW(1,1)
h (k)X

XTW(0,1)
h (k)X XTW(1,1)

h (k)X XTW(0,2)
h (k)X

⎞
⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎝
XTW(0,0)

h (k)

XTW(1,0)
h (k)

XTW(0,1)
h (k)

⎞
⎟⎟⎟⎠ (7)

and

W(γ ,ψ)
h (k) = Diag[(u1 − uk)γ (v1 − vk)

ψKh(d1k), (u2 − uk)γ (v2 − vk)
ψKh(d2k),

. . . , (un − uk)γ (vn − vk)
ψKh(dnk)] (8)

with γ ,ψ = 0, 1, 2.
The optimal size of the bandwidth h can be selected by some data-driven procedures such as the

CV and AICc criterions. Here, we give a detailed description of the CV criterion which will be used
in the subsequent section.

Let xTi = (xi1, xi2, . . . , xip) be the ith row of X defined in Equation (3). The fitted values of the
response variable Y at the n locations can be computed by

ŷ = (ŷ1, ŷ2, . . . , ŷn)T = L(h)y, (9)

where

L(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(xT1 , 01×(2p))P̂h(u1, v1)

(xT2 , 01×(2p))P̂h(u2, v2)

...

(xTn , 01×(2p))P̂h(un, vn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

with 01×(2p) being a zero matrix of order 1 × (2p).
It is observed from Equation (9) that the local-linear estimation method for the GWR model is a

linear smoother. As well known, the CV score can be computed by

CV(h) = 1
n

n∑
i=1

(
yi − ŷi

1 − lii(h)

)2
, (11)

where lii(h) is the ith element in the diagonal of L(h). The optimal size, say ho, of h is then

ho = argmin
h>0

CV(h). (12)
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3. GWGlassomethod for structure identification and variable selection in the GWR
model

3.1. Penalized estimation of the coefficients and their partial derivatives via the adaptive
group lasso

3.1.1. The penalized objective function
Let

A = [aTr (1), a
T
r (2), . . . , a

T
r (n)]

T = [ac(1), ac(2), . . . , ac(p)], (13)

where the kth row aTr (k) ofA, as shown in Equation (4), is the values of the p coefficients in the GWR
model (1) at the location (uk, vk) and the jth column

ac(j) = [βj(u1, v1),βj(u2, v2), . . . βj(un, vn)]T, (14)

consists of the values of the jth coefficient at the n designated locations. Similarly, let

B = [bTr (1), . . . , b
T
r (n), b

T
r (n + 1), . . . , bTr (2n)]

T = [bc(1), bc(2) . . . , bc(p)], (15)

where the kth row bTr (k) of B, as shown in Equation (4), is the values of the partial derivatives of the
p coefficients at location (uk, vk) with respect to u (1 ≤ k ≤ n) and v (n + 1 ≤ k ≤ 2n), respectively,
and the jth column

bc(j) = [β(u)j (u1, v1), . . . ,β
(u)
j (un, vn),β

(v)
j (u1, v1), . . . ,β

(v)
j (un, vn)]T, (16)

consists of the values of the two partial derivatives of the jth coefficient at the n designed locations.
In what follows, we denote by â(0)r (k), b̂

(0)
r (k) and â(0)r (n + k) the local-linear estimates of ar(k),

br(k) and ar(n + k) obtained by Equation (6) with the bandwidth h set to be its optimal value in
Equation (11). Let k = 1, 2, . . . , n, respectively, we can obtain the estimates of A and B which we
denote by Â(0) and B̂(0). The jth column of Â(0) and B̂(0), that is, the estimates of ac(j) and bc(j) is
denoted by a(0)c (j) and b(0)c (j), respectively.

According to the principle of the adaptive group lasso [19,20], we formulate the objective function
of the penalized estimation of the GWR model in Equation (1) as

Lh,λ(A,B) =
n∑

k=1

Lh(uk, vk)+ 2λ

⎛
⎝ p∑

j=1
w1j‖ac(j)‖ +

p∑
j=1

w2j‖bc(j)‖
⎞
⎠ , (17)

where ‖ · ‖ is the Euclidean norm of a vector, that is,

‖ac(j)‖ =
[ n∑
i=1
(βj(ui, vi))2

]1/2
, ‖bc(j)‖ =

[ n∑
i=1

[(β(u)j (ui, vi))2 + (β
(v)
j (ui, vi))2]

]1/2
, (18)

w1j and w2j are the weights given by

w1j =
√
n

â(0)c (j)
, w2j =

√
2n

b̂
(0)
c (j)

, j = 1, 2, . . . , p, (19)

with â(0)c (j) and b̂
(0)
c (j) being the aforementioned estimates of ac(j) and bc(j), and λ is the penal-

ization parameter. In the objective function Lh,λ(A,B), the penalty terms
∑p

j=1 w1j‖ac(j)‖ and∑p
j=1 w1j‖bc(j)‖ are used to cause shrinkage of the values of each coefficient and their two partial
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derivatives at all of the designed locations towards zero. Therefore, if the coefficient βj(u, v) is zero
over space, the estimates of both ac(j) and bc(j) should be shrunk to zero; if βj(u, v) is nonzero con-
stant, the estimates of only bc(j) should be shrunk to zero. As a result, the shrunken estimates of
ac(j) and bc(j) fromLh,λ(A,B), provide the evidence for identifying whether βj(u, v) is zero, nonzero
constant, or varying over space.

