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In this paper we present a non-associated plane stress anisotropic constitutive model with mixed
isotropic-kinematic hardening. The quadratic Hill 1948 and non-quadratic Yld-2000-2d yield criteria
[Barlat F, et al. Int J Plasticity 2003;19: 1297–1319.] are considered in the non-associated flow rule (non-
AFR) model to account for anisotropic behavior. To predict accurate hardening in cyclic loading
conditions, a modification of the hardening model proposed by Chun et al. [Chun BK, et al., Int J
Plasticity 2002; 18: 571–595.] is adopted. This one-surface non-linear mixed isotropic-kinematic
hardening model does not require loading criterion and can predict Bauschinger effect, transient
behavior and permanent softening. The developed model was implemented as a user-defined material
subroutine (UMAT) into the commercial finite element code ABAQUS/Standard based on fully implicit
backward Euler's method. Cup drawing simulation results for an automotive sheet metal AA5754-O show
that the implemented hardening model avoids under- and over-estimation of the cup height respectively
generated by kinematic and isotropic hardening laws. Moreover, as will be seen in the results of highly
textured AA2090-T3, both cup height and earing profile generated by non-associated flow models are
in better agreement with experimental results. Finally, the Yld2004-18p and non-AFR Yld2000-2d
models are compared in terms of prediction of directional Lankford coefficients and yield stresses. It is
shown that a same order of accuracy that is obtained by Yld2004-18p can be achieved by the non-AFR
Yld2000-2d.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Sheet metals generally exhibit a considerable anisotropy due to
their crystallographic texture. The anisotropic mechanical charac-
teristics of the material have a significant influence on the shape of
the parts after deformation. Therefore many phenomenological
models have been proposed for use in Finite Element (FE) codes
to simulate the anisotropic behavior of a material. The anisotropy is
mainly described on the basis of the Lankford coefficients and/or
the yield stresses along the orthotropic (rolling and transverse) and
diagonal axes of the metallic sheets. The different yield functions
make use of different combinations of these parameters to repre-
sent a 3-dimensional surface (in case of plane stress) determining
the transition between elastic and plastic deformation.

The foundation of most anisotropic yield criteria has been
based on the Associated Flow Rule (AFR) hypothesis strengthened
ll rights reserved.
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by experimental observations of Bridgman [1,2]. He performed a
series of tensile tests on metals in the presence of high hydrostatic
pressure and noticed that this pressure had no influence on the
yielding of the material. In addition, a negligible permanent
volume change was shown to exist [3]. Due to the absence of
pressure sensitivity in the plastic deformation, only the deviatoric
stress is involved in the formulation of the yield stress function. On
the other hand, the zero plastic dilatancy (zero permanent volume
change) will not be violated by using the same yield function as
plastic potential (equivalency of yield function and plastic
potential).

Accordingly, under the assumption of AFR, starting from Hill's
quadratic anisotropy model [4], various yield functions have been
proposed to describe the initial anisotropy of metallic sheets such
as Barlat et al. [5–8], Banabic et al. [9], Cazacu and Barlat [10,11],
Cazacu et al. [12,13], Hu [14], Bron and Besson [15], Karafillis
and Boyce [16] and very recently Barlat et al. [17]. In order to
accurately describe both yielding and plastic flow behavior of
sheet metals, the coefficients of the above anisotropic yield
functions commonly need to be optimized explicitly or iteratively
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Nomenclature

ð:Þ
≈

a fourth order tensor
α1−8 parameters of Yld2000-2d
b Voce isotropic hardening parameter
C≈

e fourth order isotropic elasticity stiffness
C1;C2 kinematic hardening parameters
C C2=C1

E Young's modulus
εp equivalent plastic strain
εp plastic strain tensor
εp0 parameter of Swift isotropic hardening function
εp;1 equivalent plastic strain at the onset of uniaxial load

reversal
εel elastic strain tensor
ε total strain tensor
φ plastic strain rate direction w.r.t. rolling direction
f yield function (associated flow rule)
f y yield function (non-associated flow rule)
f p plastic potential (non-associated flow rule)
F yield criterion
γ kinematic hardening parameter
H derivative of isotropic hardening w.r.t. equivalent

plastic strain
h0;h1 and h2 plastic moduli
I identity tensor
k parameter of Swift isotropic hardening function
λ plastic multiplier factor
λy; νy and ρy parameters of Hill 1948 yield stress (Hill S-based)
λp, νp and ρp parameters of Hill 1948 plastic potential function

(Hill r-based)
m first order gradient of the yield stress function

m parameter of Yld2000-2d (6 for BCC and 8 for FCC
metals)

υ Poisson's ratio
n parameter of Swift isotropic hardening function
n first order gradient of the plastic potential function
q0 equivalent plastic strain
q1 Chaboche kinematic hardening function
q2 Ziegler kinematic hardening function
q total kinematic hardening function (q¼ q1 þ q2Þ
qt total value of kinematic hardening at uniaxial tension
qc total value of kinematic hardening at uniaxial

compression
qð1Þ1 value of Chaboche kinematic hardening at the onset of

uniaxial load reversal
q 1ð Þ
2 value of Ziegler kinematic hardening at the onset of

uniaxial load reversal
Q Voce isotropic hardening parameter
rθ Lankford coefficient at θ degree orientation w.r.t. roll-

ing direction
rb Lankford coefficient at balanced biaxial state
r trial trial stress tensor
r Cauchy stress tensor
st stress at uniaxial tension
sc stress at uniaxial compression
sθ initial yield stress at θ degree orientation w.r.t. rolling

direction
sb initial yield stress at balanced biaxial state
r r−q
siso isotropic hardening function
θ loading direction w.r.t. rolling direction
∂ðxÞy first derivative of x w.r.t y
A⊗B Dyadic (or tensor) product of A and B
A : B double contraction of second order tensors A and B
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from the experimental tensile, shear or biaxial yield stresses and
Lankford coefficients.

In AFR, which is one of the cornerstones of classical plasticity
theory for metals, the yield function determines both yielding and
flow direction (plastic strain rate) simultaneously. However,
describing a highly anisotropic material in terms of both plastic
strain rate and yielding behavior with an identical function for
yield and plastic potential is difficult [18]. This can, for instance, be
fulfilled by using more complicated yield criteria with a large number
of parameters such as the Yld2004-18p model developed by Barlat
et al. [7].

From a physical point of view, experimental tension and
compression tests on iron based metals and on aluminum,
reported by Spitzig and Richmond [19], revealed the (linear)
dependency of yield stress on the superimposed hydrostatic
pressure. They also showed that an associated flow rule over-
predicts the plastic dilatation in the presence of superimposed
hydrostatic pressure. Therefore the AFR is unable to deal with zero
plastic dilatancy and pressure sensitivity because zero plastic
dilatancy requires the plastic potential to be a function of the
deviatoric stress only, and must therefore be insensitive to
pressure [20]. Similar observation as made by Spitzig and Rich-
mond was reported for geologic materials by Lade et al. [21] and
the invalidity of AFR for application to porous, granular, and
geologic materials has been proven.

The non-associated flow rule (non-AFR) removes the artificial
constraint of equality of plastic potential and yield function
enforced by AFR assumption. Consequently, two separate func-
tions for yield and plastic potential are adopted. In other words,
the yield function and plastic potential respectively describe the
elastic limit and plastic strain rate direction independently. There-
fore, the non-AFR could be the solution for description of simulta-
neous pressure sensitivity and negligible plastic dilatancy.
Moreover, a larger number of experimental data can be used for
calibration of each yield and plastic potential parameter resulting
in a better agreement between simulation and experimental data,
e.g. better prediction of yield stress and Lankford at additional
orientations. Furthermore, the inability of Hill 1948 quadratic yield
function for modeling the first order anomaly in balanced biaxial
tension could not be because of the quadratic order of the
formulation, but is rather due to the restriction forced by the
equivalency of the plastic potential and yield function [22].

During the last decade, more attention has been paid on the
development and implementation of non-AFR for metal plasticity.
For instance, Stoughton [18] proposed a non-AFR based on Hill
1948 quadratic formulation that accurately predicted both
direction-dependent Lankford coefficients and yield stresses at
rolling, transverse and diagonal directions. Meanwhile, the diffi-
culties in description of the first and second order of anomalous
behavior for materials with low Lankford coefficient were resolved
in this model. The reported accuracy in prediction of direction-
dependent Lankford coefficients and yield stresses in the men-
tioned non-AFR model resulted from the sufficient degree of
freedom for choosing material parameters that could match to
the experimental values [20]. Continuing his previous model,
Stoughton with Yoon [23] developed a pressure sensitive non-
AFR model that predicted the strength differential effect observed
in tension and compression tests. Cvitanic et al. [24] developed a
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non-AFR based on Hill 1948 quadratic and Karafillis and Boyce
non-quadratic yield functions combined with isotropic hardening
which showed an improved prediction of cup heights for deep
drawn cups made of an aluminum alloy. Stoughton and Yoon [25]
proposed a non-AFR based anisotropic hardening model that
resulted in excellent predictions of the hardening curves at 01,
451, 901 directions and of the balanced biaxial stress state.
Improvements in prediction of cup height and springback of U-
bend using non-AFR with mixed isotropic-kinematic hardening
have been reported by Taherizadeh et al. [26].

