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CTDroid: Leveraging a Corpus of Technical Blogs
for Android Malware Analysis

Ming Fan , Xiapu Luo , Jun Liu, Chunyin Nong, Qinghua Zheng, and Ting Liu

Abstract—The rapid growth of Android malware results in a
large body of approaches devoted to malware analysis by leveraging
machine learning algorithms. However, the effectiveness of these
approaches primarily depends on the manual feature engineering
process, which is time-consuming and labor-intensive based on
expert knowledge and intuition. In this paper, we propose an auto-
matic approach that engineers informative features from a corpus
of Android malware related technical blogs, which are written in a
way that mirrors the human feature engineering process. However,
there are two main challenges. First, it is difficult to recognize useful
knowledge in the magnanimity information of thousands of blogs.
To this end, we leverage natural language processing techniques to
process the blogs and extract a set of sensitive behaviors that might
do harmful activities to users potentially. Second, there exists a
semantic gap between the extracted sensitive behaviors and the
programming language. To this end, we propose two semantic
matching rules to match the behaviors with concrete code snippets
such that the apps can be tested experimentally. We design and
implement a system called CTDroid for malware analysis, includ-
ing malware detection (MD) and familial classification (FC). After
the evaluation of CTDroid on a large scale of real malware and
benign apps, the experimental results demonstrate that CTDroid
can achieve 95.8% true positive rate with only 1% false positive
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rate for MD and 97.9% accuracy for FC. Furthermore, our pro-
posed features are more informative than those of state-of-the-art
approaches.

Index Terms—Android malware, informative feature, natural
language process (NLP), technical blog.

I. INTRODUCTION

NOWADAYS, Android malware has posed great threats to
smartphone users, such as stealing personal information,

connecting to remote command and control servers, and sending
premium messages. A recent study conducted by Qihoo reported
that about 7.6 million malware were detected in 2017 [1].

A large body of research has thus studied approaches for
analyzing Android malware. These approaches increasingly de-
pend on machine learning techniques, which engineer multiple
features and train classifiers to detect whether a given appli-
cation (app) is malicious, and if so, which malware family it
belongs to. The existing proposed features can be roughly clas-
sified in twofolds: First, string-based features, which are mainly
composed of request permissions1 [2], intents2 [3], application
programming interface (API) calls [4], and other components
of Android operation system [5]. Second, structure-based fea-
tures, which are extracted from different kinds of graph models,
including control dependency graph [6]–[9] and function call
graph [10]–[13], through heavily inspecting of app code.

The effectiveness of the above approaches primarily de-
pends on the manual feature engineering process, which is
time-consuming and labor-intensive based on human knowledge
and intuition. Specifically, to perform malware analysis with
high performance, the researchers need to manually inspect the
malicious activities of malware samples and summarize the
hypotheses about common behaviors that malware share but
benign apps do not. Furthermore, the summarized hypotheses
might vary from different inspected malware samples, thus
constructing different feature spaces for different datasets.

Therefore, in this paper, we aim to automatically engineer
informative features from existing knowledge learned by ex-
perts. Specifically, we mine sensitive behaviors, behaviors that
might do harmful activities to users potentially, from a corpus of
Android malware related technical blogs. The technical blogs in

1Android permission control is one of the major Android security mech-
anisms. Android permissions are requested by apps before the apps can use
certain system data and features.

2An intent is a bundle of information describing a desired action, including
the data to be acted upon, the category of a component that should perform the
action, and other pertinent instructions.
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Fig. 1. Overview architecture of CTDroid that contains four main procedures: (1) Text preprocessing (Section II-A). (2) Sensitive behavior generation
(Section II-B). (3) Feature space construction (Section II-C). (4) MD and classification (Section II-D).

this paper refer to the entries or articles in the security websites.
We choose the technical blogs as our knowledge source because
they are written in a way that mirrors the human feature engi-
neering process and they are usually public online in time. Then,
we use the extracted sensitive behaviors to guide the automatic
informative feature engineering processing. However, there are
two main challenges in this paper.

First, it is a key challenge to automatically recognize the harm-
ful activities and mine sensitive behaviors in the magnanimity
information of thousands of technical blogs. For example, for
the sentence: “These instructions can be used to open a web
page, call a phone number, or send an SMS text message to a
premium number. [14],” it is easy for the researchers to obtain
the knowledge that there are three sensitive behaviors marked
with an underline for the instructions. However, this conclusion
is based on the prior knowledge of research in the world, since
the sentence does not provide sufficient linguistic clues that such
three behaviors might do harmful activities. Therefore, there is
a semantic gap between the natural language in technical blogs
and sensitive behaviors.