3.1.2. Local quadratic approximation of the penalty terms and an iterative algorithm for the
penalized estimation

It is noted that the penalty terms in the objective function Lh,λ(A,B) are not differentiable in the
origin, which makes the common derivative-based algorithm unusable for obtaining the solutions
of Lh,λ(A,B). However, as done in many papers (see, [11,15,17]), the local quadratic approximation
proposed by Fan and Li [16] can be used to locally approximate the penalty terms. In our cases, this
approximation shows, for each j = 1, 2, . . . , p, that

‖ac(j)‖ ≈ ‖â(m)c (j)‖ + ‖ac(j)‖2 − ‖â(m)c (j)‖2
2‖â(m)c (j)‖

;

‖bc(j)‖ ≈ ‖b̂(m)c (j)‖ + ‖bc(j)‖2 − ‖b̂(m)c (j)‖2
2‖b̂(m)c (j)‖

,

(20)

where â(m)c (j) and b̂
(m)
c (j) are two known vectors with their norms being close to those of ac(j) and

bc(j), respectively. In what follows, an iterative algorithm will be derived to compute the estimates of
ac(j) and bc(j), in which â(m)c (j) and b̂

(m)
c (j) are set to be the latest estimates of ac(j) and bc(j).

3.1.3. An iterative algorithm for solving the objective function and identification of the types of
the coefficients

With the quadratic approximation of the penalty terms in Equation (20), the objective function in
Equation (17) can be approximated by

Lh,λ(A,B) ≈
n∑

k=1

Lh(uk, vk)+ 2λ

⎛
⎝ p∑

j=1

w1j‖ac(j)‖2
‖â(m)c (j)‖

+
p∑

j=1

w2j‖bc(j)‖2

‖b̂(m)c (j)‖

⎞
⎠+ c(m), (21)

where c(m) = −λ(∑p
j=1 w1j‖â(m)c (j)‖ +∑p

j=1 w2j‖b̂(m)c (j)‖) is irrelevant to the elements ofA and B.
From Equations (4) and (14), we obtain that

p∑
j=1

w1j

‖â(m)c (j)‖
‖ac(j)‖2 =

p∑
j=1

w1j

‖â(m)c (j)‖

[ n∑
k=1

β2j (uk, vk)

]

=
n∑

k=1

⎡
⎣ p∑

j=1

w1j

‖â(m)c (j)‖
β2j (uk, vk)

⎤
⎦ =

n∑
k=1

aTr (k)D
(m)
1 ar(k), (22)

where

D(m)1 = Diag

(
w11

‖â(m)c (1)‖
,

w12

‖â(m)c (2)‖
, . . . ,

w1p

‖â(m)c (p)‖

)
. (23)

Similarly, we have
p∑

j=1

w2j

‖b̂(m)c (j)‖
‖bc(j)‖2 =

n∑
k=1

bTr (k)D
(m)
2 br(k)+

n∑
k=1

bTr (n + k)D(m)2 br(n + k), (24)
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where

D(m)2 = Diag

(
w21

‖b̂(m)c (1)‖
,

w22

‖b̂(m)c (2)‖
, . . . ,

w2p

‖b̂(m)c (p)‖

)
. (25)

Therefore, the objective function Lh,λ(A,B) is of the form

Lh,λ(A,B) =
n∑

k=1

Lh(uk, vk)+ λ

n∑
k=1

[aTr (k)D
(m)
1 ar(k)+ bTr (k)D

(m)
2 br(k)

+ bTr (n + k)D(m)2 br(n + k)] + c(m). (26)

Substituting Lh(uk, vk) in Equation (5) into the expression of Lh,λ(A,B) and with the similar
operation for deriving Equation (7), we obtain the following formula for iteratively computing the
penalized estimates of ar(k), br(k) and br(n + k) as

[[â(m)r (k)]T, [b̂
(m)
r (k)]T, [b̂r(n + k)]T]T

=

⎛
⎜⎜⎜⎝
XTW(0,0)

h (k)X + λD(m)1 XTW(1,0)
h (k)X XTW(0,1)

h (k)X

XTW(1,0)
h (k)X XTW(2,0)

h (k)X + λD(m)2 XTW(1,1)
h (k)X

XTW(0,1)
h (k)X XTW(1,1)

h (k)X XTW(0,2)
h (k)X + λD(m)2

⎞
⎟⎟⎟⎠

−1

·

⎛
⎜⎜⎜⎝
XTW(0,0)

h (k)

XTW(1,0)
h (k)

XTW(0,1)
h (k)

⎞
⎟⎟⎟⎠ y, (27)

whereW(γ ,ψ)
h (k) (γ ,ψ = 0, 1, 2) are shown in Equation (8), andD(m)1 andD(m)2 are defined in Equa-

tions (23) and (25). In the above iterative algorithm, only D(m)1 and D(m)2 should be updated in each
iteration. Once the bandwidth h, the penalization parameter λ and the initial values of A and B (or
ar(k), br(k) and br(n + k) for k = 1, 2, . . . , n) are specified. Then penalized estimates of ar(k), br(k)
and br(n + k) for k = 1, 2, . . . , n, and therefore those of A and B can be obtained by performing the
iterations until convergence. Let Â

(m)
and B̂

(m)
be the estimates of A and B in the mth iteration, the

convergence criterion here is defined by∥∥∥∥∥
(
Â(m)

B̂(m)

)
−
(
Â
(m+1)

B̂(m+1)

)∥∥∥∥∥
F

< τ , (28)

where ‖ · ‖F indicates the Frobenius norm of a matrix which is equal to the squared root of sum of
squares of all the elements of the matrix, and τ is a pre-specified threshold value. When the conver-
gence criterion is reached, we take Â(m) and B̂(m) as the final estimates of A and B, which we denote
in what follows as Âh,λ and B̂h,λ, respectively. Consequently, the final estimates of ac(j) and bc(j) for
j = 1, 2, . . . , p are obtained, which we denote by âc(j) and b̂c(j) (j = 1, 2, . . . , p) hereafter.