In this paper, we discuss the development of non-AFR plasticity
approach based on the Hill 1948 quadratic [4] and the non-
quadratic Yld2000-2d [5] formulations combined with a recently
proposed mixed hardening rule of Zang et al. [27]. The employed
Zang's mixed hardening model improves the predictive capabil-
ities of the well-known classical Chaboche [28] kinematic hard-
ening by modeling the permanent softening [27]. The proposed
model was implemented into the commercial FE code ABAQUS/
Standard using the fully implicit backward Euler's algorithm. The
multi-stage return mapping method based on the incremental
deformation theory proposed by Yoon et al. [29] was used in the
implemented algorithm, which enhances the convergence of the
linearization algorithm significantly. Cup drawing simulation
results for an automotive sheet metal AA5754-O show that the
implemented non-AFR combined with the newly developed hard-
ening model avoids under- and over-estimation of the cup height
respectively generated by kinematic and isotropic hardening laws.
Moreover, as will be seen in the results of highly textured AA2090-
T3, both cup height and earing profile generated by non-AFR
models are in better agreement with experimental results. More-
over, a comparison of the non-AFR Yld2000-2d with Yld2004-18p
[7] in modeling directional Lankford coefficients and yield stresses
is presented for AA2090-T3 and a fictitious material (FM8)
proposed by Yoon et al. [30]. Excellent prediction of directional
Lankford coefficients and yield stresses is obtained with the
developed non-AFR Yld2000-2d for both considered materials.
2. Constitutive model

In the following sections, the italic bold letters represent
second-order tensors such as r, and the fourth order tensors are
shown by underscript double tilde such as C

≈
e.
Fig. 1. An example of cyclic loading generated by Zang mixed hardening model.
The saturating behavior is properly generated at high cycles.
2.1. Hardening model

It is well known that upon load reversal the Bauschinger effect,
transient behavior and some degree of stress shift (permanent
softening) can be observed. In addition, for mild steel sheets, the
abnormal evolution of the hardening curve (stagnation behavior)
may be observed [31]. One of the most commonly used mixed
isotropic-kinematic hardening models was proposed by Arm-
strong and Frederick [32] and Chaboche [28]. This model can
predict Bauschinger effect and the evanescent strain memory
effect (transient behavior) observed in cyclic loadings by adding
a relaxation term (recall term) to Ziegler's [33] linear kinematic
hardening model. This model is defined by

dq¼ C
ðr−qÞ

f
dεp−γqdεp ð1Þ

where C and γ are hardening parameters and f denotes the yield
function in associated flow plasticity. Second order tensors r and q
respectively denote the Cauchy stress and kinematic hardening
function. For sake of brevity, we agree that r¼ r−q.
Chaboche [28] proposed superposing multiple terms of Eq. (1)
as one model such that

q¼ q1 þ q2 þ q3 þ⋯þ qN ð2Þ
where N is the number of back-stress terms.

The prediction of permanent softening has been included in
several multi-surface models such as Geng and Wagoner [34],
Yoshida and Uemori [35] and Lee et al. [36]. To capture the
Bauschinger effect, transient behavior and permanent softening
in the framework of a one-surface cyclic model, Chun et al. [37]
proposed a modification to the isotopic part of mixed isotropic-
kinematic hardening with a two-term Chaboche model. In his
model, the second Chaboche term is described by a Ziegler's linear
kinematic hardening. This second term turns into zero in case of
load reversal, thus a loading criterion is required in the model.

A loading criterion for a general plane-stress case can be
formulated using the stress tensors at the previous and current
time steps. For example, the state of the loading at the current step
is defined as reversal if the angle between these two stress tensors
is between 901 and 2701 [38]. Nonetheless, Zang et al. [27]
described that this loading criterion must be carefully formulated
otherwise an incorrect stress might be obtained.

Recently, inspired by the work of Chun et al. [37], Zang et al.
[27] proposed a one-surface cyclic hardening that predicts
Bauschinger effect, transient behavior and permanent softening.
Analogously to the Chaboche model, his model generates the
saturating hardening after several cycles (see Fig. 1). In Zang's
model, the isotropic hardening function is described in the
following form:

sisoðεpÞ ¼ s0 þ Q ð1−e−bεp Þ −C1=γð1−e−γε
p Þ ð3Þ

It is noticed that the first and second terms in the right side of
Eq. (3) constitute the Voce isotropic hardening law, and the third
term is the integrated form of the one-term Chachoche kinematic
hardening model in uniaxial loading condition.

The kinematic hardening function consists of a two-term
Chaboche model in which the first term is a non-linear Armstrong
and Frederick and the second term is Ziegler's linear kinematic
hardening:

dq¼ dq1 þ dq2 ð4aÞ

dq1 ¼ C1
r

f
dεp−γq1dε

p ð4bÞ

dq2 ¼ C2
r

f
dεp ð4cÞ

where C1, C2 and γ are material parameters. The non-linear term
q1 in Eq. (4b) is solely associated to the transient behavior and
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improves its prediction. The second term, Ziegler's linear kine-
matic hardening law in Eq. (4c), was used to generate a constant
stress offset. It must be noted that considering Zang's mixed
hardening model, the introduction of the modified isotropic hard-
ening law Eq. (3) improves the capability of the constitutive model
in modeling of transient behavior since it causes the back-stress
εp;1 to be only associated to the transient behavior [27].

For uniaxial loading, Zang's model can be integrated to

st ¼ siso þ qt
¼ s0 þ Q ð1−e−bεp Þ þ c2εp ð5Þ

where st and qt respectively denote Cauchy stress and back-stress
in uniaxial tension. For uniaxial compression due to change of
stress direction we have

sc ¼−siso þ qc ð6Þ
sc and qc being respectively Cauchy stress and back-stress

during reversed loading. In general, the integrated form of the q1
tensor (q1Þ during uniaxial and reversed loading can be written as

q1 ¼ ωC1=γ þ qð1Þ1 −ωc1=γ
� �

e−ω γðεp−εp;1Þ ð7Þ

where ω¼ 71 gives the flow direction (i.e., +1 and −1 respectively
denote forward and reversed loading) and qð1Þ1 and εp;1 respectively
denote the value of q1 and accumulated plastic strain at the onset
of load reversal [39]. Similarly, for second term of kinematic
hardening we write

q2 ¼ ωC2ðεp−εp;1Þ þ qð1Þ2 ð8Þ
with qð1Þ2 being the values of q2 at the onset of load reversal.
Considering the load reversal ðω¼ −1Þ, the combination of Eqs.
(7) and (8) gives the total kinematic hardening denoted by qc

qc ¼−C1=γ þ qð1Þ1 þ C1=γ
� �

eγðε
p
−εp;1Þ−C2ðεp−εp;1Þ þ qð1Þ2 ð9Þ

In this paper, the Swift [40] isotropic hardening law is also used
for some of the performed simulations. The Swift isotropic hard-
ening is defined by

s¼ kðεp0 þ εpÞn ð10aÞ

εp0 ¼
s
k

� �1=n
ð10bÞ

with k, εp0 and n being the material parameters.
It must be mentioned that Zang's mixed isotropic-kinematic

hardening model is considered for the stress-update integration
scheme. In the next section the non-AFR is combined with this
hardening model.

2.2. Anisotropic yield functions

In AFR, the yield function (f y) determines the occurrence of
plastic deformation and rate of plastic strain, simultaneously. The
function which is directly involved in determination of rate of
plastic strain is referred to as plastic potential (f p), which is
identical to yield stress function in AFR assumption.

In case of AFR Hill 1948 two formulations exist, the parameters
of either of which can be calibrated using directional plastic strain
ratios (referred to as Hill r-based) or directional yield stresses
(referred to as Hill S-based). Parameters of either of those varia-
tions can be calibrated using either an optimization approach or
explicit function of directional yield stresses or Lankford
coefficients.

The Hill r-based model requires Lankford coefficients (r-values)
at rolling direction (RD), diagonal direction (DD) and transverse
direction (TD), respectively denoted by r0; r45 and r90. The para-
meters of Hill S-based model are calibrated using yield stresses at
the mentioned orientations denoted by s0; s45; s90 as well as that
of balanced biaxial state sb.

The Hill S-based yield function denoted by f Hill−S is defined as

f Hill−S ¼ ðs211 þ λys222−2νys11s22 þ 2ρys
2
12Þ1=2 ð11Þ

where λy, νy and ρy are yield function parameters.
The Hill r-based denoted by f Hill−r is described as

f Hill−r ¼ ðs211 þ λps222−2νps11s22 þ 2ρps
2
12Þ1=2 ð12Þ

where λp, νp and ρp are material parameters.
The non-quadratic Yld2000-2d yield function proposed by Barlat

et al. [5] is also evaluated in this work. This function is based on a
linear transformation of two functions (φ′ and φ″) of deviatoric
stress tensors. The Yld2000-2d yield function is defined by

f ¼ 1
2
ðφ′þ φ″ Þ

� �
1=m ð13Þ

where

φ′¼ ðX′
1−X

′
2Þm; φ″¼ ð2X″

2 þ X″
1Þm þ ð2X″

1 þ X″
2Þm ð14Þ

The coefficient m, which is associated to crystallographic
structure, is 6 for BCC and 8 for FCC type metals. X ′

1;2 and X″
1;2

are the principal values of the linear transformation on the stress
deviator ~s′ and ~s″ respectively.

