
Computational Materials Science 71 (2013) 115–123
Contents lists available at SciVerse ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Experimental and numerical investigation for ductile fracture of Al-alloy
5052 using modified Rousselier model
0927-0256/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.commatsci.2013.01.011

⇑ Corresponding author. Tel./fax: +81 88 656 7392.
E-mail address: murakami@tokushima-u.ac.jp (R.-i. Murakami).
Junhang Guo a,b, Shengdun Zhao a, Ri-ichi Murakami b,⇑, Shunlai Zang a

a School of Mechanical Engineering, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shaanxi 710049, China
b Department of Mechanical Engineering, The University of Tokushima, 2-1, Minami-Josanjima, Tokushima 770-8506, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 September 2012
Received in revised form 24 December 2012
Accepted 9 January 2013

Keywords:
Constitutive equation
Finite element method
Aluminum alloy
Ductile fracture
Lode parameter
In this paper, the ductile fracture of Al-alloy 5052 is studied by experiments and simulations using a mod-
ified Rousselier model. Although tension failure has been successfully predicted by the classical Rousse-
lier model, its predictive capability on shear failure was seldom discussed. A modified Rousselier model
was proposed by incorporating the recent extended damage evolution model by Nahshon and Hutchin-
son. The modified Rousselier model can capture both tension and shear failure. A stress integration algo-
rithm based on the general backward-Euler return algorithm for this constitutive model was developed
and implemented into finite element model by the user defined material subroutine VUMAT in the ABA-
QUS/Explicit. The tensile tests of smooth round bar and notched round bars with different sizes were car-
ried out to investigate the mechanical behavior of Al-alloy 5052. Consequently, the material parameters
of the classical Rousselier model were identified by an inverse method using these experimental data. A
shear test was also performed to calibrate the new shear damage coefficient in the modified Rousselier
model. For the shear test, the simulations show that although shear failure can be predicted by the Rous-
selier model, the ductility was over-estimated. However, the modified Rousselier model can give more
accurate results. The simulations on uniaxial tension of the round bars also confirm that the modified
Rousselier model can well predict the cup-cone fracture mode. The results indicate that the Lode param-
eter in the new damage evolution model is important to capture the cup-cone fracture mode transition.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that when metal fractures, microvoids will
experience a complex process, including the nucleation, growth
and coalescence. In order to describe this damage and fracture pro-
cess, many ductile fracture models using local approaches have
been published. In the view of macroscopic phenomenology, the
Gurson model in [1] developed well in the past decades. The cali-
bration methods for Gurson model were proposed [2,3] and it
was widely used in the prediction of ductile fracture in [4–6].

The mean stress rm = rkk/3 and effective stress
req ¼ ð3rd : rd=2Þ1=2 play important roles in ductile fracture [1],
but the relation between the effective plastic strain at fracture
and the stress triaxiality (g = rm/req) is not generally monotonic
[7,8]. Also, some experiments in [9] show that the ductility and
fracture mechanism of metals is also influenced by the Lode
parameter. More and more tests show that the damage in material
is influenced by shear deformation as well as tension [10,11]. But
the void evolution function used in Gurson’s model showed limita-
tions in recent years for its inapplicability to localization and frac-
ture for low triaxiality or shear-dominated deformations [12]. So, a
non-dimensional metric of stress xðrÞ was recommended to dis-
criminate between axisymmetric and shear-dominated stress
states in [12]. And then an extension of the damage growth func-
tion was proposed which incorporates damage growth under low
triaxiality such as shear-dominated state [12]. The modified Gur-
son model was utilized to simulate quasi-static punch-out tests
of high ductility DH36 steel in [13]. In [14], a whole calibration
procedure for this model was given using a finite element (FE)-
based inverse method. The predictive capability of the modified
Gurson model was evaluated in [15,16] by a series of experiments
and simulations. In [17], a shear void nucleation term based on the
Lode parameter for plastic strain rate is used to model slant frac-
ture by Morgeneyer and Besson. In [18], Li et al. research shows
that the applicability of the ductile fracture criteria depends on
the use of suitable damage evolution rules and consideration of
several influential factors, including the Lode parameter, etc.

