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In this paper, a widely applicable method that has promise in endowing various metals

with oil-water separation ability by femtosecond laser processing is reported. We take

an iron sheet as an example to show how to use a femtosecond laser to prepare

underwater superoleophobic microstructure on metal substrates and then achieve oil-

water separation. An array of through microholes was previously prepared on the iron

sheet by a mechanical drilling process. Then, rough nanostructures were created on

the surface of the porous sheet by femtosecond laser ablation, resulting in excellent

superoleophobicity in water. When the mixture of water and oil was poured onto the

porous underwater superoleophobic metal sheet, only the water in the mixture could

pass through the sheet while the oil was intercepted, thus the oil/water mixture was

successfully separated with high efficiency. Such a novel preparation process and

separation manner can extend to different metal substrates. We believe that a wide range

of metals like iron sheet can be potentially endowed with oil-water separation ability by

femtosecond laser processing because femtosecond laser can process almost all of

the metals.

Keywords: oil-water separation, femtosecond laser, metal surface, underwater superoleophobicity,

porous structure

INTRODUCTION

Energy plays a vital role in our life, but the most used petrochemical energy also causes a series
of environmental pollution problems. With the demand growth of global energy, oil spills occur
frequently, and industrial oily wastewater is continuously discharged, causing not only serious
ecological damage but also huge economic losses [1–7]. To deal with the pollution problems
caused by the spilled oils and the industrial waste oils, various technologies and materials have
been developed to achieve effective oil-water separation. Traditional methods for separating oil-
water mixtures include adsorption, gravity separation, skimming, flotation, centrifugal separation
[2, 5]. Although these methods can separate most oil-water mixtures to some extent, they usually
suffer from many obvious limitations, such as low separation efficiency, the need for external
input driving energy, secondary pollution problems, etc. [2, 3, 5]. For instance, many porous
materials such as foams, sponges, and textiles are usually used to alleviate pollution from the
oil-leakage/spillage by absorbing oils from water. However, these materials absorb both oils and
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water, leading to a poor separation selectivity and a low
efficiency. The collected oils are hard to be reused because of
low purity. Also, such separation materials will be contaminated
by oils just after one cycle of separation and then lose the
absorbing ability. Secondary environmental pollution occurs
with burning or burying the contaminated separation materials.
These limitations force researchers to continuously develop more
efficient and environmentally friendly separation materials and
systems toward oil-water mixtures.

Based on the different interfacial behaviors between water
and oils, porous materials with superwettability are applied in
oil-water separation in recent years [1–5, 8–19]. The surfaces
of such materials have superhydrophobicity/superoleophilicity
or superoleophobicity/superhydrophilicity. Compared to the
traditional oil-water separation materials, the superwetting
materials show many advantages in separation performance.
In 2004, Feng et al. prepared a superhydrophobic and
superoleophilic (in the air) stainless steel mesh coated with
polytetrafluoroethylene [8]. When the mixture of oil and water
was poured onto the superwetting metal mesh, the water in
the mixture was repelled by the mesh and remained above
the mesh because of the superhydrophobicity. In contrast, the
superoleophilicity allowed the oil to moisten and pass through
themetal mesh. As a result, the oil-water mixture was successfully
separated. In 2011, Xue et al. proposed a new strategy to achieve
oil-water separation by using underwater superoleophobic
porous membranes, such as hydrogel-coated stainless steel mesh
[12]. The hydrogel-coated mesh exhibited superhydrophilicity
in air but superoleophobicity immersed in water. As the oil-
water mixture was poured onto the as-prepared mesh that was
pre-wetted by water, only water could penetrate through the
mesh, while oil was intercepted by the mesh, achieving oil-water
separation. Following these separation principles, more andmore
superwetting porous materials have been prepared for oil-water
separation [1–5]. However, the microfabrication methods to
fabricate those superwetting materials are usually limited to
specific substrate material; that is, a fabrication process just can
make one or a handful of substrates become oil-water separation
materials. For example, Zhang et al. prepared an underwater
superoleophobic nanowire structure on the copper mesh surface
based on a chemical-based oxidation method (immersing copper
mesh in the solution of NaOH and (NH4)2S2O8) [20]. The
structured mesh could separate both immiscible and dispersed
oil/water mixtures. This chemical reaction can just endow
copper with underwater superoleophobicity but would not be
available to other metals. Metal is the most commonly used
engineering material, and the category of metals is numerous.
A widely applicable method that can endow various metals
with superwettability and oil-water separation ability is still
highly desired.