~s′¼ L′:r; ~s″¼ L″:r ð15Þ
and

L′11
L′12
L′21
L′22
L′66

2
66666664

3
77777775
¼

2=3 0 0
−1=3 0 0
0 −1=3 0
0 2=3 0
0 0 1

2
6666664

3
7777775

α1

α2

α7

2
64

3
75;

L″11
L″12
L″21
L″22
L″66

2
66666664

3
77777775

¼ 1
9

−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 1 0 9

2
6666664

3
7777775

α3

α4

α5

α6

α8

2
6666664

3
7777775

ð16Þ

Eight experimental data such as yield and Lankford coefficients
(r0; r45; r90; rb;s0;s45; s90; sbÞ are required to determine the α1−8
coefficients.

2.3. Non-associated flow model

In non-AFR, the two independent formulations of yield stress
and plastic flow direction respectively determine the yielding and
direction of plastic strain rate. The yield function f y is addressed by
Eqs. (11) and (13) respectively for non-AFR Hill 1948 and non-AFR
Yld2000-2d. However, for non-AFR Yld2000-2d the parameters of
yield function are optimized solely based on directional yield
stresses at every 151 from RD (s0; s15; s30; s45; s60;s75; s90) as well
as that of balanced biaxial stress ðsbÞ.

In non-AFR the yield criterion F is

F ¼ f yðrÞ−sisoðεpÞ ð17Þ

The plastic flow direction ðnÞ is determined by the plastic
potential (f p) described in Eqs. (12) and (13) in case of non-AFR
Hill 1948 and non-AFR Yld2000-2d respectively. The plastic
potential of non-AFR Yld2000-2d follows the same formulation
of Yld2000-2d as defined in Eq. (13). However, it requires Lankford
coefficients for unidirectional loading in different orientations
ðr0; r15; r30; r45; r60; r75; r90Þ as well as that of balanced biaxial
loading (rbÞ for parameters optimization.
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The non-associated plastic flow rule is described by

dεp ¼ dλn ð18Þ
where

n¼ ∂f p=∂r ð19Þ
dλ is the plastic multiplier factor (compliance) to be determined

by using loading-unloading criterion, and the second order tensor
n is the plastic flow direction. It is noticed that due to the use of
plastic potential f p instead of yield stress function f y, the normality
hypothesis is no longer valid in non-AFR.

The concept of non-AFR and AFR for AA2090-T3 is shown in
Fig. 2.

The principle of plastic work equivalence is described by

f yðrÞdεp ¼ r : dεp ð20Þ
Applying Euler's theory for any first order homogenous func-

tion of f

r :
∂f ðrÞ
∂r

¼ f ðrÞ ð21Þ

Therefore, applying Euler's theory for continuously differenti-
able yield function and plastic potential we write

r : n¼ f p ð22aÞ

r : m¼ f y ð22bÞ
where the second order tensorm is the normal to the yield surface

m¼ ∂f y=∂r ð23Þ
Substituting Eq. (18) into Eq. (20) and then applying Eq. (22a)

dεp ¼ r : dεp

f yðrÞ
¼ dλ

r : ∂f p=∂r
f yðrÞ

¼ dλ
f pðrÞ
f yðrÞ

ð24Þ

This definition (dεp ¼ dλ f p=f y) was used by Cvitanic et al. [24]
for the case of isotropic hardening. However, for linearization and
stress-update algorithm in case of complex mixed hardenings this
leads to a very laborious numerical description in which the rate of
change of effective plastic strain (_εp) will be a complex function of
rate of change of compliance factor (_λ). Therefore an alternative
with f p=f y ¼ 1 in Eq. (24) can save computational cost and
development effort so that

dεp ¼ dλ ð25Þ
It must be noted that this simplification does not lead back to

AFR. This is due to the fact that the normal to the plastic potential
(and not yield function) always has been considered for plastic
strain rate direction. This simplification has been adopted by
2 1 0 1 2
2

1

0

1

2

fy = 1.00 0

fy

n

Associated flow rule

yy
0
σ

σ

xx 0σ σ

σ

Fig. 2. Concept of associated (left) and non-associated (right) flow rule (f y¼yield funct
data are based on non-AFR Yld2000-2d for AA2090-T3 at ArcTan(syy=sxx)¼501.
Stoughton [18], Stoughton and Yoon [20,22,25], Taherizadeh
et al. [26]. Similarly, for sake of simplification, the description
defined in Eq. (25), is accepted in the remainder of this paper.
3. Numerical integration algorithm

The implicit integration algorithm begins with evaluating
whether the current step is in elastic or in plastic domain. An
elastic process implies that the stress state is inside the yield
surface and thus Fo0 and dλ¼ 0. Conversely, if the stress state of
the material is nested on the yield surface (F ¼ 0) then besides the
yield criterion, a complimentary postulate is required for determi-
nation of loading/unloading state of the deformation process. By
additional plastic deformation (loading condition) the plastic
compliance factor dλ will be non-zero and moreover the stress
state of material will remain on the yield surface (F ¼ 0 and
_f y40). On the other hand, the stress state can still be on the yield
surface (F ¼ 0) without plastic deformation occurring such that
dλ¼ 0. In this case that can be called pure elastic or elastic
unloading, the rate of change of yield stress surface will be equal
or less than zero, _f y ≤0. The case where _f y ¼ 0 is referred to as
neutral loading. The described loading/unloading condition can be
found in the form of Kuhn–Tucker complementary condition [41]:

dλ≥0; F ≤0 and dλF ¼ 0 ð26Þ
It is seen that the consistency condition that simply restricts

the stress state inside or on the yield surface and to which we shall
return later is already included in the Kuhn–Tucker condition. For
sake of brevity and notational convenience, we consider equiva-
lent plastic strain and back-stress tensors as internal variables.
Accordingly, we rewrite the increments of equivalent plastic strain
Δεp and back-stress functions in Eqs. (4b) and (4c) as follows:

Δq0 ¼Δεp ¼Δλh0 ð27aÞ

Δq1 ¼Δλh1 ð27bÞ

Δq2 ¼Δλh2 ð27cÞ
where h0, h1 and h1 are plastic moduli [41].

h0 ¼ 1 ð28aÞ

h1 ¼ C1r=f p −γq1 ð28bÞ

h2 ¼ C2r=f p ð28cÞ
2 1 0 1 2
2

1

0

1

2 Non - associated flow rule

fy = 1.00 0
fp = 0.64 2

fy
fp

n

yy
0
σ

σ

xx 0σ σ

σ

ion; f p¼plastic potential; r¼Cauchy stress; n¼plastic strain rate direction). These
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Therefore the consistency condition for Eq. (17) is written as

dF ¼ df yðr−q1−q2Þ−dsisoðq0Þ ¼ 0 ð29Þ

Additive decomposition of strain increments into elastic and
plastic components gives

Δε¼Δεel þ Δεp ð30Þ
where Δεel ;Δεp and Δε are respectively increments of elastic,
plastic and total strain tensors.

The Hookean elasticity for hypoelastic materials gives

Δr¼ C
≈
e : Δεel ð31Þ

where the symmetric fourth order tensor C
≈
e describes the iso-

tropic elasticity of the materials. Substituting the additive decom-
position of strain increments in Eq. (30) into the Hookean
elasticity equation (31) gives

Δr¼ C
≈
e : ðΔε−ΔεpÞ ð32Þ

Substituting Eq. (27a) into Eq. (27c) and into the consistency
condition (29) and using Hooke's law (32) and also using the non-
associated flow rule in Eq. (18) after some manipulation leads to

Δλ¼
∂Fs : C

≈
e : Δε

−∂Fqhþ ∂Fr : C
≈
e : n

¼
m : C

≈
e : Δε

m : C≈
e : nþm : ðh1 þ h2Þ þ H

ð33Þ

where

H¼ ∂Fq0 ð34Þ
As described before, the second order tensors of n and m

respectively denote plastic flow direction and normal to the yield
surface. The scalar H describes the tangent of isotropic hardening
function with respect to equivalent plastic strain q0.

Different integration schemes have been proposed to solve the
rate constitutive equations for a given set of initial conditions. For
instance Wilkins [42] suggested the first radial return scheme for
J2 plasticity. The fully implicit return mapping algorithm, which is
adopted in this paper, gained considerable popularity due to its
unconditional stability and moreover the quadratic convergence
rate that is the inherent characteristic of the Newton–Raphson
iteration method employed in this technique.