After Rousselier published his damage model based on contin-
uum damage mechanics in [19–21], some numerical computa-
tional methods and simulations have been done in [22–32],
aimed at proposing robust and reliable FE formulations and devel-
oping this model to a non-local and mesh independent model, etc.
The recent research on the Rousselier model in [23] shows that the
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cup-cone fracture mode in tension test of notched round bar can be
predicted. In [30,31], the Rousselier model’s predictive applicabil-
ity under shear deformation was mentioned but has not been as-
sessed yet. In this paper, the capability of the Rousselier model is
assessed and it is shown that some modifications on damage evo-
lution are required.

2. Modified Rousselier model

In this section, a brief introduction of the Rousselier model is gi-
ven and followed by its modification. Rousselier developed the
simplest possible model of porous metal plasticity in the frame-
work of thermodynamics of irreversible processes in [19]. The
material’s isotropy and elastic-plasticity with isotropic hardening
are assumed in this model. Two internal variables are used to
quantify the deterioration process of material, one is the equiva-
lent plastic strain p and the other is the so-called damage variable
or void volume fraction f. The Rousselier damage model includes
yield potential, stress strain relation, normality rule, and the evolu-
tion of damage variable. The yield potential is written as Eq. (1), so
it is a coupled constitutive equation in which the damage accumu-
lation and hydrostatic stress are incorporated.

U ¼ req

q
� RðpÞ þ Dfr1 exp

rm

qr1

� �
¼ 0 ð1Þ

where r ¼ rd þ rmI is the Cauchy stress tensor, rd is the deviatoric
tress tensor, rm is hydrostatic stress, I is the second order unity ten-
sor, req ¼ ð3rd : rd=2Þ1=2 is the von Mises equivalent stress,
q = (1 � f)/(1 � f0) is the relative density, f is the damage variable
or void volume fraction, f0 is the initial void volume fraction in
the material, R(p) is the hardening function of the material,
p ¼ ð2ep

d : ep
d=3Þ1=2 is the equivalent plastic strain, D and r1 are Rous-

selier material constants, usually D = 2 [18–20]. The stress strain
relation or Hooke’s Law is written as the following equation:

r ¼ qE : ee ¼ qE : ðe� epÞ ð2Þ

where E is the elastic modulus tensor, e is the strain tensor, ee and ep

are the elastic and plastic part of strain tensor respectively. Using
the normality rule, the plastic strain rate tensor can be expressed
as Eq. (3).

_ep ¼ _p
@U

@ðr=qÞ ¼
_p

3rd

2req
þ 1

3
Df exp

rm

qr1

� �
I

� �
ð3Þ

It is remarkable that the plastic part of strain tensor can be di-
vided into the deviatoric part and volumetric part by ep ¼ ep

d þ ep
mI;

therefore, the deviatoric part of plastic strain rate tensor can be gi-
ven as:

_ep
d ¼ _p

3rd

2req
ð4Þ

And the volumetric plastic strain rate was derived as the follow-
ing equation:

_ep
m ¼

1
3

_pDf exp
rm

qr1

� �
ð5Þ

The relation between the damage variable with the volumetric
plastic strain rate used in Rousselier model was derived by mass
conservation as the following equation:

_f ¼ 3ð1� f Þ _ep
m ð6Þ

By substituting Eq. (5) into Eq. (6), the evolution rate of the
damage variable can be written as a function of the equivalent
plastic strain rate and mean stress:
_f ¼ Df ð1� f Þ exp
rm

qr1

� �
_p ð7Þ

According to Nahshon and Hutchinson in [12], the void growth
is no longer directly tied to the plastic volume change as it is in the
original model, and simply treated as a parameter measuring the
damage accumulation in the material. It is recommended that
the void evolution rate can be written as Eq. (8) with an additional
phenomenological term. It results in a maximum effect for pure
shear and no effect for axisymmetric stress states.