Second, there also exists a semantic gap between the sensitive
behaviors and the programming language. Therefore, it is hard
to directly utilize the sensitive behaviors for malware analysis
with machine learning algorithms. For example, even when we
know that send an SMS text message is a sensitive behavior,
we are still unable to directly identify how does a given app
perform such sensitive behavior in their thousands of lines
of code.

To overcome the first challenge, we leverage natural language
processing (NLP) techniques to parse the contents in blogs into
a uniform structure, verb–object phrase (e.g., “send—> text
message”). Then, we propose a clustering-based approach to
extract frequent behaviors that have close relations with Android
system and regard them as sensitive behaviors. For the second
challenge, we propose two semantic matching rules to bridge the
gap between the sensitive behavior and the programming lan-
guage based on the analysis of descriptions of Android concrete
features (i.e., permissions, API calls, and intents), as well as the
keywords in the app code.

We implement these ideas in a system called CTDroid to
construct a set of informative features. With known machine
learning algorithms, we train classifiers and perform malware
detection (MD) and familial classification (FC). After applying
CTDroid on a large scale of real malware and benign apps, we
find that our constructed features exhibit impressive malware
analysis performance. In summary, our major contributions in-
clude the following.

1) We propose techniques that summarize the existing knowl-
edge contained in magnanimity information of natural
language documents and generate a novel type of fea-
tures presented as verb–objective phrases that are easy to
understand.

2) We propose two semantic matching rules that bridge the
gap between the phrase-based features and programming
language.

3) We design and implement CTDroid, an automatic feature
engineering system. By using CTDroid, we construct a set
of informative features that can be utilized for Android
MD and FC.

4) We conduct extensive experiments to evaluate CTDroid
on a large scale of real malware and benign apps. The ex-
perimental results show that CTDroid can achieve 95.8%
true positive rate (TPR) with only 1% false positive rate
(FPR) for MD and 97.9% accuracy for FC. Furthermore,
our proposed features are more informative than those of
state-of-the-art approaches.

The rest of this paper is organized as follows. Section II details
the methodology of CTDroid. Section III reports the experi-
mental results. After discussing the limitations of CTDroid in
Section IV, we introduce the related work in Section V, and
Section VI concludes this paper.

II. METHODOLOGY

Fig. 1 illustrates the overview architecture of CTDroid, which
is consisted of four main procedures.

In the text preprocessing procedure, at first, a corpus of techni-
cal blogs are crawled from websites and used as the input of our
system. Then, by applying NLP techniques, including sentence
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extraction, part-of-speech (POS) tagging, and word stemming,
the contents in blogs are parsed into a set of behaviors that are
represented as verb–object phrases.

In the Sensitive behavior generation procedure, since not ev-
ery behavior extracted from the blogs is significant for malware
analysis, the extracted behaviors are grouped into a set of clusters
and the frequent behaviors that have close relations with Android
system are identified as the sensitive behaviors.

In the Feature space construction procedure, each defined
sensitive behavior is regarded as a feature. Then, two matching
rules are proposed to construct a feature space, where each app
is represented as a feature vector.

In the MD and classification procedure, with known machine
learning algorithms, different classifiers are generated for the
purposes of MD and FC.

A. Text Preprocessing

There are thousands of technical blogs on the web. It is neither
effective (need an expert understanding of Android system) nor
efficient (too much knowledge to learn) to carefully read each
blog. To better automatically obtain significant knowledge from
the blogs, we first transform the semantic meanings of blog
contents into a set of behaviors. A behavior is represented as
a tuple that consists of a verb and an object, and both of them
are indispensable. The steps of extracting behaviors from blogs
with NLP techniques are listed as below.

1) Sentence Extraction: Given a technical blog crawled from
the website with HTML format, we initially use jsoup [15], a
Java HTML parser, to extract the contents from the HTML file
and remove all non-ASCII symbols. Then, we split the extracted
content into a set of sentences with sentence segmentation.