As we use the fully implicit Backward Euler's integration
scheme, the increments in the plastic strain and all internal
variables q0; q1 and q2 are calculated at the end of step (nþ 1)
and the yield condition is enforced at the end of the step [43]. Thus
the integration scheme for the non-associated model is written as

εðnþ1Þ ¼ εðnÞ þ Δε ð35aÞ

εpðnþ1Þ ¼ εpðnÞ þ Δλðnþ1Þnðnþ1Þ ð35bÞ

q0;ðnþ1Þ ¼ q0;ðnÞ þ Δλðnþ1Þ ð35cÞ

q1;ðnþ1Þ ¼ q1;ðnÞ þ Δλðnþ1Þh1;ðnþ1Þ ð35dÞ

q2;ðnþ1Þ ¼ q2;ðnÞ þ Δλðnþ1Þh2;ðnþ1Þ ð35eÞ

rðnþ1Þ ¼ C
≈
e : ðεnþ1−ε

p
ðnþ1ÞÞ ð35f Þ

Fnþ1ðs nþ1ð Þ; qi; nþ1ð ÞÞ ¼ 0 ð35gÞ

It is noticed that the described integration scheme is implicit in
terms of plasticity parameter Δλðnþ1Þ, flow direction nðnþ1Þ and
plastic moduli h1 and h2.
The plastic strain increment Δεpðnþ1Þ at the end of the time
increment Δtðnþ1Þ ¼ tðnþ1Þ−tðnÞ is given by

Δεpðnþ1Þ ¼ εpðnþ1Þ−ε
p
ðnÞ ð36Þ

By substituting Eq. (36) into the integrated form of Eq. (32)
gives

Δr¼−C
≈
eΔεpðnþ1Þ ð37Þ

and

rðnþ1Þ ¼ rtrial−C
≈
e : Δεpðnþ1Þ ð38Þ

where r trial and Δr¼ −C
≈
e : Δεp respectively denote the trial stress

of elastic predictor step and plastic corrector. During the elastic
predictor step the stress is explicitly updated using the total strain.
Subsequently at the plastic corrector or so called relaxation step,
the stress is returned to the yield surface at time increment tðnþ1Þ
using the Newton–Raphson method based on the linearization of a
set of equations Eqs. (35a)–(35g) [44]. This linearization is carried
out with respect to the plastic strain Δεpðnþ1Þ assuming the total
strain is constant. Using Newton–Raphson for linearization of any
equation such as gðΔλÞ ¼ 0 at the k-th iteration we write

gðkÞ þ dg
dΔλ

� �ðkÞ
δλðkÞ ¼ 0 ð39Þ

where

Δλðkþ1Þ ¼ΔλðkÞ þ δλðkÞ ð40Þ
δλðkÞ being the iterative change in the Δλ at the k-th iteration.
Therefore the update expressions in Eqs. (35a)–(35g) can be

cast in the following forms suitable for the Newton–Raphson
iteration scheme:

εp
ðkþ1Þ ¼ εp

ðkÞ þ Δεp
ðkÞ ¼ εp

ðkÞ
−C

≈
e−1 : Δrk ð41aÞ

qðkþ1Þ
0 ¼ qðkÞ0 þ ΔqðkÞ0 ð41bÞ

qðkþ1Þ
1 ¼ qðkÞ

1 þ ΔqðkÞ
1 ð41cÞ

qðkþ1Þ
2 ¼ qðkÞ

2 þ ΔqðkÞ
2 ð41dÞ

Δλðkþ1Þ ¼ΔλðkÞ þ δλðkÞ ð41eÞ

rðkþ1Þ ¼ rðkÞ þ ΔrðkÞ ð41fÞ
At the end of the k-th iteration the ΔrðkÞ, ΔqðkÞ0 ; ΔqðkÞ

1 and ΔqðkÞ
2

are determined and their corresponding accumulated values are
updated and sent for the next iteration. The iteration continues
until the convergence to the updated yield surface is obtained
within an acceptably small tolerance. Subsequently, the constitu-
tive solutions are passed into FE. The detailed fully implicit
integration scheme is described in Appendix A.

For the plane stress conditions such as when shell elements are
used, the elastic and plastic strains for the through thickness
direction are explicitly determined at the end of the converged
step:

εp33;ðnþ1Þ ¼ εp33;ðnÞ−Δε
p
11−Δε

p
22 ð42aÞ

εel33;ðnþ1Þ ¼ εel33;ðnÞ−υðΔεel11 þ Δεel22Þ=ð1−υÞ ð42bÞ
It is worth noting that the convergence of the Newton–Raphson

method inherently is faded at large strains and the initial guess
has a considerable influence on the convergence of the iteration
scheme i.e., the quadratic convergence rate is achieved only if the
approximation of initial value is within the radius of convergence.
Therefore to obtain the convergence at larger strains, the multi-
stage return mapping method based on the incremental



Table 1
Hardening parameters.
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deformation theory proposed by Yoon et al. [29] has been applied
in the implementation of return mapping algorithm.
AA5754-O AA2090-
T3& FM8

Parameter Unit
Isotropic
(Swift)

Kinematic (two-
term Chaboche)

Mixed
hardening
(Zang)

Isotropic
(Swift)

s0 MPa 94.8 94.8 94.8 279.6
k MPa 452.6 – – 646
n – 0.34 – – 0.227
εp0 – 0.01 – 0.025
Q MPa – – 126.4 –

b – – – 16.1 –

C1 MPa – 1997.3 4665.3 –

γ – – 23 212 –

C2 MPa – 409.6 204.8 –

Fig. 3. Comparison of experimental and simulated T/C hardening curves at
different pre-strains for AA5754-O using various hardening models and non-AFR
Hill 1948 anisotropic model.

Table 2
Experimental/input yield stresses ratios.

Material 01 151 301 451 601 751 901 b

AA2090-T3 (Exp.) 1.000 0.961 0.910 0.811 0.810 0.882 0.910 1.035
AA5754-O (Exp.) 1.000 – – 0.923 – – 0.938 0.996
FM 8 (Input) 1.000 1.020 1.045 1.050 1.045 1.020 1.000 1.000

Table 3
Experimental/input Lankford (r-value) coefficients.

Material 01 151 301 451 601 751 901 b

AA2090-T3 (Exp.) 0.212 0.327 0.692 1.577 1.039 0.538 0.692 0.670
AA5754-O (Exp.) 0.760 – – 0.710 – – 0.790 –

FM8 (Input) 0.6 1 0.75 0.3 0.75 1 0.6 1

Table 4
Hill 1948 anisotropic parameters.

Material νp ρp λp νy ρy λy

AA2090-T3 0.175 2.238 0.427 0.637 2.571 1.207
AA5754-O 0.432 1.349 0.978 0.556 1.576 0.975
FM8 0.375 1 1 0.5 1.314 1
4. Prediction of 1-D stress–strain response

AA2090-T3 and AA5754-O aluminum alloys have been selected
for the evaluation of non-AFR anisotropic functions and hardening,
respectively. In addition to the AA2090-T3, a fictitious material
(FM8) proposed by Yoon et al. [30] is considered for evaluation of
non-AFR Yld2000-2d. This material exhibits a considerable aniso-
tropic behavior in a sense that two maxima are observed in the
Lankford coefficients between rolling direction (RD) and trans-
verse direction (TD). The other considered material, the highly
textured AA2090-T3 aluminum alloy shows severe anisotropic
behavior for instance it has a planar anisotropy equal to −1.125.
Moreover, as depicted in Fig. 18, the experimental circular cup
drawing of this material shows 6 ears. On the other hand, the alloy
AA5454-O is used in automobile structural members and shows
considerable stress shift (permanent softening) upon load reversal.
Its mechanical behavior, i.e. normalized yield stresses (normalized
with respect to rolling direction) as well as Lankford coefficients at
different orientations, show a lesser level of anisotropy (planar
anisotropy of 0.065) compared with those of highly textured
AA2090-T3.

According to Yoon et al. [30,45], there is a straight relation
between profile and number of peaks of Lankford coefficients
distribution between 01 and 901 with number and profile of ears in
a deep drawn cup. Furthermore, they described the connection
between directional yield stresses distribution with earing profile.
This is why accurate prediction of directional Lankford coefficients
and yield stresses by the employed anisotropic constitutive model
is essential. In this paper we show that using non-AFR Yld2000-2d
the predicted Lankford coefficients and normalized yield stresses
are in excellent agreement with input data for FM8 and experi-
mental data for AA2090-T3.

In must be mentioned that the isotropic elasticity is assumed
for all studied materials with Young's modulus E¼70 GPa and
Poisson's ratio ν¼0.33. The isotropic hardening of FM8 is chosen to
be similar to that of AA2090-T3.

4.1. Prediction of flow stress

For AA5454-O, uniaxial tension/compression (T/C) experimen-
tal results at RD and different pre-strains (0.025, 0.05 and 0.078)
are available from Lee et al. [46]. The T/C stress versus plastic strain
curve was implemented as UMAT in Abaqus using different
hardening models: (i) isotropic hardening according to Swift in
Eq. (10), (ii) two-term kinematic hardening of classical Chaboche
in Eq. (4) and finally (iii) Zang's model in Eqs. (3) and (4). The
hardening parameters are presented in Table 1.

