Supplementary Material of "Variational Denoising Network: Toward Blind Noise Modeling and Removal"

Anonymous Author(s)

Affiliation Address email

Abstract

In this supplementary material, we provide more calculation details on the deduction of the variational lower bound, and demonstrate more experimental results in blind image denoising.

4 1 Calculation Details on the Variational Lower Bound

5 1.1 Model Formation

Let's denote $y \in \mathbb{R}^d$ as the observed noisy image and $z \in \mathbb{R}^d$ the latent clean image, and y and z satisfy the following decomposition, i.e.,

$$y = z + e, (1)$$

- 8 where e is the noise term. Different from most of the traditional methods, we assumed the noise is
- 9 distributed as non-i.i.d. Gaussian distribution, i.e.,

$$e_i \sim \mathcal{N}(e_i|0,\sigma_i^2),$$
 (2)

- where $\mathcal{N}(\cdot|0,\sigma^2)$ represents the zero-mean Gaussian distribution with variance σ^2 .
- 11 The simulated clean image x evidently provides a strong prior to the latent variable z. Accordingly
- we impose the following conjugate Gaussian prior on z:

$$z_i \sim \mathcal{N}(z_i|x_i, \varepsilon_0^2), i = 1, 2, \cdots, d,$$
 (3)

- where ε_0 is a hyper-parameter and can be easily set as a small value.
- Besides, for $\sigma^2 = {\sigma_1^2, \sigma_2^2, \cdots, \sigma_d^2}$, we also introduce a rational conjugate prior as follows:

$$\sigma_i^2 \sim \text{IG}\left(\sigma_i^2 | \frac{p^2}{2} - 1, \frac{p^2 \xi_i}{2}\right), \ i = 1, 2, \cdots, d,$$
 (4)

- where $\mathrm{IG}(\cdot|\alpha,\beta)$ is the inverse gamma distribution with parameter α and $\beta, \xi = \mathcal{G}((\hat{y}-\hat{x})^2;p)$
- represents the filtering output of the variance map $(\hat{y} \hat{x})^2$ by a Gaussian filter with $p \times p$ window,
- 17 $\hat{y}, \hat{x} \in \mathbb{R}^{h \times w}$ are the matrix (image) forms of $y, x \in \mathbb{R}^d$, respectively. Note that the mode of above
- IG distribution is ξ_i , which is a rational approximate evaluation of σ_i^2 under $p \times p$ window.
- 19 Combining Eqs (1)-(4), a full Bayesian model for the problem can be obtained. The goal then turns
- to construct a variational strategy to infer the posterior of latent variables z and σ^2 from noisy image
- 21 y, i.e., $p(z, \sigma^2 | y)$.

2 1.2 Variational Lower Bound

Instead of calculating the posteriori $p(z, \sigma^2|y)$ directly, we introduced another distribution $q(z, \sigma^2|y)$ to approximate it. Based on such approximate distribution, we can decompose the marginal likelihood of y as follows:

$$\log p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^{2}) = \int q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y}) \log p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^{2}) d\boldsymbol{z} d\boldsymbol{\sigma}^{2}$$

$$= \int q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y}) \log \left[\frac{p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^{2})p(\boldsymbol{z})p(\boldsymbol{\sigma}^{2})}{p(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})} \right] d\boldsymbol{z} d\boldsymbol{\sigma}^{2}$$

$$= \int q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y}) \log \left[\frac{p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^{2})p(\boldsymbol{z})p(\boldsymbol{\sigma}^{2})}{q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})} + \frac{q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})}{p(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})} \right] d\boldsymbol{z} d\boldsymbol{\sigma}^{2}$$

$$= \int q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y}) \log \left[\frac{p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^{2})p(\boldsymbol{z})p(\boldsymbol{\sigma}^{2})}{q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})} \right] d\boldsymbol{z} d\boldsymbol{\sigma}^{2}$$

$$+ \int q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y}) \log \left[\frac{q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})}{p(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})} \right] d\boldsymbol{z} d\boldsymbol{\sigma}^{2}$$

$$= E_{q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})} \left[\log p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^{2})p(\boldsymbol{z})p(\boldsymbol{\sigma}^{2}) - \log q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y}) \right]$$

$$+ D_{KL}(q(\boldsymbol{z}, \boldsymbol{\sigma}^{2}|\boldsymbol{y})||p(\boldsymbol{z}, \boldsymbol{\sigma}^{2})). \tag{5}$$