Theoretically, if the coefficient βj(u, v) is zero, both the estimates âc(j) and b̂c(j) should be shrunk
exactly to zero; if it is a nonzero constant, only b̂c(j) is shrunk exactly to zero. However, with the local
quadratic approximation of the objective function Lh,λ(A,B) and the iterative algorithm, âc(j) and
b̂c(j)may not be exactly zero when the convergence criterion in Equation (28) is reached. As done in
the literature on structure identification and variable selection of varying coefficient models (see, e.g.
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[13,15,17]), a small threshold δ > 0 should be designated to judge whether âc(j) and b̂c(j) have been
shrunk to zero. Specifically, for 1 ≤ j ≤ p, let

âc(j) = [β̂j(u1, v1), β̂j(u2, v2), . . . , β̂j(un, vn)]T, (29)

b̂c(j) = [β̂(u)j (u1, v1), . . . , β̂
(u)
j (un, vn), β̂

(v)
j (u1, v1), . . . , β̂

(v)
j (un, vn)]T. (30)

Given each j = 1, 2, . . . , p, if |β̂j(ui, vi)| < δ for all i = 1, 2, . . . , n, we set âc(j) = 0; if
|β̂(u)j (ui, vi)| < δ and |β̂(v)j (ui, vi)| < δ for all i = 1, 2, . . . , n, we set b̂c(j) = 0. With this reset esti-
mates of ac(j) and bc(j), the corresponding coefficient βj(u, v) is identified to be zero, nonzero
constant or spatially varying in the following way:

(1) If both âc(j) = 0 and b̂c(j) = 0, then βj(u, v) = 0;
(2) if only b̂c(j) = 0, then βj(u, v) = βj, where βj is a nonzero constant;
(3) if otherwise, βj(u, v) is identified to be spatially varying.

3.1.4. Selection of the bandwidth h, the initial estimates of A and B, and the penalization
parameter λ

In order to implement the aforementioned algorithm, the sizes of the bandwidth h and the penal-
ization parameter λ should be properly selected and initial estimates A and B have to be designated.
Ideally, the optimal sizes of h and λ should be simultaneously selected by some data-driven criterion.
However, to do so is very computationally expensive. Following the way in Wang and Xia [11], Hu
andXia [14], andMa and Zhang [17], we separately select the optimal sizes of h and λ in the following
way.

The optimal size of the bandwidth h is taken to be ho which is selected by the CV procedure in
Equation (12). The aforementioned matrices Â(0) and B̂(0) resulted from the local-linear estimates of
âr(k), b̂r(k) and b̂r(n + k) (k = 1, 2, . . . , n) are set to be the initial estimates of A and B for running
the iterative algorithm in Equation (26).

For the penalization parameter λ, its optimal size is chosen by the BIC-type criterion proposed by
Hu and Xia [14]. Specifically, given λ > 0 and the selected bandwidth ho, run the iterative algorithm
inEquation (26) and yields the estimates Âho,λ and B̂ho,λ ofA andBwithwhich the varying coefficients
in the model is identified by the criterion described in the end of the last subsection. Let dfho,λ be the
number of the varying coefficients and

RSSho,λ =
n∑

k=1

n∑
i=1

{yi − xi[âr(k)+ b̂r(k)(ui − uk)+ b̂r(n + k)(vi − vk)]}2Kho(dki), (31)

be the residual sum of squares computed by Âho,λ and B̂ho,λ, where each row of Âho,λ and B̂ho,λ is still
denoted by âr(k), b̂r(k) and b̂r(n + k) for notational simplicity. According to Hu and Xia [14], define
the BIC-type criterion

BIC(λ) = log
(

1
n2

RSSho,λ
)

+ dfλ
log(nh)
nh

+ (p − dfλ)
log n
n

. (32)

The optimal size λo of the penalization parameter is selected by

λo = argmin
λ>0

BIC(λ). (33)



2058 W. WANG AND D. LI

3.2. Implementation steps of the GWGlassomethod

In order to facilitate the implementation of the GWGlasso method on computers, we summarize the
basic steps in what follows.

Input: Spatial data set {yi; xi1, . . . , xip; (ui, vi)}ni=1; the values of τ and δ; and the candidate sets of
the bandwidth h and penalization parameter λwhich are denoted byH = {hm}Mm=1 and	 = {λl}Ll=1,
respectively.

Output: The index sets of the varying coefficients, nonzero constant coefficients and zero coeffi-
cients which are denoted byAV ,AC andAZ , respectively.

Step 1: Compute the initial matrices Â(0) and B̂(0) of A and B as well as the weights {w1j,w2j}pj=1.

Step 1.1: Given each hm ∈ H, compute the estimates â(0)r (k), b̂
(0)
r (k) and â(0)r (n + k) of a(0)r (k),

b(0)r (k) and a(0)r (n + k) according to Equation (7) for k = 1, 2, . . . , n; then compute CV(hm) by
Equation (11);

Step 1.2: Select ho = argmin1≤m≤M CV(hm) and the estimates â(0)r (k), b̂
(0)
r (k) and â(0)r (n + k)

(k = 1, 2, . . . , n) corresponding to the bandwidth size ho obtained in Step 1.1; and then formulate
Â(0) and B̂(0) according to Equations (13) and (15) as well as the weights {w1j,w2j}pj=1 according to
Equation (19).

Step 2: Select the optimal size λo and corresponding estimates Âho,λo and B̂ho,λo of A and B.
Step 2.1: For each λl ∈ 	 and with Â(0), B̂(0) and {w1j,w2j}pj=1 obtained in Step 1, run the iterative

formula in Equation (27) for each k = 1, 2, . . . , n until the convergence criterion in Equation (28) is
met and consequently obtain the estimates Âho,λl and B̂ho,λl ; then determine dfho,λl according to the
identification criterion described in the end of Section 3.1.3 and compute BIC(λl) by Equation (32).

Step 2.2: Select λo = argmin1≤l≤L BIC(λl) and output the corresponding estimates Âho,λl and
B̂ho,λl in Step 2.1.