_f ¼ 3ð1� f Þ _ep
m þ kxfxðrÞ

rd _ep
d

req
ð8Þ

Here kx is the shear damage coefficient, which sets the magnitude
of the void coalescence rate in shear deformation [12–16]. And the
invariant measure xðrÞ is given by

xðrÞ ¼ 1� n2 ¼ 1� 27J3

2r3
eq

 !2

ð9Þ

J3 ¼ detðrdÞ ¼ ðrI � rmÞðrII � rmÞðrIII � rmÞ ð10Þ

Here n ¼ 27J3
2r3

eq
is the Lode parameter in [18], or normalized third

invariant in [16] and lies in the range �1 6 x 6 1, J3 is the third
stress invariant of the deviatoric tress tensor rd, rI, rII and rIII are
the principal stresses of the tress tensor r and are assumed to be
ordered as rI P rII P rIII. The non-dimensional metric in Eq. (9)
lies in the range 0 6 x 6 1 to discriminate between axisymmetric
and shear-dominated stress states. For all axisymmetric stress
states, x = 0. And for all states comprised of a pure shear stress plus
a hydrostatic contribution, x = 1 (see details in [12]). Here, the Lode
angle h could be introduced as Eq. (11), which is the same definition
as in [10].

cosð3hÞ ¼ 27J3

2r3
eq

ð11Þ

Then the relation between the non-dimensional metric xðrÞ
and the Lode angle could be introduced as

xðrÞ ¼ sin2ð3hÞ ð12Þ

Substitute Eqs. (4) and (5) into Eq. (8), then a new damage evo-
lution rule could be derived as the following equation:

_f ¼ Df ð1� f Þ exp
rm

qr1

� �
þ kxfxðrÞ

� �
_p ð13Þ

When elasticity is neglected, the mean stress rm = 0, and xðrÞ
keeps as constant, Eq. (13) can be transferred to an ordinary differ-
ential equation

df
dp
¼ Df ð1� f Þ þ kxxðrÞf ð14Þ

With f0 as the initial void volume fraction, the analytical solu-
tion can be derived as:

f ¼
ðDþ kwxðrÞÞf0

ðDþ kwxðrÞ � Df0Þe�ðDþkwxðrÞÞp þ Df0

ð15Þ

Then for the shear stress state, the solution can be particular-
ized with D = 2, and xðrÞ ¼ 1 as

f ¼ ð2þ kwÞf0

ð2þ kw � 2f 0Þe�ð2þkwÞp þ 2f 0
ð16Þ

By substituting f0 = 10�4 and different kw = 0.0, 0.5, 1.0, 1.5 into
Eq. (15), the evolution of damage variable with respect to the
equivalent plastic strain p can be obtained as Fig. 1. It can be seen



Fig. 1. The damage variable evolutions with respect to the equivalent plastic strain
p under pure shear. The analytical solutions are obtained with the initial void
volume fraction f0 = 10�4 and different shear damage coefficient
kx = 0.0, 0.5, 1.0, 1.5 respectively.

J. Guo et al. / Computational Materials Science 71 (2013) 115–123 117
that, for the original Rousselier model (kw = 0), the damage variable
increases with the equivalent plastic strain p even in shear defor-
mation as shown in the following equation:

f ¼ f0

ð1� f0Þe�2p þ f0
ð17Þ

Here, it should be noted one of the differences between Gurson
and Rousselier models. With Gurson model, no void growth is ob-
tained in pure shear. However, with Rousselier model, the void
growth can be obtained in pure shear as presented in Fig. 1. The
additional phenomenological term in Eq. (8) could be considered
as a nucleation term and not as a void growth term, because it does
not comply with the mass conservation law.