The features of ultra-short pulse width and extremely high
peak power enable the femtosecond laser to theoretically
process almost all of the solid materials [21–25]. In 2016,
we reported that the thin polytetrafluoroethylene (PTFE) sheet
exhibited durable ultralow-adhesive superhydrophobicity after
femtosecond laser ablation [26]. Mechanical drilling process
was also used to generate through microhole array on

the rough superhydrophobic sheet. The as-prepared porous
superhydrophobic sheet can separate various oil/water mixtures
including oil and corrosive acid/alkali solutions. However, such
superhydrophobic separation materials (named “oil-removing”
materials) are easily blocked by the oil that adheres to the porous
microstructure as it passes through, resulting in a great decrease
in the separation efficiency. Although many laser-based oil/water
separationmaterials have been developed, [27, 28] the fabrication
of those materials by laser processing is not yet universal for the
colorful category of metals.

In this paper, we take the iron sheet as an example to
show how to use a femtosecond laser to prepare underwater
superoleophobic microstructure on metal substrates and then
achieve oil-water separation. Rough nanostructures were easily
created on the iron surface by femtosecond laser processing,
and the structured metal surface showed excellent underwater
superoleophobicity. A porous underwater superoleophobicmetal
sheet was obtained by the combination of the mechanical drilling
process and subsequent femtosecond laser ablation. The ability
of the laser-induced porous underwater superoleophobic metal
sheet to separate the water/oil mixture was demonstrated.

METHODS

Femtosecond Laser Ablation
A femtosecond laser (CoHerent, Libra-usp-1K-he-200) was used
to create surface microstructure on a metal surface. The laser
beam has a pulse duration of 50 fs, a center wavelength of 800 nm,
and a repetition of 1 kHz. The laser beam was focused onto the
sample surface through an object lens (NA= 0.40, Nikon, Japan).
During laser processing, the manner of line-by-line scanning was
adopted, which can refer to our previous works [29–31]. The laser
power was set constant at 30 mW with the laser fluence of 7.46 J
cm−2. The scanning speed and the scanning space were tuned by
the control program.

Fabrication of Superwetting Porous Metal
Sheet
The iron sheet (thickness of 0.3mm) was firstly drilled by a
manmade mechanical system to form penetrating microholes
that fully across the sheet. A mini drill bit with a diameter of
0.3mm was controlled to pass through the metal sheet at the
speed of 0.1 mm/s. Uniform open microholes array was obtained
by the aid of a pre-designed program. Then, the surface of
the porous sheet was further ablated by femtosecond laser to
induce superwettability.

Oil-Water Separation
The laser-induced superwetting porous metal sheet was used as
the separation membrane and was sandwiched between two glass
tubes. Before separation, the sheet was pre-wetted by a small
volume of water. Then, the mixture of oil (petroleum ether) and
water with the volume rate of 1:1 was poured into the upper tube
of the designed separation device. The separation system worked.
For clear observation, the used water was dyed by methylene blue
and showed blue color, while oil was dyed by Oil Red O and
showed a red color.
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Characterization
The surface microstructure of the samples was observed by
a scanning electron microscope (Gemini SEM 500, Zeiee,
Germany) and a laser confocal microscope (LEXT-OLS4000,
Olympus, Japan). The wettability of the as-prepared substrate
was investigated by contact angle measurement (JC2000D,
Powereach, China). Deionized water and 1,2-dichloroethane
were adopted as the main tested liquids for water and
oil, respectively.

RESULTS AND DISCUSSION

Nano-texture was easily induced on the iron surface by
femtosecond laser processing. Figures 1a,b,d shows the scanning
electronic microscopy (SEM) images of the iron surface after
laser ablation. The sample was ablated at the scanning speed of
6mm s−1 and the scanning space of 6µm. The whole resultant
surface is coated with a nano-ripples structure (Figures 1a,b).
The width of every nano-ripple is ∼500 nm. A large number of
fine particles with the size of a few tens of nanometers further
randomly distribute on the surface of nano-ripples (Figure 1d).
Such a hierarchical nanostructure typically results from the
interaction between femtosecond laser and metal substrates. The
laser-induced hierarchical nanostructure is also verified by the
three-dimensional and cross-sectional profiles by laser confocal

scanning microscopy images (Figure 1c). The surface roughness
of the laser-ablated iron substrate is measured to be 0.193 µm.