Step 3: Reset each column of Âho,λl and B̂ho,λl according to the identification criterion in the end
of Section 3.1.3 on which final results are obtained by

AZ = {j : the jth column of both Âho,λo and B̂ho,λo is reset to be a zero vector};
AC = {j : the jth column of only B̂ho,λo is reset to be a zero vector};
AV = {j : j /∈ AZ or j /∈ AC}.

Remark: In general, the GWGlasso method leads to a mixed GWR model when the irrelevant
explanatory variables (if any) are removed. With the above notations, the mixed GWR model is of
the form

yi =
∑
j∈AV

βj(ui, vi)xij +
∑
j∈AC

βjxij + εi, i = 1, 2, . . . , n. (34)

TheGWGlassomethod can also yield the shrunk estimates of the spatially varying coefficients and
the nonzero constant coefficients. Specially, denote

Âho,λo = [âc(1), âc(2), . . . âc(p)], (35)

with âc(j) = [β̂j(u1, v1), β̂j(u2, v2), . . . , β̂j(un, vn)]T for j = 1, 2, . . . , p.
(i) If j ∈ AV , then the elements in âc(j) are the shrunk estimates of βj(u, v) at the n designed

locations.
(ii) If j ∈ AC, the nonzero constant coefficient βj can be estimated by averaging the shrunk

estimates {β̂j(ui, vi)}ni=1 over the n locations. That is, βj = (1/n)
∑n

i=1{β̂j(ui, vi)}ni=1.
As well known, shrinkage estimation methodologies can well deal with the impact of collinear-

ity among the explanatory variables. Therefore, if the collinearity is diagnosed to be serious, the
GWGlasso method can simultaneously yield better estimates for both spatially varying coefficients
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and nonzero constant coefficients. However, a recent paper by Fotheringham and Oshan [21] have
empirically demonstrated that the GWR method is not more seriously influenced by collinearity
among the explanatory variables except in the extreme circumstances and the collinearity in a GWR
model should be treated the same as in any regression framework. Therefore, when the collinearity is
thought to be not so serious, the two-steps estimation method in Fotheringham et al. [2, Chapter 3]
would better be used to calibrate the mixed GWRmodel because extra bias will be introduced to the
shrunk estimates of the coefficients in order to lower their variance.

4. Simulation study

In this section, the simulation study is to show that the GWGlasso method is a better computational
procedure than the residual-based bootstrap test of Mei et al. [9]. Concerning the bootstrap test, Mei
et al. [9] have proposed two types of the residual-based bootstrap tests. The first bootstrap test is to
detect the constant coefficients in a GWR model. Furthermore, the second bootstrap test is devel-
oped for judging whether some of constant coefficients are zero in a mixed GWR model. Therefore,
we implement these two types of the bootstrap tests for the purpose of identifying zero, nonzero con-
stant and varying coefficients in a GWR model, and denote the first and second bootstrap test by T1
andT2 respectively. Comparedwith the bootstrap tests, the GWGlassomethod is a shrinkagemethod
and able to achieve the purpose of identifying zero, nonzero constant and varying coefficients simul-
taneously. Therefore, we conduct the simulation study to assess the performance of the GWGlasso
method in Section 4.2. Under the same design of experiment, the simulation results of the two type
of the bootstrap tests are reported in Section 4.3. Furthermore, the deficiency and benefit of the above
two methods are analysed and discussed in Section 4.4.

4.1. Design of the experiment

(i) The spatial layout. The spatial region for the experiment is taken to be a unit square. A Carte-
sian coordinate system is built in such a way that its origin locates at the bottom-left corner of the
square and the two axes coincide with the mutually orthogonal two sides of the square. The sampling
locations arem × m lattice points with their coordinates under the Cartesian coordinate system being

(ui, vi) =
(

1
m − 1

mod
(
i − 1
m

)
,

1
m − 1

int
(
i − 1
m

))
, i = 1, . . . ,m2, (36)

where mod(a/b) and int(a/b) are the remainder and the integer part on a divided by b, respectively.
In the experiment, we takem= 21 which results in the sample size n = m2 = 441.

(ii) The models. The following three GWRmodels are considered in the experiment.

(I) : yi = 3(ui + vi)xi1 + (1 + v2i )xi2 + 1.5xi3 + αxi4 + 0xi5
+ 0xi6 + 0xi7 + 0xi8 + 0.5εi, (37)

(II) : yi = 3(ui + vi)xi1 + (1 + αv2i )xi2 + 1.5xi3 + 1xi4 + 2xi5
+ 0xi6 + 0xi7 + 0xi8 + 0.5εi, (38)

(III) : yi = exp(ui + vi)xi1 + 6u2i xi2 + 2α sin(2πvi)xi3 + 1.5xi4 + 1xi5
+ 2xi6 + 0xi7 + 0xi8 + 0.5εi, (39)

where for each i = 1, 2, . . . , n, xi1 = 1; (xi2, . . . , xi8)T are drawn from the multivariate normal distri-
bution N(0,�) with the covariance matrix � = (ρ|j−k|)2≤j, k≤8, and εi is independently drawn from
the standard normal distribution N(0, 1).
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In the models, the parameter α controls the variation degree of the coefficient. By designating
different values of α, we can evaluate the ability of the proposed GWGlasso method in solving three
types of structure identification problems: (I) selection of nonzero constant and zero coefficients;
(II) separation of varying and nonzero constant coefficients; (III) identification of varying and zero
coefficients. The degree of collinearity among the explanatory variables is reflected by the parameter
ρ in the covariance matrix which we use to assess the impact of the collinearity on the performance
of the GWGlasso method. In the experiment, α was set to be 0.5 and 1, respectively; ρ was taken to
be 0, 0.5, 0.9, respectively, indicating the cases that the explanatory variables are independent with
each other, moderately correlated and highly correlated.

(iii) The kernel function and candidate sets of the bandwidth h and penalization parameter λ.
Throughout the simulation, the Gaussian kernel K(t) = (1/

√
2π) exp(−t2/2) was used, the can-

didate sets of the bandwidth h and the penalization parameter λ were set to be H = {hm : hm =
0.05 + 0.05 × m}20m=1 and	 = {λl : λl = 0.2 × l}20l=1.