Comparison of predicted and experimental T/C curves is plotted
in Fig. 3. It is seen that the kinematic and isotropic hardening
model result respectively in under- and over-estimation of the
stress upon load reversal. The overestimation of the hardening by
using isotropic hardening is simply due to missing the Bauschinger
effect. As seen in Fig. 3 the under- and overestimation due to
respectively kinematic and isotropic hardening is increased at
higher pre-strains. It is also noticed that the permanent softening
effect is more pronounced at higher pre-strains. As opposed to the
isotropic and kinematic hardening models, application of Zang's
mixed hardening model leads to stress versus plastic strain curves
that are very close to the experimental ones. It must be noted that
all the simulations for AA5754-O material are based on non-AFR
Hill 1948. The effect of hardening models on the cup drawing
simulations of AA5754-O is presented in the next section.
4.2. Prediction of anisotropy

The experimental normalized yield stresses and Lankford
coefficients at different orientations for AA5754-O, AA2090-T3



Table 5
Yld2000-2d anisotropic parameters.

Model α1 α2 α3 α4 α5 α6 α7 α8 m

AA2090-T3
Potential (f p) −0.856 1.154 −0.293 0.326 0.683 0.482 0.752 1.024 8
Yield (f y) −0.713 2.037 1.629 0.69 0.552 −1.057 1.255 1.263 8
AFR 0.488 1.377 0.754 1.025 1.036 0.904 1.231 1.485 8

FM8

Potential (f p) 2.946 −2.946 0.399 1.421 −1.421 -0.399 1.213 −1.822 8
Yield (f y) 0.814 1.002 2.129 0.571 −0.34 1.224 0.975 −1.123 8
AFR 0.958 0.958 0.968 1.016 1.016 0.968 0.863 1.012 8

Fig. 4. Normalized tensile yield stress distribution for FM8.

Fig. 5. Lankford coefficient distribution for FM8.

Fig. 6. Normalized tensile yield stress distribution for AA2090-T3.
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and FM8 are presented in Tables 2 and 3. The corresponding Hill
1948 yield stress and plastic potential anisotropic parameters are
shown in Table 4. The anisotropic parameters of non-AFR Hill 1948
for AA5754-O are used for simulation of cup drawing in the next
section. The mechanical properties of AA2090-T3 can be found in
Chung et al. [47] and Yoon et al. [48]. For AA2090-T3 and FM8, the
experimental/input r0; r45; r90; rb; s0; s45; s90 and sb were used for
optimization of AFR based Yld2000-2d parameters. However, the
experimental/input r0; r15; r30; r45; r60; r75; r90; rb and s0; s15; s30;
s45; s60; s75; s90; sb respectively were used to optimize parameters
of Yld2000-2d plastic potential and yield function. The Yld2000-
2d anisotropic parameters are provided in Table 5. The parameter
optimization was performed using a Levenberg–Marquardt inverse
approach.

To compare the predictive capabilities of different anisotropic
models presented in this paper, directional normalized yield
stresses and Lankford coefficients for FM8 and AA2090-T3 were
simulated. Figs. 4 and 6 show the simulated normalized yield
stresses for FM8 and AA2090-T3, respectively. And, Figs. 5 and 7
present the simulated Lankford coefficients for FM8 and AA2090-
T3, respectively.

The directional Lankford and normalized yield stress predic-
tions made by Yld2004-18p are reported in Yoon et al. [30]. In
Figs. 4 and 6 we see that the predictive capability of yield stresses
by the non-AFR Yld2000-2d is dominant over other models.
Moreover, non-AFR Hill 1948 and AFR Yld-2000-2d are only
accurate at 01, 451, 901. In the same figure, a weak prediction of
yield stress is observed for AFR Hill 1948 r-based.

In Figs. 5 and 7, the directional Lankford coefficients of
respectively FM8 and AA2090-T3 are presented for the studied
models. In Fig. 5 it is seen that non-AFR Yld2000-2d excellently
predicts the input Lankford coefficients of FM8. In Fig. 7 for
AA2090-T3 it is shown that the peak and trough (low point)
respectively at 451 and 751 are accurately predicted by the
Yld2004-18p and non-AFR Yld2000-2d. As will be shown in the
next section, accurate prediction of these peaks and troughs
results in accurate prediction of number and height of the ears
in the deep drawn cup. In Fig. 7 it is also noticed that the AFR
Yld2000-2d and non-AFR Hill 1948 are accurate in predicting
Lankford coefficients at 01, 451, 901. However, comparing AFR
Yld2000-2d with non-AFR Hill 1948 at other orientations shows
that the results of AFR Yld2000-2d are closer to the experimental
results. Moreover, AFR Hill 1948 S-based is not accurate in
modeling the Lankford coefficients.

Two-dimensional representation of AFR and non-AFR of stu-
died anisotropic models is presented in Figs. 8 and 10 respectively
for AA2090-T3 and FM8. Moreover, the three-dimensional repre-
sentation of AFR Yld2000-2d and non-AFR Yld2000-2d compo-
nents (plastic potential and yield function) for AA2090-T3 and
FM8 respectively is shown in Figs. 9 and 11. From these plots, it
can be concluded that a higher degree of complexity can be
modeled by the non-AFR formulation compared with AFR models.



Fig. 7. Lankford coefficient distribution for AA2090-T3.

Fig. 8. Two-dimensional representation of various yield stress (left col
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According to the non-associated flow rule (18) and (19) the
outward normal to the plastic potential determines the plastic
strain rate direction and consequently the corresponding Lankford
coefficient. The outward normal direction to the yield function
(considering the AFR model) and plastic potential (considering the
non-AFR) is schematized in Fig. 12. At an in-plane loading direc-
tion of θ with regard to the RD the plastic strain rate direction
makes an angle of φ with the RD. The variation of φ with respect to
θ for AA2090-T3 and FM8 respectively is shown in Figs. 13 and 14.
It is seen that, in general, the Mises and AFR and non-AFR Hill 1948
models present a simple variation of plastic strain rate direction
with respect to RD. Conversely, for both considered materials the
AFR and non-AFR Yld2000-2d can predict more detailed variation
by their formulations.

5. Application to cup drawing simulation

The results of cup drawing simulations for AA2090-T3 and
AA5754-O are presented. For AA2090-T3, different anisotropic
umn) and plastic potential (right column) surfaces for AA2090-T3.



Fig. 9. Three-dimensional representation of AFR Yld2000-2d and non-AFR one (plastic potential and yield function) for AA2090-T3. Small circles denote experimental yield
points at seven uniaxial directions and one balanced biaxial state.

Fig. 10. Two-dimensional representation of various yield (left column) and plastic potential surfaces (right column) for FM8.

M. Safaei et al. / International Journal of Mechanical Sciences 73 (2013) 53–6862



Fig. 11. Three-dimensional representation of AFR Yld2000-2d and non-AFR one (plastic potential and yield function) for FM8. Small circles denote experimental yield points
at seven uniaxial directions and one balanced biaxial state.

2 1 0 1 2
2

1

0

1

2

f

n

yy
0σ

σ

xx 0σ σ

φ

θ

σ~

Fig. 12. Schematic of plastic strain rate orientation (φ) at an in-plane loading
direction of θ with regard to the RD.

Fig. 13. Angular orientation of plastic strain rate vector φ at various loading
directions θ with respect to RD obtained by AFR and non-AFR models for
AA2090-T3.

Fig. 14. Angular orientation of plastic strain rate vector φ at various loading
directions θ with respect to RD obtained by various AFR and non-AFR models
for FM8.

Fig. 15. Tool geometry for cylindrical cup drawing.
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models (AFR and non-AFR Hill 1948 and Yld2000-2d) were
studied and results were compared with the experimentally
determined cup profiles. Regarding the AA5754-O, nonetheless,
the cup drawing simulations are based on non-AFR Hill 1948 with
different hardening models where no experimental cup drawing
result is available. However, as discussed later, those data are



Fig. 16. Initial mesh for AA2090-T3 (left) and AA5754-O (right).

Fig. 17. Cup height simulation using non-AFR Hill 1948 and three hardening
models.

Fig. 18. Cup height prediction for AA2090-T3 using AFR and non-AFR Hill 1948.

Fig. 19. Cup height prediction for AA2090-T3 using AFR Yld2000-2d and non-AFR
Yld2000-2d and Hill 1948.

Table 6
Tool dimensions (unit: mm).

Dp Dd Db rp rd G

97.46 101.48 158.76 12.7 12.7 2.7
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interesting in a sense that they lead to similar conclusions as
observed in reported simulations of U-bend test [36].

The cup drawing process is schematized in Fig. 15 and the tool
dimensions are given in Table 6. Due to orthogonal symmetry
observed in the specimens, only one quarter of the sheet was
modeled. The blanks of AA5754-O and AA2090-T3 are modeled
using respectively 2147 and 3800 first order reduced integration
quadrilateral shell elements respectively with 10 and 15 Gauss
integration points. Initial mesh is shown in Fig. 16. The reason for
different number of elements was using two different computa-
tional sources for the simulations.