The wettability of the iron sample was investigated by
measuring the contact angle (CA) and sliding angle (SA). A water
droplet on the untreated flat iron surface has a water CA (WCA)
of 78 ± 3.9◦, demonstrating that the iron surface is inherently
hydrophilic (Figure 2A). The flat surface exhibits ordinary
oleophobicity with an oil CA (OCA) of 107.8 ± 2.8◦ to oil
droplet in water (Figure 2C). After femtosecond laser treatment,
both the in-air hydrophilicity and the underwater oleophobicity
of the iron substrate are enhanced by the laser-induced surface
nanostructure. When a small water droplet was dripped on
the laser-structured surface, it would spread out after touching
the sample surface (Figure 2E). A small WCA of 12.8 ± 2.4◦

indicates that the iron surface shows quasi-superhydrophilicity
after laser ablation (Figure 2B). Interestingly, the oil droplet can
maintain a spherical shape with the OCA of 164 ± 0.3◦ on
the rough surface in a water medium (Figure 2D). Therefore,
the laser-ablated iron surface has underwater superoleophobicity.
As an underwater oil droplet was moved to touch and then
leave away the laser-structured surface, no shape deformation
and residual of the oil droplet could be observed (Figure 2F).
Once the sample was slightly tilted, the oil droplet could easily
roll off the textured surface with the oil SA (OSA) of ∼1◦

(Figure 2G). Apart from heavy oils, the droplets of light oils (e.g.,
petroleum ether) are also able to roll away on the underwater

FIGURE 1 | Morphology of the iron surface after femtosecond laser ablation. (a,b,d) SEM images of the laser-ablated surface. (c) Laser confocal microscopy image

of the laser-ablated surface.
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FIGURE 2 | Wettability of liquid droplet on the iron surface. (A) Water droplet on the untreated surfaces in air. (B) Water droplet on the laser-ablated surfaces in air. (C)

Oil droplet on the untreated surfaces in water. (D) Oil droplet on the laser-ablated surfaces in water. (E) Dripping a small water droplet onto the laser-ablated surface in

air. (F) Moving an underwater oil droplet to touch and then leave away the laser-structured surface. (G,H) Process of a droplet of (G) heavy oil and (H) light oil rolling

on the laser-ablated surface in water.
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FIGURE 3 | Femtosecond laser-induced porous underwater superoleophobic metal sheet. (a) SEM image of the nanostructured porous sheet. (b) High-magnification

SEM image of the domain between open microholes. (c) Optical microscopy photo of the porous sheet. The sample was lighted by white light from the backside.

(d–f) SEM images of the edge ridge of a microhole.

superpolymphobic surface (Figure 2H). The results indicate that
the adhesion of the superoleophobic surface to various oil
droplets in water is extremely low.

Femtosecond laser-induced surface microstructures play an
important role in achieving underwater superoleophobicity
on metal surfaces [32–34]. Generally, the rough surface
microstructure can amplify the natural wettability of a solid
substrate.Most of themetal substrates are inherently hydrophilic.
Laser processing enables hierarchical micro/nanostructure to
form on the surfaces of metal substrates, increasing the
actual surface area of the substrates greatly. As a result, the
hydrophilicity of the iron substrates is enhanced to quasi-
superhydrophilicity by the laser-induced surface nanostructure.
Water can completely wet the rough nanostructure of the iron
surface because of the increased surface area and capillary action.
The contact between water and the laser-induced nanostructure
is at the Wenzel state [32]. Immersion in water makes all the
nanostructure of the sample surface be wetted and occupied
by water. When an oil droplet is further put on the metal
surface, the oil will be repelled by the water trapped in the
surface nanostructure due to the repulsive interaction between
polar and non-polar molecules. The oil droplet is unable to
penetrate the surface nanostructures of the metal substrate
and can only touch the peak portion of the laser-induced
nanostructures. The underwater oil droplet sits on a composite
(water/solid) interface and is at the Cassie wetting state, [32]
resulting in a solid/water/oil three-phase system. The hierarchical
microstructure and the trapped water layer can effectively reduce
the contact area between the oil droplet and the metal surface
so that the adhesive force and adhesion of the laser-structured

surface to underwater oils are very small. As a result, the
metal surface presents underwater superpolymphobicity after
femtosecond laser treatment.

As the scanning speed increases from 4 to 18mm s−1 and
the scanning space increases from 4 to 18µm, the OCA value
of an underwater oil droplet on the resultant iron surface
remains above 150◦ and the OSA value is always <10◦. Further
increasing the laser scanning speed and scanning space leads
to a decrease of OCA and an increase of OSA, resulting in
a weak oleophobicity in water. The decline of oleophobicity
is ascribed to the weak of the laser-induced surface rough
microstructure. With increasing the laser scanning speed and
scanning space, the focused laser pulses per area decline,
weakening the ablation process and decreasing the roughness. In
general, the femtosecond laser-induced superhydrophilic metal
microstructures tend to gradually lose superhydrophilicity as
well as underwater superoleophobicity storing in air because of
absorbing environmental carbon contaminants [35]. Fortunately,
we find that the storage of the laser-induced rough metal
surfaces in water can maintain their superhydrophilicity and
underwater superoleophobicity for a very long time. Therefore,
low-adhesive underwater superoleophobicity can be achieved in
a wide technology parameter range and is very stable in water.