4.2. Simulation analysis of the GWGlassomethod

In each experimental setting, 200 replications were conducted. Tables 1–3 report the frequencies of
each coefficient identified to be spatially varying, nonzero constant or zero in the 200 replications.
Throughout the simulation, we set τ = 10−4 and δ = 10−2 be the stopping criterion and the judging
threshold, respectively.

From Table 1, it can be seen that for selecting the nonzero constant coefficients, the GWGlasso
method works well in every case, with high frequency, it can correctly separate the varying, nonzero
constant and zero coefficients. Since α is designed in model (I), the frequency of the GWGlasso
method in cases α = 1 is slightly higher than that of in cases α = 0.5, which indicates that the

Table 1. Frequencies of each coefficient identified to be spatially varying (V), nonzero constant (C) or zero (Z) in Model (I).

α = 0.5 α = 1

Coefficient V C Z V C Z

ρ = 0
β1(u, v) 200 0 0 200 0 0
β2(u, v) 200 0 0 200 0 0
β3 = 1.5 2 198 0 2 198 0
β4 = α 4 196 0 1 199 0
β5 = 0 2 0 198 0 3 197
β6 = 0 0 0 200 0 1 199
β7 = 0 0 2 198 0 1 199
β8 = 0 1 1 198 0 1 199

ρ = 0.5
β1(u, v) 200 0 0 200 0 0
β2(u, v) 200 0 0 200 0 0
β3 = 1.5 3 197 0 3 197 0
β4 = α 2 198 0 3 197 0
β5 = 0 0 0 200 1 3 196
β6 = 0 1 4 195 1 0 199
β7 = 0 0 3 197 0 2 198
β8 = 0 0 2 198 0 0 200

ρ = 0.9
β1(u, v) 200 0 0 200 0 0
β2(u, v) 195 5 0 186 14 0
β3 = 1.5 21 179 0 21 179 0
β4 = α 8 192 0 5 195 0
β5 = 0 5 3 192 1 2 197
β6 = 0 3 3 194 0 4 196
β7 = 0 0 1 199 1 2 197
β8 = 0 0 2 198 0 2 198

Note: The significance of bold values presents the frequencies of the underlying coefficient correctly identified into the final model.
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Table 2. Frequencies of each coefficient identified to be spatially varying (V), nonzero constant (C) or zero (Z) in Model (II).

α = 0.5 α = 1

Coefficient V C Z V C Z

ρ = 0
β1(u, v) 200 0 0 200 0 0
β2(u, v) 186 14 0 200 0 0
β3 = 1.5 3 197 0 2 198 0
β4 = 1 7 193 0 2 198 0
β5 = 2 4 196 0 2 198 0
β6 = 0 1 1 198 0 1 199
β7 = 0 0 2 198 0 0 200
β8 = 0 0 1 199 0 0 200

ρ = 0.5
β1(u, v) 200 0 0 200 0 0
β2(u, v) 178 22 0 200 0 0
β3 = 1.5 10 190 0 1 199 0
β4 = 1 9 191 0 2 198 0
β5 = 2 7 193 0 1 199 0
β6 = 0 1 1 198 1 2 197
β7 = 0 0 2 198 0 1 199
β8 = 0 0 2 198 1 0 199

ρ = 0.9
β1(u, v) 200 0 0 200 0 0
β2(u, v) 117 83 0 187 13 0
β3 = 1.5 38 162 0 18 182 0
β4 = 1 15 185 0 1 199 0
β5 = 2 5 195 0 4 196 0
β6 = 0 2 2 196 1 3 196
β7 = 0 1 1 198 0 1 199
β8 = 0 0 0 200 0 3 197

Note: The significance of bold values presents the frequencies of the underlying coefficient correctly identified into the final model.

proposed method is stable to separate the nonzero constant and zero coefficients. As one can see
from Table 2, the performance of the proposed method in cases α = 1 remarkably outperforms than
the cases α = 0.5, which indicates that the GWGlasso method is sensitive to separate varying and
nonzero constant coefficients and detect the changes in the amplitude of variation of the spatially
varying coefficients. Specially, for the separation results of β2(u, v) the separation of varying and
nonzero constant coefficients of the proposedmethod in casesα = 0.5 is getting gradually worse with
the increase of ρ. To investigate the performance of the GWGlasso method for identifying of varying
and zero coefficients, we have carried out the simulation inmodel (III). For Table 3, it can be observed
that the identification results β3(u, v) of the proposed method in cases α = 1 are better than that of
the cases α = 0.5, which suggests that the proposed method is sensitive to identify the coefficients
between varying and zero coefficients. Moreover, the proposed method is robust to the moderately
correlated collinearity among the explanatory variables even when the highly correlated cases. There-
fore, all the results reported in Tables 1–3 demonstrate the favourable performance of the proposed
method, especially, the ability for variable selection and structure identification in GWRmodels.

4.3. Simulation analysis of the residual-based bootstrap tests

In this subsection, we briefly describe the two types of the residual-based bootstrap tests proposed by
Mei et al. [9]. For T1, we focus on testing for constant coefficients in the GWRmodel

H0 : some coefficients in model (1) are constant

versus

H1 : all the coefficients in model (1) vary over the space
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Table 3. Frequencies of each coefficient identified to be spatially varying (V), nonzero constant (C) or zero (Z) in Model (III).

