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Abstract

In this supplementary material, we provide more calculation details on the deduc-
tion of the variational lower bound, and demonstrate more experimental results in
blind image denoising.

1 Calculation Details on the Variational Lower Bound

1.1 Model Formation

Let’s denote y € R¢ as the observed noisy image and z € R? the latent clean image, and 4 and z
satisfy the following decomposition, i.e.,

y=z+e, (D

where e is the noise term. Different from most of the traditional methods, we assumed the noise is
distributed as non-i.i.d. Gaussian distribution, i.e.,

2
ei ~ N(e;]0,07), ()
where N (-0, o2) represents the zero-mean Gaussian distribution with variance o2,

The simulated clean image « evidently provides a strong prior to the latent variable z. Accordingly
we impose the following conjugate Gaussian prior on 2:

Z7NN(ZT|I7563)7Z:1727 7d7 (3)
where ¢ is a hyper-parameter and can be easily set as a small value.
Besides, for 02 = {07,053, -, 02}, we also introduce a rational conjugate prior as follows:
2 2¢
U?NIG(U'?Z;_17p2§l>7i:152>"'7d5 (4)

where IG(+|«, /) is the inverse gamma distribution with parameter « and 8, € = G ((g} — )% p)
represents the filtering output of the variance map (¢ — #)2 by a Gaussian filter with p x p window,

Y, T € R are the matrix (image) forms of y, © € R4, respectively. Note that the mode of above
IG distribution is &;, which is a rational approximate evaluation of o2 under p x p window.

Combining Eqs (I)-(), a full Bayesian model for the problem can be obtained. The goal then turns
to construct a variational strategy to infer the posterior of latent variables z and o2 from noisy image

y,ie., p(z,o%|y).
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1.2 Variational Lower Bound

Instead of calculating the posteriori p(z, o2|y) directly, we introduced another distribution ¢(z, o?|y)
to approximate it. Based on such approximate distribution, we can decompose the marginal likelihood
of y as follows:

logp(y|z,a'2) = /q(z,a'2|y) logp(y|z,0'2) dzdo?

2 rp(ylz, 0°)p(z)p(a?) 2
= /q(z,o ly) log | 2z, 0%y) }dzda
— | atn. 02l 1op [PWIZ 0P2)P(0?) | a(z,0%Y) 1] o
= [z ttytos [MET TERE BT a=a
— | aln 02 1og [PEIZ0PP()] (o
= [tz oty tog [PEEZLZR ) 4z
+ [ alz.o?lu) o [ZEZ;:ZH dzdo?

= Eq(z,az\y) [Ing(y|Z> 0'2)])(2)])(0'2) - 10g Q(z7 0-2|y)]
+Dkr(a(z,0%[y)|lp(z.0%). ()

The secode term is a KL divergence of the approximation ¢(z, o2 |y) to the true posteriori p(z, o%|y),
which is non-negative, and thus the first term constitutes a variational lower bound on the marginal
likelihood of p(y|z, o?), i.e.,

logp(ylz,0%) > L(z, 0% y)
= Eq(z,O'Q\y) [Ing(y|z7 0_2)p(z)p(0_2) - log Q(za U2|y)]' (6)

Similar to the traditional mean-field variation methods, we assumed the independence between
variable z and o2, i.e.,

a(z,0%ly) = q(zly)a(®|y). ()

Based on the conjugate priors in Eq. [3]and[4] it is natural to formulate variational posterior forms of
z and o2 as follows:

d d
q(zly) = HN(Zilm(y;WD),mf(y; Wp)), a(a?|y) = HIG(01'2|0li(y§WS)»Bi(?J?WS))a (8)

where p1;(y; Wp) and m?(y; Wp)) are designed as the prediction functions for getting posterior
parameters of latent variable z directly from y. The function is represented as a network, called
denoising network or D-Net, with parameters Wp. Similarly, «;(y; Ws) and f;(y; Ws)) denote
the prediction functions for evaluating posterior parameters of o2 from y, where W represents the
parameters of a network, called Sigma network or S-Net, for predicting them. Our aim is then to
optimize these two network parameters Wp and W so as to get the explicit functions for predicting
clean image variable z as well as noise knowledge o2 from any test noisy image y. A rational
objective function with respect to Wp and W is thus necessary for using gradient decent strategies
to train both networks.

For notation convenience, we simply write 12;(y; Wp), m?(y; Wp)), a;(y; W), Bi(y; Ws)) as pi,
m?, «;, B; in the following calculations.

Combining Egs (6), (7) and Eq (8), the lower bound can be rewritten as:

L(z,0%y) = Eyz.021y) [logp(ylz, 0%)] — D1 (a(21y)l|p(2)) — Dxcr (a(a®|y)llp(e?)) . 9)



45 Next we calculated the three terms in Eq (9) one by one as follows:

Eq(z,0'2|y) [Ing(y|zao'2)] = /q(z,0'2|y) logp(y|z,0'2) dZdGQ

n
:Z/Q(zi70?|y)Ing(yi|ziaa'i2)dzidUi2

3

1 1
= Z { — §1og 27 — 5 /q(aﬂy) log o7 daf/q(zi\y) dz;
i

‘%/ (zily) (9 = 20)° dzi/qw?'y);?da?}

- _1 _} 2 _1 .02 i
{ g low2m — 5 B [log o] = 5 [(u: ZMEL?]}

i 1 1 i — 2§ 2
=3 [atztwato?ln)] - glog2n - Sloso? — U 4z ao

3

{—ilog%—;aogﬁi—w(ai))— O (s — pe)? +m}},

283;
(10)
46
Dkr(q(zly)|lp(z ZDKL (zil i, m3)||p(zil w1, €5))
—x;) 2 1 22 m2
- 2R T PO R 1
Z{ mtalE e
47
2 2
P P&
Dir(q(a®|y)l|p(e ZDKL IG(o |ai7ﬁi)|\IG(U¢2|§—1a ) )

2

- Z {(ai - % +1)9(a;) + [logf (p - 1) — log F(ai)]

2 2¢. 2¢.
n <]92—1) <log6i—logp2€l> + oy (1;5 —1> } (12)

48 Where 1(-) denotes the digamma function, E[] represents exception with some stoachastic variables
49 that had been neglected for notation clearity.

50 We can then easily get the expected objective function (i.e., a negtive lower bound of the marginal
51 likelihood on entire training set) for optimizing the network parameters of D-Net and S-Net as follows:
52

. . 2.,
Wrél}‘glvs j;ﬁ(z,a Y5 (13)
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