A porous underwater superoleophobic sheet was easily
fabricated by the combination of the mechanical drilling process
and subsequent femtosecond laser ablation. As shown in
Figure 3a, an array of microholes was formed on the resultant
thin iron sheet. Observing with optical microscopy, backlight
could directly pass through the laser-drilled microholes,
demonstrating that the microholes are open and entirely
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FIGURE 4 | Oil-water separation based on the femtosecond laser-induced porous underwater superoleophobic metal sheet. (a) Designed device before separation.

(b) Pre-wetting the metal sheet with a little water. (c) Pouring the mixture of water (blue color) and oil (red color) into the separation device. (d) After separation. (e–h)

Reactivating the separation process by adding new water into the device that just finished a cycle of oil-water separation.

through one side to another side of the sheet (Figure 3c).
The diameter of the holes is about 300µm, which is
consistent with the diameter of the drill bit. The rest
part between the microholes is fully covered by rough
nano-ripples structure caused by femtosecond laser ablation
(Figure 3b). Besides, the edge ridge of every microhole is
also characterized by the nano-ripples (Figures 3d–f). Since
the laser-induced nanostructures on the iron surface are
superoleophobic in water, the resultant porous metal sheet has
underwater superoleophobicity.

The features of underwater superoleophobicity and through
microholes enable the porous metal sheet to be used as the
core membrane for oil-water separation. As shown in Figure 4a,
the porous underwater superoleophobic sheet was sandwiched
between two glass tubes. Then, a small volume of water
was dripped on the sheet to previously wet the metal sheet
(Figure 4b). When the mixture of water (blue color) and oil (red
color) was added into the designed separation device (Figure 4c),
only water in the mixture completely permeated through the
metal sheet, while oil was intercepted and stayed in the upper

tube because of the underwater superoleophobicity of the laser-
induced nanostructures (Figure 4d), so the oil-water mixture was
successfully speared. The separation process was driven by just
gravity, without any external forces. Also, the separation process
can be repeated in many cycles. When new water was poured
into the device that just finished a cycle of oil-water separation,
the separation process would be reactivated (Figures 4e–h). The
newly introduced water could pass through the metal sheet but
oil was intercepted. The separation efficiency was calculated by
η = m1/m0, where m1 and m0 are the mass of the collected
oil and the oil before separation [36]. The measured separation
efficiency reaches up to 97.8%. Therefore, the femtosecond laser-
induced porous underwater superoleophobic metal sheet exhibits
high efficiency in oil-water separation.

The surprising separation ability of the resultant porous
metal sheet is mainly caused by its remarkable underwater
superoleophobicity. Underwater superoleophobicity is usually
achieved on hydrophilic substrates. Interestingly, most kinds of
metals are inherently hydrophilic. The femtosecond laser can
ablate almost all of the known materials and then can create
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micro/nanoscale structures on the surface of various metals;
[21–25] thereby underwater superoleophobicity can be easily
achieved on different metals by femtosecond laser treatment,
such as Ti, [37] stainless steel, [38] Al, [34] Cu, [39] Mo, and so
on [32, 40]. With the laser-induced underwater superoleophobic
surface microstructures, a wide range of metallic sheets can
potentially be endowed with the ability of oil-water separation.

CONCLUSIONS

In conclusion, we present a promising method to endow metal
sheets with the ability of oil-water separation by femtosecond
laser processing. Taking the iron sheet as an example, rough
nanostructures were easily created on the iron surface after
femtosecond laser ablation. Oil droplets on the laser-structured
surface had an OCA of 164 ± 0.3◦ and an OSA of ∼1◦ in
water, revealing excellent underwater superoleophobicity of the
laser-induced surface nanostructures. The porous underwater
superoleophobic metal sheet was fabricated by the combination
of the mechanical drilling process and subsequent femtosecond
laser ablation. By using the laser-induced porous underwater
superoleophobic sheet as the separation membrane, the mixture
of water and oil was successfully separated with high efficiency
(97.8%). Because femtosecond laser can process almost all
of the metals and endow various metals with underwater
superoleophobicity, such a method of fabricating superwetting
separation materials can extend to a wide range of metals
substrates. Therefore, femtosecond laser processing is a widely

applicable method that holds promise in endowing various
metals with the ability of oil-water separation. We believe that
the femtosecond laser-induced metallic separation sheets will
have important applications in practically solving the pollution
problems caused by oil spills and industrial oily wastewater.
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