α = 0.5 α = 1

Coefficient V C Z V C Z

ρ = 0
β1(u, v) 192 8 0 192 8 0
β2(u, v) 171 2 27 169 1 30
β3(u, v) 102 12 86 141 3 56
β4 = 1.5 0 200 0 5 195 0
β5 = 1 0 200 0 2 198 0
β6 = 2 0 200 0 3 197 0
β7 = 0 0 0 200 8 0 192
β8 = 0 0 0 200 4 0 196

ρ = 0.5
β1(u, v) 195 5 0 193 7 0
β2(u, v) 170 1 29 169 5 26
β3(u, v) 98 4 98 145 6 49
β4 = 1.5 6 194 0 12 188 0
β5 = 1 4 196 0 5 193 2
β6 = 2 5 195 0 6 194 0
β7 = 0 9 0 191 9 0 191
β8 = 0 1 1 198 4 0 196

ρ = 0.9
β1(u, v) 196 4 0 190 10 0
β2(u, v) 164 5 31 162 7 31
β3(u, v) 104 5 91 160 7 33
β4 = 1.5 56 134 10 58 138 4
β5 = 1 48 121 31 63 116 21
β6 = 2 54 145 1 60 139 1
β7 = 0 52 0 148 53 0 147
β8 = 0 21 0 179 35 0 165

Note: The significance of bold values presents the frequencies of the underlying coefficient correctly identified into the final model.

and formulate a residual-based bootstrap test for the hypotheses. That is, T1 can be viewed as a struc-
ture identification procedure. And the detailed bootstrap procedure for calculating the p-value of the
test is given in Section 3.2 in Mei et al. [9].

For T2, we aim at detecting for zero coefficients in the mixed GWRmodel

H0 : some constant coefficients in the mixed GWRmodel are zero

versus

H1 : all the coefficients in the mixed GWRmodel are nonzero.

As an extension of T1, T2 is to test the hypothesis of one mixed GWR model against another
mixedGWRmodel. Therefore,T2 can be regarded as a variable selection procedure. Then, the related
computational strategy of the p-value can be obtained from Mei et al. [8] and the Section 3.3 in Mei
et al. [9].

Under the same experimental settings, 200 replications are conducted. For each replica-
tion, 1000 bootstrap samples are drawn to compute the p-value. Based on the spatial data set
{yi; xi1, . . . , xip; (ui, vi)}ni=1, the GWR model in Equation (1) is fitted according to the basic GWR
technique and the alternative model of the mixed GWR model is calibrated by the two-step esti-
mation in Fotheringham et al. [2]. As suggested by Mei et al. [9], the Gaussian kernel K(t) =
(1/

√
2π) exp(−t2/2) is used and the optimal bandwidth size is selected byAICc criterion throughout

the simulation of test.
For each of the experimental settings, the null and the alternative hypotheses of T1 and T2 are

known in advance, whereT1 andT2 are designed for testing the constant coefficients in GWRmodels
and the zero coefficients in mixed GWR models. All the cases of the experimental settings are listed
in Table 4. Under the null hypotheses of T1 and T2 for each of the experimental settings, we compute
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Table 4. The null and alternative hypothesis of the stagesT1 andT2 in theModels (I), (II) and
(III).

Model Stage H0 H1

(I) T1 βj(u, v) = βj , j = 3, 4, 5, 6, 7, 8. All coefficients vary over the space.
T2 βj(u, v) = βj , j = 3, 4, 5, 6, 7, 8 βj(u, v) = β , j = 3, 4, 5, 6, 7, 8.

and βj = 0, j = 5, 6, 7, 8.
(II) T1 βj(u, v) = βj , j = 3, 4, 5, 6, 7, 8. All coefficients vary over the space.

T2 βj(u, v) = βj , j = 3, 4, 5, 6, 7, 8 βj(u, v) = β , j = 3, 4, 5, 6, 7, 8.
and βj = 0, j = 6, 7, 8.

(III) T1 βj(u, v) = βj , j = 4, 5, 6, 7, 8. All coefficients vary over the space.
T2 βj(u, v) = βj , j = 4, 5, 6, 7, 8 βj(u, v) = β , j = 4, 5, 6, 7, 8.

and βj = 0, j = 7, 8.

Table 5. Rejection rates of N= 200 replications of the testing procedure under the signifi-
cance level of .05.

α = 1 α = 0.5

Model Stage ρ = 0 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.5 ρ = 0.9

(I) T1 0.000 0.015 0.020 0.040 0.015 0.020
T2 0.015 0.010 0.010 0.025 0.010 0.010

(II) T1 0.010 0.010 0.020 0.010 0.010 0.010
T2 0.030 0.005 0.020 0.010 0.005 0.020

(III) T1 0.000 0.015 0.000 0.010 0.015 0.005
T2 0.025 0.025 0.010 0.000 0.010 0.010

the rate of rejecting the null hypothesis among 200 replications at the significance level of .05. The
rejection rate is an estimator of the type I error of the test under the given setting and significance
level.

Then, the related rejection rate was calculated for both T1 and T2 and the results are reported in
Table 5. It can be observed from Table 5 that the bootstrap test performs well to detect the constant
coefficients in GWRmodels and identify the zero constant coefficients in mixed GWRmodels when
the null hypotheses and the alternative of T1 and T2 can be accurately known in advance. The rejec-
tion rates under the null hypothesis are reasonable smaller than the pre-specific significance level
in all of the experimental settings, indicating that the bootstrap test yields a small value of the type
I error. Additionally, although the collinearity among the variables may lead to spurious correlation
between theGWRestimator of the varying coefficients, which is discussed inMei et al. [9] and further
explored in Fotheringham and Oshan [21], it does not perform significant impact on the rejection
rates, which suggests that the bootstrap test is rather robust to do structure identification and variable
selection in the presence of the collinearity among the explanatory variables.

