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Abstract: Laser modification techniques have been widely adopted in the field of surface engineering.
Among these modified techniques, ultra-high-speed laser cladding is trending most nowadays to
fabricate wear-resistant surfaces. The main purpose of this research is to provide a detailed insight of
ultra-high-speed laser cladding of hard Ni60 alloy on LA43M magnesium alloy to enhance its surface
mechanical properties. Multiple processing parameters were investigated to obtain the optimal
result. The synthesized coating was studied microstructurally by field emission scanning electron
microscopy (FESEM) equipped with an energy dispersive spectrometer (EDS) and X-ray diffraction
(XRD). The microhardness and wear resistance of the Ni60 coating were analyzed under Vickers
hardness and pin on disc tribometer respectively. The obtained results show that the dense Ni60
coating was fabricated with a thickness of 300 µm. No cracks and porosities were detected in
cross-sectional morphology. The Ni60 coating was mainly composed of γ-Ni and hard phases
(chromium carbides and borides). The average microhardness of coating was recorded as 948
HV0.3, which is approximately eight times higher than that of the substrate. Meanwhile, the Ni60
coating exhibited better wear resistance than the substrate, which was validated upon the wear loss
and wear mechanism. The wear loss recorded for the substrate was 6.5 times higher than that of
the coating. The main wear mechanism in the Ni60 coating was adhesive while the substrate showed
abrasive characteristics.

Keywords: ultra-high-speed laser cladding; Ni60 coating; LA43M magnesium alloy; wear resistance

1. Introduction

Lightweight materials play a vital role towards different commercial and noncommercial
applications from an economic perspective. Magnesium-based alloys with lithium as the major
alloying element are known as ultralight metallic structural materials. These alloys, in comparison
with other materials, have significant low density of 1.25–1.65 g/cm3, which is almost 50% of aluminum
alloys and 75% of other magnesium alloys [1]. Magnesium lithium alloys are always considered a prime
choice for applications in the aviation, aerospace, defense and 3C industries, because of their high
stiffness, good magnetic shielding, high specific strength and damping capacity [2,3]. Being capable of
very high potential use, these alloys nowadays have attracted more attention in electrochemical power,
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biomedicine and other civilian fields [4,5]. However, their poor tribological properties greatly affected
their popularity and reduced usage in different applications.

At present, to expand the industrial applications of these alloys, it is necessary and efficient to
apply multiple surface modification techniques to alter their surface properties. There are multiple
advance surface modification techniques which have been adopted by number of researchers to
improve the surface properties of magnesium alloys, such as physical vapor deposition (PVD) [6,7],
chemical vapor deposition (CVD) [8], electroplating [9], electroless plating [10], diffusion treatment [11],
high-velocity oxy fuel thermal spray [12–14], cold spray [15] and many others. But most of the surface
modification techniques possess poor bond strength ratio, which ultimately reduces its performance
in aggressive and harsh environments, while the efficiency for coating preparation is relatively low
as well.

At the beginning of the 1980s, the conventional overlay laser cladding technique was proposed,
which involved rapid heating and nonequilibrium solidification that produces dense and porosity-free
coatings. These coatings undergo marginal distortion, low heat affecting of substrate and metallurgical
bonding between substrate and clad layers [16–18].This technique results in high compactness along
with remarkable physical and chemical performance [19–21]. However, there are several drawbacks
which are associated with this conventional process which confines its operational use. For example,
the higher difference in melting temperature of cladding powder and substrate requires an extensive
amount of heat input, which not only affects the dimensional accuracy of the substrate but also
produces a higher heat affected zone (HAZ). Furthermore, dilution rate is usually high because of low
linear velocity and most of the laser energy was absorbed by the substrate, hence producing larger
dilution which ultimately restricts its applications in thin components.