A blank holder force of 5.5 kN for the quarter model (corre-
sponding to approximately 1% of the initial yield stress) was
considered in the simulations. This force was found to be high
enough to avoid wrinkling in the rim area. A coulomb friction
coefficient equal to 0.1 was assumed.

Three hardening models were evaluated for cup height predic-
tion of AA5754-O. As before, the hardening models are (i) isotropic
hardening according to Swift in Eq. (10), (ii) two-term kinematic
hardening of classical Chaboche in Eq. (4) and finally (iii) Zang's
mixed hardening model in Eqs. (3) and (4). The cup height
predictions using the non-AFR Hill 1948 with anisotropy para-
meters in Table 4 and hardening parameters in Table 1 are plotted
in Fig. 17. As noticed in the same figure, the same over- and under-
estimation of the stress–strain curve respectively obtained by
isotropic and kinematic hardening (Fig. 3) is observed in the cup
profile. However, due to more realistic prediction of T/C behavior,
Zang's mixed hardening model avoids the under- and overestima-
tion obtained by the two other hardening models. Interestingly,
the same trend is observed for the U-bend springback test for an
identical material using isotropic, kinematic and an accurate two-
surface hardening model [36].

Fig. 18 shows simulated and experimental cup profiles of
AA2090-T3 using AFR and non-AFR Hill 1948. The experimental
cup profile exhibits four big ears located at 451, 1351, 2251 and 3151
and two small ears at 01 (3601) and 1801. However, none of the Hill
1948 presented variations could predict more than four ears. That
is due to the quadratic order of the yield and potential functions.
The predicted troughs for all three Hill 1948 models are weak. On
the other hand, respectively Hill's non-AFR based and r-based
models predict a cup height closer to the experimental ones.

In Fig. 19, cup height profiles predicted by AFR and non-AFR
Yld2000-2d are presented. For sake of comparison, the non-AFR
Hill 1948 is also plotted in the same figure. Among these models,
only non-AFR Yld2000-2d predicts the small ears at 01 (3601) and
1801 in addition to the big ears presenting the correct number of
ears in accordance with experimental results. Similar cup heights
at large peaks are predicted by non-AFR Yld2000-2d and non-AFR
Hill 1948. Similar to Hill 1948 S-based in Fig. 18, the AFR Yld2000-
2d underestimates the cup height at the main 4 peaks. However,
the same model predicts the troughs closer to the experimental
ones when compared with non-AFR Hill 1948 and non-AFR
Yld2000-2d. Fig. 20 presents final cup shape, Mises stresses and
effective plastic strains for AA2090-T3 using non-AFR Hill 1948
and AFR and non-AFR Yld2000-2d. It is observed that the non-AFR
Yld2000-2d predicts a higher level of complexity in the earing
profile, i.e. a sharp transition from trough to peak. Furthermore,
the higher equivalent plastic strain (SDV18 in right column)
predicted by the non-AFR Yld2000-2d can be interpreted as a
higher degree of plastic deformation compared to other models.
Consequently, higher Mises equivalent stress is simulated by non-
AFR 2000-2d.



Fig. 20. Final cup shape and distribution of Mises stress (left) and equivalent plastic strain (right). From top to bottom respectively, non-AFR Hill 1948, AFR Yld2000-2d and
non-AFR Yld2000-2d.
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6. Summary

We developed associated and non-associated flow rules of Hill
1948 and Yld2000-2d combined with a mixed hardening of Zang
et al. [27]. The AFR and non-AFR based Hill 1948 and Yld2000-2d
as well as Yld2004-18p were compared with uniaxial yield
stresses and Lankford coefficients at different orientations for a
highly textured AA2090-T3 aluminum alloy and FM8. An excellent
accuracy in prediction of directional yield stresses and Lankford
coefficients was achieved by the non-AFR Yld2000-2d. It is shown
that a same order of accuracy that is obtained by the Yld2004-18p
can be achieved by non-AFR Yld2000-2d. Moreover, cup drawing
simulations were performed based on presented models for
AA5754-O and AA2090-T3 aluminum alloys. The cup deep draw-
ing simulations for AA5754-O using isotropic, kinematic and
mixed hardening were carried out. The results show that the
over- and underestimation of the hardening curve respectively
generated by isotropic and kinematic hardening models is directly
reflected in the predicted cup height. For AA2090-T3, the predicted
cup height from isotropic hardening and non-AFR Yld2000-2d
shows a considerable improvement compared with that of AFR
Yld2000-2d as well as other presented models. It was shown that
only non-AFR Yld2000-2d can predict the exact number of 6 ears
as observed in experimental results. Finally, a slight improvement
compared to AFR Hill 1948 was observed by using its non-AFR
counterpart.
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Appendix A. linearization of the constitutive model

The update expressions in Eqs. (35a)–(35g) can be written in
the following forms suitable for the Newton–Raphson iterative
scheme:

a¼ −εp þ εpðnÞ þ Δλn¼ 0

b0 ¼−q0 þ q0;ðnÞ þ Δλh0 ¼ 0

b1 ¼ −q1 þ q1;ðnÞ þ Δλh1 ¼ 0

b2 ¼ −q2 þ q2;ðnÞ þ Δλh2 ¼ 0

F ¼ 0 ðA:1Þ
where

h0 ¼ 1 ðA:2Þ
Linearization of the above and ΔεpðkÞ ¼ −C≈

e−1 : ΔrðkÞ gives

aðkÞ þ C
≈
e−1 : ΔrðkÞ þ ΔλðkÞΔnðkÞ þ δλðkÞnðkÞ ¼ 0

bðkÞ0 −ΔqðkÞ0 þ δλðkÞ ¼ 0

bðkÞ
1 −ΔqðkÞ

1 þ ΔλðkÞΔhðkÞ
1 þ δλðkÞhðkÞ

1 ¼ 0

bðkÞ
2 −ΔqðkÞ

2 þ ΔλðkÞΔhðkÞ
2 þ δλðkÞhðkÞ

2 ¼ 0

F ðkÞ þ ∂Fr ∂Fqi �fΔrðkÞ ΔqiðkÞ gT
h

¼ FðkÞ þ ∂Fr : ΔrðkÞ þ ∂Fq0 : Δq0ðkÞ þ ∂Fq1 : Δq1ðkÞ þ ∂Fq2 : Δq2ðkÞ ¼ 0

ðA:3Þ
where

ΔnðkÞ ¼ ð∂nrÞðkÞ : ΔrðkÞ þ ð∂nq1ÞðkÞ : ΔqðkÞ
1 þ ð∂nq2ÞðkÞ : ΔqðkÞ

2

ΔhðkÞ0 ¼ 0

ΔhðkÞ
1 ¼ ð∂h1rÞðkÞ : ΔrðkÞ þ ð∂h1q1ÞðkÞ : Δq1ðkÞ þ ð∂h1q2ÞðkÞ : Δq2ðkÞ

ΔhðkÞ
2 ¼ ð∂h2rÞðkÞ : ΔrðkÞ þ ð∂h2q1ÞðkÞ : Δq1ðkÞ þ ð∂h2q2ÞðkÞ : Δq2ðkÞ

ðA:4Þ
where ∂h1r means first derivative of h1 with respect to r.

∂h1r ¼ C1ðf p−nrÞ=ðf pÞ2

∂h1q0 ¼ 0

∂h1q1 ¼ −∂h1r−γ

∂h1q2 ¼ −∂h1r ðA:5Þ

and

∂h2r ¼ C∂h1r

∂h2q0 ¼ 0

∂h2q1 ¼ −C ∂h1r

∂h2q2 ¼ −C ∂h1r ðA:6Þ

and

∂Fr ¼m
∂Fq0 ¼−H
∂Fq1 ¼ −m
∂Fq2 ¼ −m ðA:7Þ

and

∂nq1 ¼ ∂nq2 ¼−∂nr

C ¼ C2=C1 ðA:8Þ
The system of equations in (A.3) can be written in matrix form

½AðkÞ�−1

ΔrðkÞ

ΔqðkÞ0

ΔqðkÞ
1

ΔqðkÞ
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ f ~aðkÞg þ δλðkÞf~r ðkÞg ¼ 0 ðA:9Þ

where

½AðkÞ�−1 ¼

C≈
e−1 þ ΔλðkÞ:∂nr

ðkÞ 0 ΔλðkÞ:∂nq1
ðkÞ ΔλðkÞ:∂nq2

ðkÞ

0 −1 0 0
ΔλðkÞ:ð∂h1rÞðkÞ 0 ΔλðkÞ:ð∂h1q1ÞðkÞ−1 ΔλðkÞ:ð∂h1q2ÞðkÞ

ΔλðkÞ:ð∂h2rÞðkÞ 0 ΔλðkÞ:ð∂h2q1ÞðkÞ ΔλðkÞ:ð∂h2q2ÞðkÞ−1

2
66664

3
77775

ðA:10Þ

f ~aðkÞg ¼

aðkÞ

bðkÞ0

bðkÞ
1

bðkÞ
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; f~r ðkÞg ¼

nðkÞ

1
hðkÞ
1

hðkÞ
2

8>>>><
>>>>:

9>>>>=
>>>>;

ðA:11Þ

Because equivalent plastic strain (qðkÞ0 Þ and compliance have a
linear relation then

bðkÞ0 ¼ 0 ðA:12Þ
Therefore

ΔsðkÞ

ΔqðkÞ0

ΔqðkÞ
1

ΔqðkÞ
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼−½AðkÞ�f ~aðkÞg−δλðkÞ½AðkÞ�f~r ðkÞg ðA:13Þ

Using (A.4)–(A.8) in (A.10) and determining the ½AðkÞ�

½AðkÞ� ¼

A≈
ðkÞ
11 0 A≈

ðkÞ
13 A≈

ðkÞ
14

0 −1 0 0
A≈

ðkÞ
31 0 A≈

ðkÞ
33 A≈

ðkÞ
34

A≈
ðkÞ
41 0 A≈

ðkÞ
43 A≈

ðkÞ
44

0
BBBBB@

1
CCCCCA

ðA:14Þ

where

A
≈
ðkÞ
11

¼ X
≈
−1ðβðkÞ3 þ βðkÞ2 ð1þ CβðkÞ3 ÞÞ

A
≈
ðkÞ
13

¼ −X
≈
−1β

≈

ðkÞ
1

A
≈
ðkÞ
14

¼ −X
≈
−1β

≈

ðkÞ
1
βðkÞ3 ðA:15Þ

and

A
≈
ðkÞ
31

¼ X
≈
−1βðkÞ2

A
≈
ðkÞ
33

¼ −X
≈
−1ðβ

≈

ðkÞ
1

þ C
≈
e−1 ð1þ CβðkÞ2 ÞÞ

A
≈
ðkÞ
34

¼ X
≈
−1C

≈
e−1 βðkÞ2 ðA:16Þ

and

A
≈
ðkÞ
41

¼ X
≈
−1CβðkÞ2 βðkÞ3

A
≈
ðkÞ
43

¼ X
≈
−1C

≈
e−1 CβðkÞ2

A
≈
ðkÞ
44

¼ −X
≈
−1ðβ

≈

ðkÞ
1
βðkÞ3 þ C

≈
e−1 ðβðkÞ2 þ βðkÞ3 ÞÞ ðA:17Þ

and

β
≈

ðkÞ
1

¼ΔλðkÞ:ð∂nrÞðkÞ

βðkÞ2 ¼ΔλðkÞ:ð∂h1rÞðkÞ

βðkÞ3 ¼ΔλðkÞ:γ þ 1 ðA:18Þ
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and

X
≈
ðkÞ ¼ β

≈

ðkÞ
1
βðkÞ3 þ C

≈
e−1 ðβðkÞ2 þ βðkÞ3 þ CβðkÞ2 βðkÞ3 Þ ðA:19Þ

Substituting (A.13) in the last part of (A.3)

δλðkÞ ¼
F ðkÞ− ∂Fs ∂Fqi

h i
AðkÞ ~aðkÞ

∂Fs ∂Fqi
h i

AðkÞ ~r ðkÞ

¼ F ðkÞ−m : ½AðkÞ�r ~aðkÞ þm : ½AðkÞ�q1 ~aðkÞ þm : ½AðkÞ�q2 ~aðkÞ

H þm : ½AðkÞ�r ~r ðkÞ−m : ½AðkÞ�q1 ~r ðkÞ−m : ½AðkÞ�q2 ~r ðkÞ
ðA:20Þ

where ½AðkÞ�r denotes the row of AðkÞ associated to r (first, second,
third and fourth row of A kð Þ respectively for r ; q0, ;q1 and q2). Note
that

H½AðkÞ�q0 ~aðkÞ ¼ 0

−H½AðkÞ�q0 ~r ðkÞ ¼H ðA:21Þ

when δλðkÞ is determined, ΔrðkÞ, ΔqðkÞ0 , ΔqðkÞ
1 and ΔqðkÞ

2 are updated
using (A.3) and subsequently the internal parameters are updated
as following:

εp
ðkþ1Þ ¼ εp

ðkÞ þ Δεp
ðkÞ ¼ εp

ðkÞ
−C

≈
e−1 : ΔrðkÞ

qðkþ1Þ
0 ¼ qðkÞ0 þ ΔqðkÞ0

qðkþ1Þ
1 ¼ qðkÞ

1 þ ΔqðkÞ
1

qðkþ1Þ
2 ¼ qðkÞ

2 þ ΔqðkÞ
2

Δλðkþ1Þ ¼ΔλðkÞ þ δλðkÞ

rðkþ1Þ ¼ rðkÞ þ ΔrðkÞ ðA:22Þ
The continuum (standard) elasto-plastic tangent operator

relates the stress to total strain rates. However, according to the
Belytschko [43] the continuum (standard) elasto-plastic tangent
operator can generate spurious loading and unloading condition
during the abrupt transition from elastic to plastic. In addition, the
consistent (algorithmic) tangent modulus is required to preserve
the quadratic rate of asymptotic convergences inherent in the
Newton–Raphson's iteration nested in the fully implicit backward
Euler algorithm [41]. Analogous to the previous approach for
finding the rate variables at time step nþ 1, the consistent
modulus is obtained by linearization of the constitutive equations
to relate the stress increment to total strain increment at the time
t þ 1. By following the same approach described in previous
section but assuming the total strain as non-constant and residuals
(f ~aðkÞg) as zero after many manipulations the closed form of
consistent tangent modulus is obtained. It is noticed that non-
symmetric consistent modulus converts to standard tangent
operator by reducing the step size to zero. Furthermore both
consistent and tangent moduli turn to elastic stiffness matrix
when no plastic loading occurs.

We write the set of Eqs. (35a)–(35g) in rate form so that

ds
~
¼ C

≈
e : ðdε−dεpÞ

dεp ¼ dðΔλÞnþ Δλ dn
dq0 ¼ dðΔλÞ
dq1 ¼ dðΔλÞh1 þ Δλ dh1

dq2 ¼ dðΔλÞh2 þ Δλ dh2

dF ¼ ∂Fr : drþ ∂Fq0 : dq0 þ ∂Fq1 : dq1 þ ∂Fq2 : dq2 ¼ 0 ðA:23Þ

where

dn¼ ∂ns : drþ ∂nq1 : dq1 þ ∂nq2 : dq2

dh0 ¼ 0
dh1 ¼ ∂h1=∂r : drþ ∂h1=∂q1 : dq1 þ ∂h1=∂q2 : dq2

dh2 ¼ ∂h2=∂r : drþ ∂h2=∂q1 : dq1 þ ∂h2=∂q2 : dq2 ðA:24Þ
Substituting (A.23)_2 in (A.23)_1 and using (A.24) and solving
for dr and dq

ds

dq0
dq1

dq1

8>>>><
>>>>:

9>>>>=
>>>>;

¼ Af ~a′g−dðΔλÞAf~rg ðA:25Þ

where

f ~a′g ¼

dε

0
0
0

8>>><
>>>:

9>>>=
>>>;

ðA:26Þ

Substituting (A.25) into consistency condition (A.23)_6

dðΔλÞ ¼
∂Fs ∂Fqi

h i
: A : ~a′

∂Fs ∂Fqi
h i

: A : ~r
ðA:27Þ

dðΔλÞ ¼ m : ½A�r ~a′−m : ½A�q1 ~a′−m : ½A�q2 ~a′
m : ½A�r ~r þ H−m : ½A�q1 ~r−m : ½A�q2 ~r

ðA:28Þ

Substituting (A.29) into (A.25)

ds

dq0
dq1

dq2

8>>>><
>>>>:

9>>>>=
>>>>;

¼ A−
∂Fr ∂Fqi

h i
: A

∂Fr ∂Fqi
h i

: A : ~r
A : ~r

2
4

3
5 :

dε

0
0
0

8>>><
>>>:

9>>>=
>>>;

ðA:29Þ

Finally

C
≈
alg ¼ A

≈11
−
ð A½ �f~rgÞ⊗ð ∂Fs ∂Fqi

h i
: ½A�Þ

∂Fr ∂Fqi
h i

: ½A�f~rg
ðA:30Þ
References

[1] Bridgman PW. The effect of hydrostatic pressure on the fracture of brittle
substances. J Appl Phys 1947;18.

[2] Bridgman PW. Studies in large plastic flow and fracture with special emphasis
on the effects of hydrostatic pressure. 1st ed. New York: McGraw-Hill; 1952.

[3] Khan AS, Huang S. Continuum theory of plasticity. New York: Wiley; 1995.
[4] Hill R. A Theory of the yielding and plastic flow of anisotropic metals. Proc R

Soc London Ser A Math Phys Sci 1948;193:281–97.
[5] Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, et al. Plane stress yield

function for aluminum alloy sheets – part 1: theory. Int J Plasticity 2003;19:
1297–319.

[6] Barlat F, Maeda Y, Chung K, Yanagawa M, Brem JC, Hayashida Y, et al. Yield
function development for aluminum alloy sheets. J Mech Phys Solids 1997;45:
1727–63.