3. Numerical implementation of stress integration algorithm

The stress integration algorithm is developed and discussed in
this section. The general return-mapping algorithm for plasticity
established in [13,33–35] is a good choice, for its higher accuracy
and unconditional stability. Although a backward-Euler algorithm
was first proposed for the model by Rousselier in [36] and Lorentz
et al. in [23] respectively, the stress integration algorithm for the
modified Rousselier model is briefly developed as following within
this framework and employed in FE models.

According to [33,34], from a computational standpoint the plas-
ticity problem can always be regarded as strain-driven. So, in this
framework, it can be supposed that the internal variables
rt; f t ; pt are given at time t, the purpose of the stress integration
algorithm is to update them to rtþDt ; f tþDt ; ptþDt by strain increment
De. Firstly, suppose that the strain increment is a purely elastic pro-
cess and the trail stress rtr can be obtained by Eq. (2), which is
determined by Hooke’s Law as

rtr ¼ rt þ qtE : De ¼ rt þ qtðkTrðDeÞI þ 2GDeÞ ð18Þ

Here k is the bulk modulus, G is the shear modulus. Next, the yield
surface is used to determine whether the strain increment is elastic
or not. If U ¼ rtr

eq

qt
� RðptÞ þ Dftr1 exp rtr

m
qtr1

� �
< 0, then it is an elastic

process and rtþDt ¼ rt; f tþdt ¼ ft ; ptþDt ¼ pt . But if U P 0, it is an
elastic–plastic process and the increment of the strain consists of
plastic strain part. Then the backward-Euler return algorithm is em-
ployed to calculate the increment of plastic flow multiplier dp.
Arrange Eq. (3) as
_ep
d ¼ _p

3rd

2req
¼ _p

@req

@rd
ð19Þ

And arrange Eq. (1) as

U ¼ req
1� f0

1� f
� RðpÞ þ Dfr1 exp

rm

r1

1� f0

1� f

� �
¼ 0 ð20Þ

Suppose there is an increment of plastic strain dep
d then the

decomposition of strain increment can be rewritten as:

De ¼ Dee þ Dep
d þ Dep

mI

¼ Dee � dee þ Dep
d þ dep

d þ Dep
mI þ dep

mI ð21Þ

Then the plastic strain increment can be updated by flow rule
using the second-order Taylor expansion:

Dep
d ¼ Dep

d þ dep
d ¼ ðDpþ dpÞ

@req r� dr
� �
@r

� ðDpþ dpÞ @req

@r
� @

2req

@r2 : dr

 !

� Dp
@req

@r
þ dp

@req

@r
� Dp

@2req

@r2 : dr ð22Þ

The total volumetric plastic strain increment can also be up-
dated as

Dep
m ¼ Dep

m þ dep
m ¼ Dep

m þ
@ep

m

@p
dp ð23Þ

Here

@ep
m

@p
¼ 1

3
Df exp

rm � drm

qr1

� �
ð24Þ

Then the stress increment can be written as

Dr� dr ¼ qE : ðDe� DepÞ ¼ qE : ðDe� Dep
d � Dep

mIÞ ð25Þ

Substitute Eqs. (22) and (23) into Eq. (25) to get the stress incre-
ment as

Dr� dr ¼ qE : ðDe� Dep
d � Dep

mIÞ ¼ qE :

� De� Dp
@req

@r
� dp

@req

@r
þ Dp

@2req

@r2 : dr� Dep
mI � @e

p
m

@p
dpI

 !

ð26Þ

Then the stress increment can be written as

dr ¼ Q�1rb ð27Þ

Here

Q ¼ I þ qDpE :
@2req

@r2 ð28Þ

And the so-called residual vector

rb ¼ Dr� qE : De� Dp
@req

@r
� dp

@req

@r
� Dep

mI � @e
p
m

@p
dpI

 !
ð29Þ

Then according to consistency condition

Uðr� dr; f þ df ;Dpþ dpÞ ¼ 0 ð30Þ

Using the first-order Taylor expansion gives

r/ �
@/
@r

drþ @/
@f

df þ @/
@p

dp ¼ 0 ð31Þ

Here



Fig. 2. Geometry and dimensions of the Al-alloy 5052 tensile samples and shear
sample (in mm).
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rU ¼
r
q