4.4. Comparison and discussion

In summary, the simulation study demonstrates that both the GWGlasso method and the residual-
based bootstrap tests performwell for structure identification and variable selection in GWRmodels.
As one of the important statistical inference method in GWR literature, the bootstrap tests are appli-
cable to the case that the expressions of the null hypotheses of T1 and T2 are provided necessarily for
the given data. In practice, however, there is generally not enough priori information for the analysts
to know that which coefficients should be chosen to be tested for zero, constant or varying. Intuitively,
all possible combinations of the coefficients should be considered and a series of the tests should be
performed, which is not an easy task especially when the number of the explanatory variables is large.
Although Mei et al. [9] (Section 3.3) have introduced a simplified algorithm of the bootstrap test to
compute the p-value of the test statistic for reducing the computational complexity, it still involves an
exhaustive search over 2p+1 candidate models to identify the varying, constant and zero coefficients
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consistently, which is quite demanding when p is large. Furthermore, how to create the selection cri-
terion and choose the best model among all possible candidate models is still necessary to be further
investigated. From a computational point of view, the GWGlasso method dominates the residual-
based bootstrap test of Mei et al. [9]. Interestingly, the bootstrap test is much more robust than the
GWGlasso method under the impact of the collinearity. Nevertheless, the GWGlasso method is the
primary shrinkage method to tackle the structure identification and variable selection problem in
GWRmodels, which has the notable improvement in computation and explanation.

5. Analysis of Dublin voter turnout data set

To further illustrate the usefulness of the GWGlasso algorithm, we apply the method to the Dublin
voter turnout data set, which has been analysed by Kavanagh et al. [22] and Gollini et al. [23], and
is publicly available in the R package called GWmodel. The data set includes the nine percentage
variables which measures the voter turnout in the Irish 2004 Dáil elections and eight characteristics
of social structures in 322 Electoral Divisions of Greater Dublin. Following Gollini et al. [23], we take
GEI (the proportion of the electorate who turned out on voting night to cast their vote in the 2004
General Election in Ireland) as the response variable, the geographical locations (u, v) as the index
variable, and the following variables as the explanatory variables:

• MDA: one year migrants, that is, moved to a different address one year ago;
• LAR: local authority renters;
• SCO: social class one;
• UEP: unemployed;
• LOE: without any formal educational;
• AGY: age group 18–24;
• AGM: age group 25–44;
• AGO: age group 45–64.

The eight explanatory variables reflect measures of migration, public housing, high social class,
unemployment, educational attainment and three adult age groups. As pointed out in Gollini et al.
[23], although the eight explanatory variables measured on the same scale, the variables are not
of a similar magnitude. Therefore, before applying our method, all the explanatory variables are
transformed so that their marginal distribution is approximately N(0, 1). Moreover, the normalized
procedure here is same to other variable selection methods, such as Wang and Xia [11]; Hu and Xia
[14] andMa and Zhang [17]. Using theDublin voter turnout data set, we consider the followingGWR
model

GEI = β0(u, v)+ β1(u, v)MDA + β2(u, v)LAR + β3(u, v)SCO

+ β4(u, v)UEP + β5(u, v)LOE + β6(u, v)AGY

+ β7(u, v)AGM + β8(u, v)AGO + ε. (40)

Based on the data set, the GWR model is calibrated by the local-linear estimation to capture the
spatial variations of coefficients estimates. Here, the Gaussian kernel is used and the bandwidth size
is selected by the cross-validation method without penalization defined by Equation (12). The opti-
mal bandwidth size of local-linear estimation for the above GWR model is ho = 0.78 of 10 km (A
scale may indicate that 1m equals 10 km), which is selected fromH = {hm : hm = 0.7 + 0.02m}20m=1.
Then the local-linear estimation is used to provide the initial coefficients estimates and the adap-
tive weights in the global loss function in Equation (21). Similar preliminary processing has been
extensively applied by many researchers, such as Wang and Xia [11]; Hu and Xia [14] and Ma and
Zhang [17].
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By the judging threshold defined in Section 3.1.3, it is evident that the judging threshold δ is vital in
determining whether the coefficient estimates is zero, nonzero constant or varying over space. There-
fore, it is necessary to investigate several levels of the judging thresholds in analysing the structure
information in the aboveGWRmodel.With the stopping criterion τ = 10−4, we consider several lev-
els of the judging thresholds to be δ = 0.1, 0.05, 0.01, 0.005, 0.001. Then, the proposed algorithm is
implemented, the optimal penalized parameter is selected by the BIC criterion in Equation (32). Con-
cretely, we select the optimal penalized parameter from the following set	 = {λl : λl = 0.2 × l}20l=1.
Although the optimal penalization parameter selected from	may be a local minima, the role played
by the range of	 is rather limited, which can be verified by results of the simulation study. Then the
identification results are listed in Table 6.

In can be obtained from Table 6 that the large size δ leads to identify more zero coefficients,
whereas the small value δ tends to choose more varying coefficients. Nevertheless, the identifica-
tion results of δ = 0.01 are likely to be persuasiveness. The resulting GWGlasso estimation with the
threshold δ = 0.01 suggests that INT, MDA, LAR, SCO, UEP, AGY, AGM and AGO are all relevant
variables, whereas LOE is not. Furthermore, they all suggest that the coefficient functions of INT,
MDA, LAR, SCO, UEP, LOE, AGM and AGO are spatially varying coefficients, and the coefficient of
AGY is constant. By deleting the irrelevant variable and reordering the spatially varying coefficients
and the constant coefficients, we obtained a mixed GWRmodel for Dublin voter turnout data

GEI = β0(u, v)+ β1(u, v)MDA + β2(u, v)LAR + β3(u, v)SCO

+ β4(u, v)UEP + β5(u, v)AGM + β6(u, v)AGO + β7AGY + ε. (41)

The Dublin voter turnout data set has been analysed for fitting GWR model and addressing the
local collinearity problem in Gollini et al. [23, Section 7, 24–36]. For the local collinearity issues,
penalized regression methods (such as geographically weighted ridge regression model [24] the geo-
graphically weighted lasso [4]) have been proposed to shrink regression coefficients to alleviate the
effect of collinearity. As a penalized method, GWGlasso also has the ability to shrink the spatially
varying coefficients to zero. To illustrate the shrinkage effect of GWGlasso, we present a comparison
of all the coefficients estimates between the local-linear estimation and the GWGlasso estimation for
the GWRmodel in (40). Moreover, the boxplots of the coefficients estimates of all the variables based
on the unpenalized local-linear estimation and the GWGlasso estimation are illustrated in Figure 1.
The constant coefficient estimates of AGY is −0.9750. Figure 1 shows that the GWGlasso method
has a shrinkage effect on the coefficient estimates. Furthermore, the GWGlasso method shrinks the
coefficient estimation of LOE to zero and identifies the coefficient estimation of AGY to be constant.
It can also shrink the varying coefficients estimation to be a small scope.