The secode term is a KL divergence of the approximation $q(z, \sigma^2|y)$ to the true posteriori $p(z, \sigma^2|y)$, which is non-negative, and thus the first term constitutes a *variational lower bound* on the marginal likelihood of $p(y|z, \sigma^2)$, i.e.,

$$\log p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^2) \ge \mathcal{L}(\boldsymbol{z}, \boldsymbol{\sigma}^2; \boldsymbol{y})$$

$$= E_{q(\boldsymbol{z}, \boldsymbol{\sigma}^2|\boldsymbol{y})} \left[\log p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{\sigma}^2) p(\boldsymbol{z}) p(\boldsymbol{\sigma}^2) - \log q(\boldsymbol{z}, \boldsymbol{\sigma}^2|\boldsymbol{y}) \right]. \tag{6}$$

Similar to the traditional mean-field variation methods, we assumed the independence between variable z and σ^2 , i.e.,

$$q(\boldsymbol{z}, \boldsymbol{\sigma}^2 | \boldsymbol{y}) = q(\boldsymbol{z} | \boldsymbol{y}) q(\boldsymbol{\sigma}^2 | \boldsymbol{y}). \tag{7}$$

Based on the conjugate priors in Eq. 3 and 4, it is natural to formulate variational posterior forms of z and σ^2 as follows:

$$q(\boldsymbol{z}|\boldsymbol{y}) = \prod_{i}^{d} \mathcal{N}(z_{i}|\mu_{i}(\boldsymbol{y};W_{D}), m_{i}^{2}(\boldsymbol{y};W_{D})), \ q(\boldsymbol{\sigma}^{2}|\boldsymbol{y}) = \prod_{i}^{d} IG(\sigma_{i}^{2}|\alpha_{i}(\boldsymbol{y};W_{S}), \beta_{i}(\boldsymbol{y};W_{S})), \ (8)$$

where $\mu_i(\mathbf{y}; W_D)$ and $m_i^2(\mathbf{y}; W_D)$ are designed as the prediction functions for getting posterior 33 parameters of latent variable z directly from y. The function is represented as a network, called denoising network or *D-Net*, with parameters W_D . Similarly, $\alpha_i(\mathbf{y}; W_S)$ and $\beta_i(\mathbf{y}; W_S)$) denote the prediction functions for evaluating posterior parameters of σ^2 from y, where W_S represents the 36 parameters of a network, called Sigma network or S-Net, for predicting them. Our aim is then to 37 optimize these two network parameters W_D and W_S so as to get the explicit functions for predicting 38 clean image variable z as well as noise knowledge σ^2 from any test noisy image y. A rational 39 objective function with respect to W_D and W_S is thus necessary for using gradient decent strategies 40 to train both networks. 41

For notation convenience, we simply write $\mu_i(\boldsymbol{y}; W_D)$, $m_i^2(\boldsymbol{y}; W_D)$, $\alpha_i(\boldsymbol{y}; W_S)$, $\beta_i(\boldsymbol{y}; W_S)$) as μ_i , m_i^2 , α_i , β_i in the following calculations.

44 Combining Eqs (6), (7) and Eq (8), the lower bound can be rewritten as:

$$\mathcal{L}(\boldsymbol{z}, \boldsymbol{\sigma}^2; \boldsymbol{y}) = E_{q(\boldsymbol{z}, \boldsymbol{\sigma}^2 | \boldsymbol{y})} \left[\log p(\boldsymbol{y} | \boldsymbol{z}, \boldsymbol{\sigma}^2) \right] - D_{KL} \left(q(\boldsymbol{z} | \boldsymbol{y}) | | p(\boldsymbol{z}) \right) - D_{KL} \left(q(\boldsymbol{\sigma}^2 | \boldsymbol{y}) | | p(\boldsymbol{\sigma}^2) \right), (9)$$