� �
eq

� RðpÞ þ Dfr1 exp
rm

qr1

� �
ð32Þ

@U
@r
¼ 1

q
@req

@r
þ Df

3q
exp

rm

qr1

� �
I ð33Þ

@U
@f

df ¼ @U
@f

@f
@p

dp ð34Þ

@U
@f
¼ req

1� f0

ð1� f Þ2
þ Dr1 1þ f

1� f0

ð1� f Þ2

 !
exp

rm

r1

1� f0

1� f

� �
ð35Þ

@f
@p
¼ ð1� f ÞDf exp

rm

qr1

� �
þ kxfxðrÞ ð36Þ

@U
@p
¼ � @RðpÞ

@p
ð37Þ

Then the increment of plastic flow multiplier:

dp ¼
rU � @U

@r : Q�1 : Dr� qE : De� Dp @req

@r � Dep
mI

� �� �
@U
@r : Q�1 : qE :

@req

@r þ
@ep

m
@p I

� �
� @U

@f
@f
@pþ

@RðpÞ
@p

ð38Þ

And finally the process is repeated according to Eqs. (39)–(41)
to satisfy the consistency condition.

DrtþDt ¼ Drt � dr ð39Þ

DptþDt ¼ Dpt þ dp ð40Þ

ftþDt ¼ ft þ
@f
@p

dp ð41Þ
Fig. 3. The new experimental setup for shear test.

Fig. 4. Load–displacement curves from tensile and shear tests.
4. Experiments

A series of smooth round bar (SRB), notched round bars (NRBs)
and shear samples were prepared for a wide range of stress states
and different fracture mechanisms. Al-alloy 5052 was selected as
the testing material, as it has good forming properties and is
widely used in the manufacture of aircraft fuel tanks, electronic
equipment panels, rivets and electrical enclosures. The chemical
composition (wt.%) is shown in Table 1. The major alloying element
is magnesium.

The geometry and dimensions of specimen are presented in
Fig. 2. These samples with different geometrical constraints could
ensure that the stress triaxiality varied with different fracture
modes [7,8,14,16,18]. The tension tests were performed by an
100 kN INSTRON 1195 test machine at room temperature. The
crosshead velocity was set as 0.3 mm/min for all specimens to en-
sure a quasi-static deformation. For the SRB and NRB samples, the
longitudinal strain was measured using an extensometer over
l0 = 12.5 mm within the gauge section. The shear tests were per-
formed by a compression apparatus which contains a punch, a con-
tainer and a basement (see details in Fig. 3). This shear test
setup is a new one which is different with the existing type in
[7–10,13,14,16,18,37,38]. The load F and the displacement Dl were
recorded and the characteristics are presented in Fig. 4. The
Table 1
The chemical composition of Al-alloy 5052 (wt.%).

Si Fe Cu Mn Mg Cr Zn Ti Al

0.08 0.19 0.02 0.02 2.36 0.18 0.03 0.01 Re
displacements at fracture of the NRB samples show decline com-
pared with the SRB, in other word, showing the notch sensitivity
of ductile materials, for higher stress triaxiality in notched round
bars [7,18,39,40].

Fig. 5 shows the macroscopic fracture phenomenon by SEM
fractographs, the cup-cone fracture mode was found in all of the



Fig. 5. (a) SEM fractographs of the SRB sample. Equi-axed ductile dimples can be found in the central region, while the cone region comprises highly elongated dimples. (b)
SEM fractograph of the shear sample, elongated dimples do not cover the whole fracture surface like in the cone zone of (a).
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SRB and NRB samples (Fig. 5a), similar to existing experimental re-
sults in [14,18,40]. Equi-axed ductile dimples can be found in the
central region, while the cone region comprises highly elongated
dimples, which indicates void coalescence by shear deformation.
In Fig. 5b, it can be seen that for shear specimen, there are elon-
gated dimples formed by void growth during shear deformation.
The dimples do not cover the whole fracture surface like in the
cone zone of Fig. 5a. Probably, in the shear localization region, a
shear fracture mechanism combines with void deformation.
Fig. 6 shows the longitudinal section of a sample which was not
fully broken in experiment. By polishing it to the central section,
the SEM fractograph shows the void distribution near the crack
tip. We can see the void coalescence induced by shear and the
crack propagation path. It can be seen that the crack occurs at
the center and then grows radially. The transition from cup to cone
is like branching and bifurcation.
5. Results and discussion