To overcome drawbacks of the conventional laser cladding process, Schopphoven et al [22] in
2016 proposed a novel technology, “ultra-high-speed laser deposition”, that can work more precisely
and approximately 10 times faster in comparison with the conventional process. This process utilizes
a high-intensity laser beam to heat and melt feeding powder before injecting into the molten pool
of substrate to generate strong metallurgical bonding between clad layers and substrate. Coatings
with thickness ranging from 25 to 400 µm with powder utilization efficiency greater than 85% can
be achieved by this technology. Because of the very high deposition speed, a very limited amount
of laser energy transfers to the substrate, hence a very small HAZ and the dilution rate can be
retained even lower than 1% as most of the laser energy is absorbed by the powder. Lou et al. [23]
successfully deposited FeCr alloy coating on 304 stainless steel with dilution rate less than 2% at a linear
velocity of 147 mm/s. Li et al. [24] fabricated a 250 µm-thick high-quality 431 steel coating on 27SiMn
substrate with cladding speed of 150 m/min and dilution rate calculated as less than 4%. Hence this
novel ultra-high-speed cladding process provides a modern and reliable path to successfully deposit
low-diluted, thin and high-quality protective coatings on magnesium-based alloys.

Searching for an available cladded alloy powder that suits perfectly the efficient laser cladding
technique, nickel-based alloy powders were found best to fulfill the desired properties. Nickel as
the solid solution along with other alloying elements can form multiple stable compounds. Among
those compounds, some of them cause phase strengthening, which is very beneficial for achieving
high temperature hardness [25,26]. Furthermore, nickel can also reduce the phase transformation
temperature and thus be very advantageous for grain refinement purposes [27]. Nowadays,
nickel-based self-fluxing alloy powder is catching the attention of a multitude of investigators
and a number of intensive researches [28–32] have already been carried out to successfully fabricate
wear-resistant surfaces for harsh and aggressive environments.

In the present research work, an attempt has been made to enhance the tribological properties
of LA43M magnesium alloy for different applications. Hard Ni60 alloy powder was successfully
cladded on LA43M magnesium alloy by a newly developed ultra-high-speed laser cladding technique.
The advanced characterization techniques were utilized in order to investigate the microstructure,
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phase composition, micro-Vickers hardness and tribological properties in a very systematic manner to
provide a comprehensive evaluation.

2. Materials and Experimental Procedures

2.1. Materials Selection

Commercial-grade hard Ni60 alloy powder (Kennametal Inc., Pittsburgh, PA, USA) was used
to perform the subsequent ultra-high-speed laser cladding process. Figure 1 shows the size, shape
and distribution of the powder. The substrate used was a 100 mm-long pipe-shaped LA43M magnesium
alloy having diameter and thickness of 33 mm and 5 mm respectively. Prior to ultra-high-speed laser
cladding, the feeding powder was dried in the oven for 45 min at 100 ◦C to prevent any kind of
agglomeration that may cause blockage in powder supply. Meanwhile, the substrate was ground by
using 240-grit SiC sandpaper, ultrasonically cleaned with ethanol and dried in air to improve adhesive
strength between the coating and substrate workpiece. The chemical composition for feeding powder
and substrate (wt.%) is given in Table 1.

Table 1. Chemical composition of the LA43M substrate and Ni60 alloy powder (wt.%).

Element Mg Al Li Zn Si Fe Cu Cr Ni B C

Ni-60 - - - - 4.5 14.5 -
18.5 Bal. 3.0 0.1

LA43M Bal. 2.5–3.5 3.5–4.5 2.5–3.5 0.5 0.05 0.05
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Figure 1. Ni60 powder: (a) scanning electron microscopy (SEM) morphology; (b) size distribution.

2.2. Coating Deposition

Ultra-high-speed laser cladding coatings were fabricated by mean of IPG laser (model
YLR-4000-KC, Oxford, MA, USA) operated in continuous mode with maximum laser power of
4.0 kW. The powder was injected into a laser molten pool with coaxial powder feeder nozzle driven by
N2 gas. Since the laser cladding process is thermal in nature, so water was continually flowing through
the substrate pipe while performing the process so that cooling effect provided by the continuous
water stream suppressed the thermal effect which resisted against growing the HAZ of the substrate
and can be reduced to its greater extent. The experiment was carried out in a protective chamber
where a stream of argon as shielding gas was continually supplied at a flow rate of 10 L/min to prevent
oxidation of the molten metal region.