To verify whether the coefficients are varying or not, we can provide some evidences from Table 6
and Figure 1. If the judging threshold is set to be large values δ = 0.1, 0.05,MDA, LAR, LOE andAGY
are irrelevant variables demonstrated in Table 6, which can be verified that the median of the coeffi-
cients estimates of these variables are much smaller than that of the other variables in Figure 1.When
the judging threshold is set to be the value δ = 0.01, 0.005, INT, MDA, LAR, SCO, UEP, AGY, AGM

Table 6. The structure identification and variable selection results with the GWRmodel
of the Dublin voter turnout data.

δ INT MDA LAR SCO UEP LOE AGY AGM AGO

0.1 V Z Z V C Z Z V V
0.05 V Z Z V C Z Z V V
0.01 V V V V V Z C V V
0.005 V V V V V Z C V V
0.001 V V V V V V C V V

Note: The coefficient of explanatory variable identified to be spatially varying (V),
nonzero constant (C) or zero (Z). INT is the intercept.
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Figure 1. The boxplots of the spatially varying coefficients estimation based on the local-linear estimation and the GWGlasso
estimation. The boxplots of intercept are illustrated left, and the boxplots of the coefficients of all the variables are depicted right.

and AGO are relevant explanatory variables. Figure 1 depicts that the medians of coefficients estima-
tion of LOE is likely to be zero and the scope of LOE and AGY are relative small compared with that
of other variables. It can be obtained from case δ = 0.001 in Table 6, all the explanatory variables are
relevant to the response and onlyAGYhas constant effect, which indicates that the coefficients estima-
tions of all the variables are likely to be spatially varying coefficients when the judging threshold is set
to be small. These findings corroborate the identification results of the GWGlasso method very well.

In addition, to further understand the impact of the choice of the different kernels on the identi-
fication results, we have conducted the GWGlasso method with other kernels for the Dublin voter
turnout data analysis. Among various kernels, the Bi-square kernel K(t) = [(1 − t2)+]2 and the
Epanechnikov kernelK(t) = 0.75(1 − t2)+ are frequently used in application. Respectively, the opti-
mal bandwidth sizes of the local-linear estimation for the GWR model (40) with the Bi-square
kernel and the Epanechnikov kernel are ho = 9 and ho = 12 of 10 km, which are selected from
H = {hm : hm = 5 + 0.5m}20m=1 by the CV criterion. With the stopping criterion τ = 10−4, several
levels of the judging thresholds are set to be δ = 1, 0.5, 0.1, 0.05, 0.01. For both the Bi-square kernel
and the Epanechnikov kernel, the resulting GWGlasso estimation with these two kernels are similar.
And the identification results of δ = 0.5 are likely to be reasonable, which both suggest that the coeffi-
cient functions of INT,MDA, LAR, SCO,UEP, LOE, AGMandAGOare spatially varying coefficients,
and the coefficients of LOE and AGY are zero constant.

Compared with the coefficient of AGY identified to be nonzero constant for the Gaussian ker-
nel, the trivial difference of the resulting GWGlasso estimation with the Bi-square kernel and the
Epanechnikov kernel is that the coefficient of AGY identified with these kernels is zero. Furthermore,
although the different kernels may lead to the differences among the local-linear GWR estimators
of varying coefficients with the different optimal bandwidth sizes, it does not bring about obvious
influence on the identification results, which indicates that the GWGlasso method is rather robust
to the choice of different kernels. Notice that the optimal judging threshold δ is intimate with the
kernel function and should be selected carefully. Because of the limited space, the detailed results are
omitted here, but those identification results are attached as a supplementary material. In summary,
the Dublin voter turnout data analysis further confirms that the GWGlasso method is a promising
shrinkage method for structure identification and variable selection in GWRmodels.

http://dx.doi.org/10.1080/00949655.2017.1311896
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6. Conclusions

Variable selection and structure identification of the GWR model is important for exploring spatial
non-stationarity in geo-referenced data analysis. As a local fitting technique, however, the GWR esti-
mator of each coefficient varies with the local location regardless of whether the hidden coefficient
is zero, nonzero constants or varies over the space. Therefore, identifying the spatially coefficients in
a GWR model is vital to validly explain spatially non-stationarity of the regression relationship. To
achieve the goal, we propose the GWGlasso algorithm to identify zero, nonzero constant or varying
coefficients in a GWR model. Numerical experiments and real data analysis indicated that the pro-
posed method is very effective. Moreover, GWGlasso provides a useful way of building a possible
mixed GWRmodel for a geo-referenced data set. Finally, the R code of the GWGlasso algorithm and
the residual-based bootstrap tests used in Sections 4 and 5 is provided in the supplemental material.

To conclude the paper, we would like to discuss some possible topics for future study. Firstly, our
proposal is based on the group lasso method due to its simplicity. Similar ideas can be extend to other
useful shrinkagemethods, such as the group SCADmethod, the groupMCPmethod and other group
selection methods [25]. Secondly, it will it can profitably to explore the proposed method in gener-
alized GWR models such as the geographically weighted Poisson regression [26], the geographically
weighted logistic regression [27] and so on. Furthermore, how to do variable selection and structure
identification for generalized GWRmodel is an interesting topic for future research.
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