In this section, the main aims are to determine the material
parameters such as the stress–strain curve in a wide range of plas-
tic deformation and the damage-related parameters by a FE-based
inverse calibration procedure combined with the physical experi-
ments. The inverse procedure shows its potential in ductile frac-
ture calibration [13–18]. Then the predictive ability of the
modified Rousselier model is discussed by studying the cup-cone
fracture mode in SRB and NRB samples. The material isotropy
and strain-rate independence are assumed in the present study.

5.1. Determination of hardening model

The aim of this section is to obtain the stress–strain curve of Al-
alloy 5052 from uniaxial tensile test of SRB sample. Then, the Voce



Fig. 6. The micrograph of the SRB sample section by SEM. The microvoids
distribution near the crack tip shows the shear-link up of some voids.
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hardening model is chosen to extend the stress–strain curve to a
wide range of plastic deformation. The nominal strain eN is ob-
tained by eN = Dl/l0 and nominal stress by rN = F/A, where A is the
section area of SRB sample. Prior to necking the true strain is given
by eT = ln(1 + eN), and the true stress by rT = rN(1 + eN). The stress–
strain curves are presented in Fig. 7. This material shows uniform
deformation, necking and fracture. For this material, the uniform
deformation is small, so the Voce type hardening model is em-
ployed to fit the true stress–true strain curve to a wide range of
plastic deformation [37,38] as the following equation:

RðpÞ ¼ A� ðA� BÞ exp �Cpð Þ ð42Þ

Here, A, B, C are model constants. By least square fitting, the
material constants are chosen as A = 272.2 MPa, B = 209.6 MPa
and C = 38.81 respectively. The fitting results are also shown in
Fig. 7.

5.2. Determination of r1 and D

According to [4], the material parameter r1 can be calibrated as

r1 ¼ 2RðpFÞ=3 ð43Þ

Here R(pF) is the equivalent stress when the fracture happens in
smooth round bar tension test. By the Voce type hardening model
as Eq. (42), the equivalent stress when the fracture happens can be
Fig. 7. The true stress–strain curve of Al-alloy 5052 at room temperature from
tensile tests, and the fitting curve by the Voce hardening model.
obtained as R(pF) = A. So the material parameter r1 can be deter-
mined as 180 MPa. The material parameter D is determined as 2
as in [4].

5.3. Calibration for the initial void volume fraction f0 and the critical
void volume fraction fc

The critical void volume fraction fc is not really a parameter of
the Rousselier model nor a coalescence criterion. Fracture initiates
by strain localization because of the softening, fc is only used in or-
der to delete the element. According to the discussion in [3,21], the
critical void volume fraction fc at fracture can be chosen as 0.15 for
this material and then the only unknown parameter is f0. Usually,
the void consists of brittle intermetallic phase in the aluminum al-
loys [4,41]. In order to identify the initial volume fraction of inclu-
sions, metallographic investigation on polished surface of the
specimens was performed. The results show that the initial void
volume fraction f0 is very low considering that the material is alu-
minum alloy. So in this section, the FE-based inverse fitting proce-
dure in [3] is employed here to determine the initial void volume
fraction f0 as follows.