2.3. Optimization of Cladding Process

To ensure the better tribological performance, the achieved coating must be dense and defect-free.
The defect-free coatings can be achieved by properly controlling process parameters such as laser
power, powder feeding rate, cladding speed, and beam focal positions, which have vital influence on
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the thickness of the coating layer, microstructural uniformity, dilution rate and HAZ [33–35]. In this
study, one of the big challenges was the difference between the melting and boiling temperature
of the feeding powder and substrate, so there was a possibility of discontinuity in the coating, i.e.,
pores, crack formation etc. Multiple variations in processing parameters (laser power, laser beam focal
position, and cladding speed) were carried out to obtain the optimal. All variations in these parameters
correspond to attain a dense, uniform and flawless coating. For example, high laser power results
in crater formation, while at low laser power insufficient melting appeared. Secondly, the optimized
laser focus position was measured, as, in some coatings, negative and positive defocus conditions were
found. The negative defocus conditions were causing insufficient melting of feeding powder while
positive defocus conditions were leading to higher dilution rate. Thirdly, coatings achieved at lower
cladding speed had a higher heat affected zone as magnesium has a low melting temperature while
Ni60 has very high melting temperature and required high heat input. All the parameters were taken
under consideration simultaneously to achieve the high-quality coating that had better tribological
performance. The optimal cladding process parameters for fabricating multiple track coatings on
substrate are reported in Table 2. Subsequent to the laser cladding process, the electrical-discharge
cutting machine was used for cutting the specimens for characterization and analysis. The impact
of machine marks was eliminated using silicon-carbide-impregnated emery paper from 240 to 2000
grit mesh size in the transverse direction and finally polished with diamond paste. Figure 2 shows
schematic illustration of the ultra-high-speed laser cladding process.

Table 2. Optimal processing parameters for Ni60 coating.

Feeding Rate
(g/min)

Linear Velocity
(mm/s)

Laser Spot Diameter
(mm)

Laser Power
(kW)

24 172 2.6 2.5
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Figure 2. (a) Arrangements of the laser cladding system and (b) sketch of laser cladding process.

2.4. Characterizations

The phase analysis of synthesized coating was investigated by using the Shimadzu X-ray
Diffractometer (XRD-6100, Kyoto, Japan) with Cu Kα radiations. The XRD spectra was obtained
at an accelerating voltage of 40 kV and current 30 mA in the 2θ scanning range of 20–80◦. The scans
were performed with 4◦/min step size. The microstructures along the cross section of clad specimens
were studied using scanning electron microscopy (SEM, MIRA3 LMH, TESCAN, Brno, Czech Republic)
equipped with energy dispersive spectroscopy (EDS).

The microhardness of coated specimens was performed using a Vickers microhardness tester
(HXD-1000 TMC, Shanghai Taiming Optics Ltd., Shanghai, China) to measure the cross-sectional
hardness of coatings. The selected test load was 0.3 kgf and dwell time was set to 15 s. The vertical
profile from cladded region to the LA43M alloy substrate was acquired. A minimum of three adjacent
indents were performed and the average value was recorded.
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The wear properties of the cladded specimen were investigated using the dry sliding wear
test. The sliding tests were conducted using the pin-on-disc tribometer on CFT-1 material surface
comprehensive performance tester (Lanzhou Zhongke Kaihua Technology Development Co., Ltd.,
Lanzhou, China) at room temperature performed under dry sliding wearing conditions. The discs were
the substrate and coated specimen and were polished, ultrasonically cleaned and, finally, dried. The pin
used was Si3N4 ceramic (ball) having diameter of 6mm. The tests were conducted under constant load
of 10 N at rotational speed of 200 rpm of the specimens. The wear loss of specimens was measured
using an electric balance with a sensitivity of 10−4 g. The three-dimensional surface morphology of
samples after wear test were evaluated by violet laser color 3d laser scanning microscope (VK-9710,
KEYENCE, Tokyo, Japan).