[7] Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE. Linear
transfomation-based anisotropic yield functions. Int J Plasticity 2005;21:
1009–39.

[8] Barlat F, Yoon JW, Cazacu O. On linear transformations of stress tensors for the
description of plastic anisotropy. Int J Plasticity 2007;23:876–96.

[9] Banabic D, Aretz H, Comsa DS, Paraianu L. An improved analytical description
of orthotropy in metallic sheets. Int J Plasticity 2005;21:493–512.

[10] Cazacu O, Barlat F. A new anisotropic yield criterion for aluminum alloys. Adv
Mater Forum I 2002;230–2:537–40.

[11] Cazacu O, Barlat F. A criterion for description of anisotropy and yield
differential effects in pressure-insensitive metals. Int J Plasticity 2004;20:
2027–45.

[12] Cazacu O, Barlat F, Nixon ME. New anisotropic constitutive models for HCP
sheet forming simulations. In: Ghosh S, Castro JM, Lee JK, editors. Materials
processing and design: modeling, simulation and applications, Pts 1 and 2.
Melville: Amer Inst Physics; 2004. p. 1046–51.

[13] Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed
packed metals. Int J Plasticity 2006;22:1171–94.

[14] Hu W. Constitutive modeling of orthotropic sheet metals by presenting
hardening-induced anisotropy. Int J Plasticity 2007;23:620–39.

[15] Bron F, Besson J. A yield function for anisotropic materials – application to
aluminum alloys. Int J Plasticity 2004;20:937–63.

[16] Karafillis AP, Boyce MC. A general anisotropic yield criterion using bounds and
a transformation weighting tensor. J Mech Phys Solids 1993;41:1859–86.

http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref1
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref1
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref2
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref2
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref3
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref4
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref4
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref5
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref5
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref5
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref6
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref6
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref6
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref7
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref7
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref7
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref8
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref8
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref9
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref9
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref10
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref10
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref11
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref11
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref11
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref12
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref12
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref12
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref12
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref13
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref13
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref14
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref14
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref15
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref15
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref16
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref16


M. Safaei et al. / International Journal of Mechanical Sciences 73 (2013) 53–6868
[17] Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G. An alternative to kinematic
hardening in classical plasticity. Int J Plasticity 2011;27:1309–27.

[18] Stoughton TB. A non-associated flow rule for sheet metal forming. Int J
Plasticity 2002;18:687–714.

[19] Spitzig WA, Richmond O. The effect of pressure on the flow-stress of metals.
Acta Metall 1984;32:457–63.

[20] Stoughton TB, Yoon JW. Review of Drucker's postulate and the issue of plastic
stability in metal forming. Int J Plasticity 2006;22:391–433.

[21] Lade P, Nelson R, Ito Y. Nonassociated flow and stability of granular materials. J
Eng Mech 1987;113:1302–18.

[22] Yoon JW, Stoughton TB, Dick RE. Earing prediction in cup drawing based on
non-associated flow rule. In: CeasarDeSa JMA, Santos AD, editors. NUMIFORM
‘07: materials processing and design: modeling, simulation and applications,
Pts I and II. Melville: Amer Inst Physics; 2007. p. 685–90.

[23] Stoughton TB, Yoon JW. A pressure-sensitive yield criterion under a non-
associated flow rule for sheet metal forming. Int J Plasticity 2004;20:705–31.

[24] Cvitanic V, Vlak F, Lozina Z. A finite element formulation based on non-
associated plasticity for sheet metal forming. Int J Plasticity 2008;24:646–87.

[25] Stoughton TB, Yoon JW. Anisotropic hardening and non-associated flow in
proportional loading of sheet metals. Int J Plasticity 2009;25:1777–817.

[26] Taherizadeh A, Green DE, Ghaei A, Yoon JW. A non-associated constitutive
model with mixed iso-kinematic hardening for finite element simulation of
sheet metal forming. Int J Plasticity 2010;26:288–309.

[27] Zang SL, Guo C, Thuillier S, Lee MG. A model of one-surface cyclic plasticity
and its application to springback prediction. Int J Mech Sci 2011;53:425–35.

[28] Chaboche JL. Time-independent constitutive theories for cyclic plasticity. Int J
Plasticity 1986;2:149–88.

[29] Yoon JW, Yang DY, Chung K. Elasto-plastic finite element method based on
incremental deformation theory and continuum based shell elements for
planar anisotropic sheet materials. Comput Method Appl M 1999;174:23–56.

[30] Yoon JW, Barlat F, Dick RE, Karabin ME. Prediction of six or eight ears in a
drawn cup based on a new anisotropic yield function. Int J Plasticity
2006;22:174–93.

[31] Yoshida F, Uemori T. A model of large-strain cyclic plasticity describing the
Bauschinger effect and workhardening stagnation. Int J Plasticity 2002;18:
661–86.

[32] Armstrong, PJ, Frederick, CO, A mathematical representation of the multiaxial
Bauschinger effect, Central Electricity Generating Board Report, Berkeley
Nuclear Laboratories, RD/B/N 731; 1966.
[33] Ziegler H. A modification of Prager's hardening rule. Q Appl Mech
1959;17:55–65.

[34] Geng LM, Wagoner RH. Role of plastic anisotropy and its evolution on
springback. Int J Mech Sci 2002;44:123–48.

[35] Yoshida F, Uemori T. A model of large-strain cyclic plasticity and its applica-
tion to springback simulation. Int J Mech Sci 2003;45:1687–702.

[36] Lee MG, Kim D, Kim C, Wenner ML, Wagoner RH, Chung KS. A practical two-
surface plasticity model and its application to spring-back prediction. Int J
Plasticity 2007;23:1189–212.

[37] Chun BK, Jinn JT, Lee JK. Modeling the Bauschinger effect for sheet metals, part
I: theory. Int J Plasticity 2002;18:571–95.

[38] Chun BK, Kim HY, Lee KJ. Modeling the Bauschinger effect for sheet metals,
part II: applications. Int J Plasticity 2002;18:597–616.

[39] Chaboche JL. A review of some plasticity and viscoplasticity constitutive
theories. Int J Plasticity 2008;24:1642–93.

[40] Swift HW. Plastic instability under plane stress. J Mech Phys Solids 1952;1:
1–18.

[41] Simo JC, Hughes TJR. Computational inelasticity, interdisciplinary applied
mathematics. New York: Springer; 1998.

[42] Wilkins, ML, Calculation of elastic-plastic flow. In: Other Information: Orig.
Receipt Date: 31-DEC-64; 1963, p. Medium: X [Size: Pages: 63].

[43] Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and
structures. Chichester: John Wiley; 2000.

[44] Simo JC, Taylor RL. A return mapping algorithm for plane-stress elastoplasti-
city. Int. J. Numer. Methods Eng. 1986;22:649–70.

[45] Yoon JW, Dick RE, Barlat F. A new analytical theory for earing generated from
anisotropic plasticity. Int J Plasticity 2011;27:1165–84.

[46] Lee M-G, Kim D, Kim C, Wenner ML, Wagoner RH, Chung K. Spring-back
evaluation of automotive sheets based on isotropic-kinematic hardening laws
and non-quadratic anisotropic yield functions: Part II: characterization of
material properties. Int J Plasticity 2005;21:883–914.

[47] Chung K, Lee SY, Barlat F, Keum YT, Park JM. Finite element simulation of sheet
forming based on a planar anisotropic strain-rate potential. Int J Plasticity
1996;12:93–115.

[48] Yoon JW, Barlat F, Chung K, Pourboghrat F, Yang DY. Earing predictions based
on asymmetric nonquadratic yield function. Int J Plasticity 2000;16:1075–104.

http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref17
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref17
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref18
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref18
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref19
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref19
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref20
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref20
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref21
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref21
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref22
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref22
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref22
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref22
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref23
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref23
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref24
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref24
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref25
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref25
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref26
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref26
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref26
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref27
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref27
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref28
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref28
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref29
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref29
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref29
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref30
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref30
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref30
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref31
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref31
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref31
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref32
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref32
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref33
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref33
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref34
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref34
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref35
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref35
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref35
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref36
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref36
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref37
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref37
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref38
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref38
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref39
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref39
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref40
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref40
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref41
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref41
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref42
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref42
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref43
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref43
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref44
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref44
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref44
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref44
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref45
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref45
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref45
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref46
http://refhub.elsevier.com/S0020-7403(13)00127-6/sbref46

	Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and non-associated flow rule approach
	Introduction
	Constitutive model
	Hardening model
	Anisotropic yield functions
	Non-associated flow model

	Numerical integration algorithm
	Prediction of 1-D stress–strain response
	Prediction of flow stress
	Prediction of anisotropy

	Application to cup drawing simulation
	Summary
	Acknowledgments
	linearization of the constitutive model
	References