Three analyses were run first using the original Rousselier mod-
el, with initial void volume fraction f0 = 0.0001, 0.001, 0.005
respectively. While the critical void volume fraction fc is 0.15, in
other words, when the void volume fraction in the material
reaches fc, fracture occurs. The Young’s modulus E is 68.9 GPa
and Poisson’s ratio m is 0.33. And the finite element mesh is pre-
sented in Fig. 8. The axisymmetric boundary condition is chosen
to simplify the simulation and the element size was 60 � 30 lm,
providing 50 elements across the gauge radius [2,14]. The element
type is CAX4R provided by ABAQUS/Explicit, which is a bilinear
axisymmetric and quadrilateral four-node element with reduced
Gaussian integration. The movement of the crosshead is repre-
sented by a displacement boundary condition. In the following
analyses, by using the critical void volume fraction, the crack
Fig. 8. The typical finite element meshes in simulations for the samples, (a) SRB
sample with axisymmetric boundary condition, (b) NRB sample with axisymmetric
boundary condition, and (c) shear sample with symmetric boundary condition.



Fig. 9. The stress–strain curves and the evolutions of the damage variable versus
engineer strain with different initial void volume fraction f0 obtained by FEA using
Rousselier model. The initial void volume fraction f0 is calibrated as 10�4. The
critical void volume fraction fc is chosen as 0.15.

Fig. 10. Calibration procedure for shear damage coefficient kx by shear tests.
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propagation is taken by element deletion [42]. In the FEA, when the
state variable of the integral point reaches the threshold, the ele-
ment will be deleted. And it is a popular way to simulate the evo-
lution of ‘crack’ in the structures and widely used in recent
researches as in [13,14,18,36,37]. And the engineer strain engineer
stress curves were outputted and plotted in Fig. 9. The strain stress
Fig. 11. The crack initiation and propagation predicted by the modified Rousselier m
curves and the evolutions of the damage variable versus engineer
strain obtained by simulations with different f0 are also shown in
Fig. 9. The damage variable increases monotonously with the
deformation and the slope of the curve is very large in the end.
And it can also be seen that, for f0 = 0.0001, the difference between
the simulation and experiment is acceptable and the damage var-
iable evolution is in a reasonable range mentioned in other refer-
ence [2,3,5,14,21]. So, the initial void volume fraction f0 was
calibrated as 10�4 for this material. The simulation results also
show that the Voce model in Eq. (42) can describe the plastic hard-
ening behavior properly.

5.4. Determination of shear damage coefficient kx from shear tests

In order to verify the predictive ability of original Rousselier
model under shear, an analysis was run for the shear test with
kw = 0.0. The FE mesh is presented in Fig. 8. Symmetric boundary
condition is used and only half geometry is modeled. 3D eight-
node brick elements with reduced Gaussian integration and hour-
glass section control (C3D8R in ABAQUS Explicit) were used in all
regions. To improve computational efficiency, only the material
in the shear region is modeled using the modified Rousselier mod-
el. Outside this zone the plate is modeled using standard von Mises
plasticity model provided by Abaqus/Explicit. The minimum ele-
ment size is 200 lm. Adaptive meshing is employed to avoid ele-
ment distortion in the large localized shear deformation in the
simulation. The other damage parameters are set as discussed
above. Fig. 10 shows the displacement–load curve obtained by FE
simulations. As shown in Fig. 10, for kw = 0, the original Rousselier
model can predict the failure of the material. But the displace-
ment–load curve comparing with the experimental results shows
that the ductility is over-estimated. In the original constitutive
equations, the relation between the damage variable rate _f with
the volumetric plastic strain rate _ep

m was derived by mass conserva-
tion as Eq. (6). So, the simulation results for shear deformation
using the original damage evolution function do not agree with
the experimental results.

As shown in Fig. 1, by assuming the initial void volume fraction
f0 and the critical void volume fraction fc have already been esti-
mated, the shear damage coefficient kx can be identified by shear
tests. In order to determine the shear damage coefficient kx, other
three analyses were run with kx = 0.5, 1.0, 1.5 respectively. The
displacement–load curve obtained by FE simulations are also
shown in Fig. 10. It can be seen that, the larger the shear damage
coefficient, the lower ductility obtained in simulation. We can
see that by the modified model with shear damage coefficient
kw = 1.5, the ductility predicted by FE is closer to the physical
odel in shear tests were illustrated by the void volume fraction f when kx = 1.5.