3. Results and Discussions

3.1. Microstructure

Figure 3a shows cross sectioned microstructural evolution of Ni60 coated specimen. To elaborate
the discussion, the coated specimen was divided into three distinct regions: (1) a fully dense cladded
coated region of Ni60 alloy with average thickness range between 260 to 300 µm, (2) a transition region
lying beneath the dense Ni60 layer containing grain structure evolution and (3) a LA43M substrate
region. The dense coated region was free of cracks and sizeable pores. At higher magnification, as
shown in Figure 3b, epitaxial growth of the magnesium cellular structure observed at the melting
boundary of the LA43M substrate, which shows that the bond formed at the interface is metallurgical
in nature.

Closer examination of the cross-section of the cladded specimen at its transition zone shows
that it is composed of a mixture of magnesium matrix, interdendritic phases and partially melted
Ni60 alloy powder. During powder feeding, many of the powder particles interact with each other
and, because of such interaction, some particles fall directly into the molten pool rather than getting
melted under the laser beam. Since the melting temperature of Ni60 particles is very high, low
temperature in molten pool causes powder to undergo partial melting instead of full melting. During
the laser cladding process, a small portion of substrate surface melts and generates a melt pool where
interdiffusion starts taking place between the cladding powder and substrate. Figure 3b–d reflects
the magnified cross-section SEM morphologies of the transition layer as labelled in Figure 3a. “B1”,
“B2” and “B3” are the bottom, middle and top regions of transitional layer. These magnified images
show microstructural evolution from substrate surface to the coating which consists of a combination
of cellular and dendritic structure with observable grain refinement. At the bottom of the transition
region, the solid solution phase of magnesium in the form of epitaxial cellular crystal growth was
observed near the substrate surface, as shown in (Figure 3b. The mean cell arm spacing in this region
was about 4–6 µm. As we move from the bottom of the transition layer to the middle region as shown
in (Figure 3c the magnesium phases were observed in columnar form and cell spacing among these
columnar crystals reduces to 2–4 µm. The reduction in cell spacing was recorded because of the increase
in crystal growth velocity (from zero to maximum value) during solidification from the bottom to
the upper region. At a further distance from these crystals, these cellular crystal magnesium phases
change their morphology to dendritic form (Figure 3d), which happened because of solutes which pile
up before solidification occurs, hence results in constitutional undercooling [16]. Therefore, it can be
concluded that such a transition in structural morphologies happens because of the different cooling
rate during the solidification process. Similar microstructural evolution in the transition region has
been reported by an earlier study [36]. Meanwhile Figure 3e shows the microstructure of the Ni60
coating, which exhibits typical dendritic structure.
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‘B1’; (c) magnified morphology of area ‘B2’; (d) magnified morphology of area ‘B3’; (e) solidified Ni60
coating which exhibits typical dendritic structure: inset refers to more details of the interdendritic region.

3.2. Phases

XRD analysis was carried out for identification of different phases present in the microstructure
of the Ni60 coating. According to the XRD pattern shown in Figure 4. γ-Ni, CrB, FeNi3, Cr7C3,
Fe31Si12 and Ni3B are the main phases present in the Ni60 coating. Meanwhile, no additional oxides
were identified in XRD spectra, which was mainly because of protection provided by the shielding
gas. However, instant melting and solidification during the cladding process resulted in saturation
and lattices distortion, which gave rise to multiple distorted peaks which were very close to each other
and could not be identified properly.

From color and morphological observations in contrast, shown in the inset of Figure 3e, it could
be seen that the fully dense Ni60 coating was composed of a mixture of two distinct phases, a light
gray region (A1) and a dark gray region (A2). According to the results revealed by the EDS area scan
(reported in Table 3), A1 consisted of a higher quantity of carbon, chromium and silicon, whereas
A2 had higher iron and nickel contents. In accordance with XRD pattern and EDS area scan, it
can be inferred that area A1 mainly comprises of Cr7C3, CrB and Ni31Si12 whereas A2 contains
FeNi3/Fe31Si12 eutectic and γ-Ni solid solution. Thus, the surface morphology of Ni60 coating can be
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concluded as hard chromium carbides and boride particles are uniformly embedded in the skeleton of
the nickel-enriched matrix.