Next we calculated the three terms in Eq (9) one by one as follows:

$$E_{q(\boldsymbol{z},\boldsymbol{\sigma}^{2}|\boldsymbol{y})}\left[\log p(\boldsymbol{y}|\boldsymbol{z},\boldsymbol{\sigma}^{2})\right] = \int q(\boldsymbol{z},\boldsymbol{\sigma}^{2}|\boldsymbol{y})\log p(\boldsymbol{y}|\boldsymbol{z},\boldsymbol{\sigma}^{2})\,\mathrm{d}\boldsymbol{z}\,\mathrm{d}\boldsymbol{\sigma}^{2}$$

$$= \sum_{i}^{n} \int q(z_{i},\sigma_{i}^{2}|\boldsymbol{y})\log p(y_{i}|z_{i},\sigma_{i}^{2})\,\mathrm{d}z_{i}\,\mathrm{d}\sigma_{i}^{2}$$

$$= \sum_{i}^{n} \int q(z_{i}|\boldsymbol{y})q(\sigma_{i}^{2}|\boldsymbol{y})\left\{-\frac{1}{2}\log 2\pi - \frac{1}{2}\log \sigma_{i}^{2} - \frac{(y_{i}-z_{i})^{2}}{2\sigma_{i}^{2}}\right\}\,\mathrm{d}z_{i}\,\mathrm{d}\sigma_{i}^{2}$$

$$= \sum_{i} \left\{-\frac{1}{2}\log 2\pi - \frac{1}{2}\int q(\sigma_{i}^{2}|\boldsymbol{y})\log \sigma_{i}^{2}\,\mathrm{d}\sigma_{i}^{2}\int q(z_{i}|\boldsymbol{y})\,\mathrm{d}z_{i}\right\}$$

$$-\frac{1}{2}\int q(z_{i}|\boldsymbol{y})(y_{i}-z_{i})^{2}\,\mathrm{d}z_{i}\int q(\sigma_{i}^{2}|\boldsymbol{y})\frac{1}{\sigma_{i}^{2}}\,\mathrm{d}\sigma_{i}^{2}\right\}$$

$$= \sum_{i}^{n} \left\{-\frac{1}{2}\log 2\pi - \frac{1}{2}E\left[\log \sigma_{i}^{2}\right] - \frac{1}{2}E\left[(y_{i}-z_{i})^{2}\right]E\left[\frac{1}{\sigma_{i}^{2}}\right]\right\}$$

$$= \sum_{i}^{n} \left\{-\frac{1}{2}\log 2\pi - \frac{1}{2}(\log \beta_{i}-\psi(\alpha_{i})) - \frac{\alpha_{i}}{2\beta_{i}}\left[(y_{i}-\mu_{i})^{2}+m_{i}^{2}\right]\right\},$$
(10)

n

 $D_{KL}(q(\boldsymbol{z}|\boldsymbol{y})||p(\boldsymbol{z})) = \sum_{i}^{n} D_{KL}(\mathcal{N}(z_{i}|\mu_{i}, m_{i}^{2})||p(z_{i}|x_{i}, \varepsilon_{0}^{2}))$

(11)

 $= \sum_{i}^{n} \left\{ \frac{(\mu_i - x_i)^2}{2\varepsilon_0^2} + \frac{1}{2} \left[\frac{m_i^2}{\varepsilon_0^2} - \log \frac{m_i^2}{\varepsilon_0^2} - 1 \right] \right\},$

47

46

$$D_{KL}(q(\boldsymbol{\sigma}^{2}|\boldsymbol{y})||p(\boldsymbol{\sigma}^{2})) = \sum_{i}^{n} D_{KL}(\operatorname{IG}(\sigma_{i}^{2}|\alpha_{i},\beta_{i})||\operatorname{IG}(\sigma_{i}^{2}|\frac{p^{2}}{2} - 1, \frac{p^{2}\xi_{i}}{2}))$$

$$= \sum_{i}^{n} \left\{ (\alpha_{i} - \frac{p^{2}}{2} + 1)\psi(\alpha_{i}) + \left[\log \Gamma\left(\frac{p^{2}}{2} - 1\right) - \log \Gamma(\alpha_{i}) \right] + \left(\frac{p^{2}}{2} - 1\right) \left(\log \beta_{i} - \log \frac{p^{2}\xi_{i}}{2} \right) + \alpha_{i} \left(\frac{p^{2}\xi_{i}}{2\beta_{i}} - 1\right) \right\}, \quad (12)$$

- Where $\psi(\cdot)$ denotes the digamma function, $E[\cdot]$ represents exception with some stoachastic variables that had been neglected for notation clearity.
- We can then easily get the expected objective function (i.e., a negtive lower bound of the marginal likelihood on entire training set) for optimizing the network parameters of D-Net and S-Net as follows:

$$\min_{W_D, W_S} - \sum_{j=1}^n \mathcal{L}(\boldsymbol{z}, \boldsymbol{\sigma}^2; \boldsymbol{y}_j). \tag{13}$$