Table 2
Material parameters of Al-alloy 5052.

Model parameters Value

Young’s modulus E (GPa) 68.9
Poisson’s ratio m 0.33
The Voce hardening model r ¼ A� ðA� BÞ exp �Cepð Þ

A (MPa) 272.2
B (MPa) 209.6
C 38.81

Rousselier parameter D 2
Rousselier parameter r1 (MPa) 180
Initial void volume fraction f0 10�4

Critical void volume fraction fc 0.15
Shear damage coefficient kx 1.5

Fig. 13. Comparisons of the load–displacement curves from numerical simulations
and experimental results.
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experiments, so the shear damage coefficient kx is calibrated as 1.5
for this material. In Fig. 11, the evolution of damage in simulation
of shear test with kx = 1.5 is shown. The crack initiation, propaga-
tion, and final failure in shear obtained by modified Rousselier
model are also presented. The material parameters are summa-
rized in Table 2.

5.5. Verification and discussion

To verify the predictive capability of the modified Rousselier
model, several analyses were run to study the cup-cone fracture
mode of SRB sample under tension. The predicted crack trajectory
of the SRB sample under tension from FEA by modified Rousselier
model is shown in Fig. 12 which indicates a cup-cone fracture
mode. Fig. 12 shows the evolution of the damage variable and
the invariant measure xðrÞ of the stress for the SRB sample. We
can see that the simulation results by the modified model can pre-
dict the fracture process of the specimen. First, the localization
phenomenon occurs as a result of high triaxiality in the center.
Then the porosity band branches to two shear bands, and the void
Fig. 12. The evolution of the damage variable and the invariant measure xðrÞ of
evolution is influenced by shear localization. For the extended void
evolution model incorporating shear, the void coalesce along the
shear bands so that the crack propagates along one of the shear
bands correspondingly resulting as bifurcation. When one of the
bands is selected and the symmetry of the structure is lost, finally
the ultimate fracture is cup-cone mode. We can see that for the
modified Rousselier model, the new damage evolution function is
influenced by the non-dimensional metric of stress state xðrÞ, so
that the ductile damage evolution mechanisms under shear defor-
mation can be described by the modified model. Fig. 13 presents
the comparison of the load–displacement curves from numerical
simulations with the experimental results. Good agreement can
be found between the numerical and the experimental results.
The points marked in Fig. 13 correspond to the stages (a) localiza-
tion, (b) branching, (c) bifurcation and (d) fracture in Fig. 12.
the SRB tensile sample by kx = 1.5, when the crack grows to a certain length.
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6. Conclusions

A modified Rousselier model which can predict shear failure as
well as tension failure was proposed in this paper.

1. A recent extended damage evolution function considering a
non-dimensional metric of stress state xðrÞ with a shear dam-
age coefficient kx was employed and a modified Rousselier
model was proposed in this paper. A stress integration algo-
rithm based on the return mapping method was given and
implemented into finite element models using the user defined
material subroutine VUMAT in the ABAQUS/Explicit platform.

2. The material parameters were calibrated by a finite element
based inverse method. By uniaxial tension test, the initial void
volume fraction f0 and critical void volume fraction fc were cal-
ibrated as 0.0001 and 0.15 for Al-alloy 5052 respectively. By a
new type of shear test, the shear damage coefficient kx was cal-
ibrated as 1.5 for this material. The simulation results show that
the modified model can give accurate results for the shear type
failure.

3. The predictive capability of this model was carried out by
studying the cup-cone fracture mode in the tensile tests. The
validity of this model was verified by comparing the experi-
ments with the simulations and good agreement was achieved.
The results show that the new damage evolution function
which is influenced by the metric of the stress can describe
the void evolution mechanisms under shear deformation. So,
the predictive ability of the modified Rousselier model was
improved by the extended damage evolution model.
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