Table 3. Elemental concentrations (wt.%) of the selected areas in the laser cladding Ni60 coating from
energy dispersive spectrometer (EDS) analysis.

Elements C Si Cr Fe Ni

A1
A2

6.43
2.74

4.08
1.44

25.69
14.56

12.31
18.75

51.49
62.51Coatings 2020, 10, x FOR PEER REVIEW 7 of 14 
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Figure 4. X-ray diffraction (XRD) pattern of Ni60 coating and substrate.

3.3. Microhardness

Figure 5 reveals the average microhardness distribution curve of the cross-sectioned cladded
specimen along the direction perpendicular to the interface between the coated surface and substrate.
It can be noted that the profile shows a moderate decreasing trend from the surface of the Ni60
coating region to the LA43M substrate. The average micro hardness value for the cladding surface
of Ni 60 was found to be approximately 948 HV0.3, which is about eight times that of the LA43M
substrate. Such high hardness in the cladded specimen was recorded because of uniformly dispersed
hard chromium boride and carbide phases distributed uniformly in the skeleton of the γ Ni solid
solution [37]. These hard Cr carbide and boride phases give rise to the dispersion strengthening
effect, which ultimately showed a higher value of hardness. Meanwhile lower hardness values were
recorded in the transition region because of the presence of nickel-based phases and soft magnesium.
Beyond this, the hardness distribution curve also reveals that the heat-affected zone is narrow, down
to approximately 140 µm, as compared to conventional process that produces a HAZ of 200 µm [38].
One study shows that it is even higher than 300 µm [39] for a different magnesium alloy. Hence, it
can be concluded that ultra-high-speed laser cladding is a promising technique in which a limited
amount of laser energy transfer to the substrate restricts the thickness of the HAZ from growing while
maintaining the dimensional accuracy of the substrate as well.
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Figure 5. Microhardness distribution curve of laser-clad Ni60 coating.

3.4. Tribological Tests

3.4.1. Friction of Coefficient

Dry sliding conditions at ambient room temperature were chosen to analyze the tribological
performance of the Ni60 coating and substrate. Prior to the wear test, both specimens were polished to
the same roughness and finally cleaned with acetone in an ultrasonic bath for 15 min. The wear test was
performed for a duration of 30 min under a static load of 10 N. Figure 6 reveals results of the friction
coefficient curves of both specimens and it can be clearly seen that the average friction coefficient for
the substrate was about 0.7, whereas for the Ni60 coating it was calculated approximately to be 0.5.
The reduction of the friction coefficient occurred because of a more uniform and finer microstructure of
the Ni60 coating along with higher microhardness and high bearing capacity. The friction coefficient
curve of the Ni60 coating didn’t show an extensive range of pulsation, which shows that the coating
didn’t show severe wear failure during the entire friction test.
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Figure 6. The friction coefficient curves of Ni60 coating and substrate.
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3.4.2. Wear Mass Loss

The wear weight loss of both coated and substrate samples were determined under dry sliding wear
conditions. The results illustrated that the Ni60-coated specimen exhibited significantly lower weight
loss as compared to the substrate specimen. The obtained weight loss for the LA43M substrate (2.413 ×
10−3 grams) was about 6.5 times higher than that of the Ni60 coating (0.369 × 10−3 grams) which clearly
indicates that the wear resistance of the coated specimen was much higher than the substrate. The low
wear weight loss is more advantageous to reduce the micro cracks formation on the surface and lowers
the chances of the formation of micropores [40]. The results recorded for the wear resistance of
specimens are in accordance with the resembling microhardness values as reported in Figure 5. Since
the microhardness of the Ni60 coating is much higher than that of the substrate and hard chromium
carbides and borides phases which are uniformly distributed on the surface ultimately enhances its
wear resistance.

3.4.3. Worn Track Topography and Wear Mechanism

For better understanding of the wear resistance of the specimens, the cross-sectional profile
of wear tracks was measured by a color three-dimensional laser microscopic system, as described
in Figure 7. Five different locations along each wear track were obtained to get the cross-sectional
area of the wear track and the average value was reported to calculate the volume of the wear track.
The average wear scar width and depth of the substrate and the Ni60 coating is shown in Figure 8.
When comparing, it can be clearly seen that that wear scar depth and width for coated specimen is
much shallower and narrower than that of the substrate specimen.

The wear volume loss and specific wear rate were calculated using the following equations [41]:

Wv =
t

6b

(
3t2 + 4b2

)
2πr (1)

Ws =
Wv
P·S

(2)

where Wv is the wear volume, t and b are the wear scar depth and wear scar width of the wear tracks
respectively, whereas r is the radius of wear tacks. Ws refers to specific wear rate, whereas P and S are
the applied load and sliding distance respectively. Table 4 shows results for wear volume loss of both
specimens. The wear volume results attained for both specimens were in accordance with the wear
depth and width of wear scars and thus it can be concluded that wear rate of the Ni60 coated specimen
was much lower as compared to the substrate and the coated specimen showed better tribological
properties at ambient room temperature under dry sliding conditions.

The wear mechanisms of the Ni60 coating and LA43M substrate were determined by field emission
scanning electron microscopy after the wear test, as shown in Figure 9 and noteworthy metallographic
alterations were observed. The worn surface of the substrate specimen shown in Figure 9a depicts
that it experienced abrasive wear. The worn substrate surface primarily consists of deep plowed
grooves, peeling-off and micro plowing during the wear test. Furthermore, very low surface hardness
(reported in Figure 5) makes it very difficult to stand against the counterpart and thus resulted in
undergoing plastic deformation. These observations made from the worn track are in agreement with
the results of specific wear rate as reported in Table 4. The configuration of these deep plowed grooves
and peeling-off can be caused by the stress concentration which occurred at surface of wear track due
to the pressures between the applied load and tangential movement of the microconcaved shaped
counterpart Si3N4 ball, which ultimately generated micro cracks. When microcracks get extended
to a certain level, it results in plastic deformation and peeling-off occurred at the groove edges [42].
Meanwhile, Figure 9b shows the worn surface of the Ni60 coating and it can be clearly seen that
it exhibits obvious adhesive characteristics. Only shallow plowing groove lines along with server
delamination were observed. Hence it can be concluded that higher microhardness and uniformly



Coatings 2020, 10, 638 10 of 14

dispersed hard chromium carbides and borides particles ultimately results in better wear performance
of Ni60 coating in dry sliding conditions. However, a similar observation has also been reported in
the studies of Wan et al. [29] and Yao et al. [30] that these dispersed hard particles in nickel-based
coatings are the main reason for their superior tribological performance.
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4. Conclusion

This study concluded that Ni60 coating was successfully fabricated on a LA43M magnesium
alloy substrate by using ultra-high-speed laser cladding technique. The main findings of this work are
as follows:

(1) A hard Ni60 alloy coating was successfully achieved via an ultra-high-speed laser cladding
technique with optimal process parameters;

(2) Microstructure analysis showed uniform and dense coating with thickness of about 300 µm was
achieved. No obvious cracks and porosities were found. The Ni60 coating is mainly composed of
γ-Ni solid solution and hard phases (chromium carbides and borides);

(3) The hardness measurements obtained for Ni60 coating showed superior hardness value exceeding
about eight times that of substrate hardness values. Hard chromium carbides and borides
phases in coated region give rise to a solution strengthening effect which ultimately enhances
the hardness of coating;

(4) Under dry sliding conditions at room temperature, wear resistance of Ni60 was found to be much
higher than that of the LA43M substrate, which was validated by wear weight loss and worn
surface morphologies. The wear weight loss of the substrate was found to be 6.5 times higher
than that of the coated specimen.
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