2) POS Tagging: For each extracted sentence, its typed
dependency representations of the plain text in the form of
rule(gov, dep) are extracted by using Stanford typed dependency
parser [16], [17], a program that works out the grammatical
structure of sentences. The gov and dep denote the governor
word and the dependent word, respectively. The rule denotes
the relation between the gov and dep. There are many dif-
ferent kinds of rules defined in the parser, such as conj, det,
dobj, and nsubjpass. By carefully reading ten technical blogs,
we find that most of the extracted subjects are the malware
samples. Therefore, we do not consider the rules of which the
dep is the subject. Moreover, given that we aim to extract the
information that depicts the malicious activities conducted by
malware, the rules such as det and conj that depict the defini-
tion and conjunction relationships cannot be used to find the
malicious activities. Thus, we only focus on two main types
of rules: dobj and nsubjpass. The dobj denotes that the dep
is the (accusative) object of the gov. The nsubjpass denotes
that the dep is the syntactic subject of the gov in a passive
clause.

As listed in Table I, after the decomposition of the plain text,
we can get the corresponding typed dependency representations
with the gov (i.e., “open,” “call,” and “send”) and the dep (i.e.,
“page,” “number,” and “message”). We construct one behavior
for each generated typed dependency representation, where the

TABLE I
EXAMPLE OF BEHAVIOR EXTRACTION

TABLE II
FOURTEEN SEMANTIC GROUPS AND THEIR REPRESENTATIVE VERBS

gov is used as the verb and the dep is used as the object. Further-
more, we extend the verb and the object to their corresponding
noun phrases by adding the adjective modifiers and identifying
multiword expressions. For example, the object “message” is
extended to its noun phrase, i.e., “sms text message.”

3) Word Stemming: The noun phrases with similar semantic
meaning would appear in different variants, such as “a phone
number” and “phone numbers.” To address this problem, we first
remove the stop words, the common words that would appear to
be of little value for NLP analysis. The stop words used in our
paper is provided by [18], such as “a,” “an,” and “the”. Then,
we apply WordNet [19] to reduce the words based on their POS
tag to their root forms. For example, the object “numbers” in its
plural form would be reduced to “number.”

Then, given that different verbs may have similar meanings,
such as “get” and “return,” we regard these verbs as the same one.
To this end, we manually construct 14 semantic groups based
on a set of commonly used verbs provided by Anton et al. [20].
Then, we add their similar verbs returned by WordNet. As listed
in Table II, each semantic group consists of a set of similar verbs
and one representative verb. If the verb of a behavior belongs
to one of the semantic group, then it will be replaced with the
corresponding representative verb. For example, the behavior
“return—> phone number” will be changed to “get—> phone
number.”

B. Sensitive Behavior Generation

After the text preprocessing of the collected blogs, 208K
behaviors are extracted. However, we observe that most of
the extracted behaviors present little significance for malware
analysis. For example, the behavior “advise—> user” occurs
when the researchers give some advice to the users about how
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to protect their smartphones. However, this behavior has little
value for malware analysis. Thus, we propose a clustering-based
approach to filter out the useless behaviors and mine the frequent
behaviors that have close relations with Android system. These
behaviors are regarded as the sensitive behaviors. To this end, we
need to first propose an effective and efficient behavior similarity
calculation method since there are too many extracted behaviors.

1) Behavior Similarity Calculation: For convenience, we
use BH to denote the set of extracted behaviors. BH =
{bhi = (verbi, objecti)|1 ≤ i ≤ K}, whereK is the total num-
ber of behaviors. Each behavior bhi contains a verbi and an
objecti. The similarity between two behaviors bhi and bhj

depend on the similarities between their corresponding verbs
and objects, which are represented as sim(verbi, verbj) and
sim(objecti, objectj), respectively. The similarity between bhi

and bhj is obtained as (1)

sim(bhi, bhj) = α ∗ sim(verbi, verbj)

+ (1− α) ∗ sim(objecti, objectj).
(1)

The parameterα is used to control the weights of the similarity
of verbs and objects; 0 ≤ α ≤ 1. The reason of introducing α
is that if the behaviors whose verbs are general words, such as
“use,” “get,” and “return,” their similarities would mainly rely
on the sim(objecti, objectj) rather than sim(verbi, verbj). To
this end, we assign different weights to the verbs to denote their
importance in the similarity calculation. Specifically, if a verb is
generally used in our extracted behaviors, then its weight should
be low. Thus, we use the inverse document frequency [21] to
measure the inverse frequency of verb that appears across all
the behaviors. Therefore, the weight of verbi is calculated as
follows:

w(verbi) = log2
K

Num(bhverbi)
(2)

where Num(bhverbi) denotes the number of behaviors that
contain verbi. Then, all the w(verb) s are normalized between 0
and 1. Finally, for the sim(bhi, bhj), itsα is obtained as follows:

α =
w(verbi) + w(verbj)

2
. (3)

Next, to calculate the similarity between verbs or objects
which are actually phrases (phs), we first transform them into a
calculable form. Here, we rely on the tool called Word2Vec [22].
Word2vec takes a large corpus of text as its input and produces a
vector space, with each unique word in the corpus being assigned
a corresponding vector in the space. In this paper, we collect a
12.2G corpus from Wikipedia [23] and put them into Word2vec
with the skip-gram model [24]. Each word wd in the corpus is
represented as a vector with l dimensions as (4); l = 100 in this
paper

−−−−−→
vec(wd) = 〈v1, v2, . . . , vl〉. (4)

As introduced in [22], semantic relations among
words can be captured via simple vector operation. For

example,
−−−−−−−−−→
vec(“better′′)−−−−−−−−−→

vec(“good′′) ≈ −−−−−−−−−−→
vec(“faster′′)−−−−−−−−−→

vec(“fast′′), in which the minus sign denotes vector

Algorithm 1: Clustering of Behaviors.
Input:

BH = {bh} // BH denotes the set of extracted
behaviors in blogs.
θ // θ denotes the similarity threshold value of adding
behaviors into clusters.
ε // ε denotes the support threshold value of filtering out
clusters.

Output:
C // C denotes the set of output clusters and each cluster
contains a set of similar behaviors.

1: p = 1, c1 = {bh1}, C = {c1}
2: for each bhi,i 	=1 in BH do
3: c′ = argmaxcj∈C sim(bhi, cj)

4: if sim(behavi, c
′) ≥ θ then

5: c′ = c′ ∪ {behavi}
6: else
7: p = p+ 1, cp = {behavi}, C = C ∪ {cp}
8: end if
9: end for

10: for each cj in C do
11: if sup(cj) < ε then
12: C.remove(cj)
13: end if
14: end for
15: return C

substraction operation. Leveraging the characteristic of vector
operation in Word2Vec, we obtain the vector of a phrase ph by
the vector adding operation on all the words in ph as (5). The
cosine similarity is widely used to find the similarity between
two given vectors. Thus, the similarity between two phrases
can be calculated with cosine similarity based on (6), in which
||−→vec|| is the Euclidean norm of the vector −→vec

−−−−−→
vec(ph) =

∑

wd∈ph

−−−−−→
vec(wd) (5)

cosine(
−−−−−→
vec(ph1),

−−−−−→
vec(ph2)) =

−−−−−−→
(vec(ph1)×

−−−−−→
vec(ph2))

||−−−−−→vec(ph1)|| · ||
−−−−−→
vec(ph2)||

.

(6)

2) Behavior Clustering: Based on the similarity calculation
of behaviors, we mine the frequent behaviors via the clustering
of behaviors. Algorithm 1 lists the step of behavior clustering
with the input of all generated behaviors BH = {bh} and two
threshold values, θ and ε. θ denotes the similarity threshold
between a behavior and a cluster. In other words, if the average
similarity between a behavior bhi with all the behaviors in
cluster cj , represented as sim(bhi, cj), is higher than θ, then the
behavior bhi is added into the cluster, indicating that the behavior
bhi has very close semantic meanings with those in cluster cj .
ε denotes the support threshold value of grouped clusters. If the
support value of cluster cj , represented as sup(cj) is less than
ε, we filter out this cluster.
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TABLE III
EXAMPLE OF BEHAVIOR CLUSTER

TABLE IV
ANDROID SYSTEM RELATED CONCEPTS [25]

In Algorithm 1, C is initialized with only one cluster c1 =
{bh1} (line 1). Then, all the other behaviors in BH are succes-
sively calculated to check whether there exists a cluster inC that
the current behavior can be added in (lines 2–9). After that, we
filter out the clusters whose support values are less than ε (lines
10–14).

After the clustering of behaviors, we can obtain a set of clus-
tersC and each cluster c ∈ C contains a set of similar behaviors.
In each cluster, the behavior with the highest frequency number
is selected as the representative behavior repBh. The frequency
number of a behavior denotes the times of the behavior occurs in
BH . Table III lists an example of the generated cluster, in which
all behaviors contain the similar semantic meanings of sending
text messages. The number attached to the behavior denotes its
corresponding frequency number.

To identify the sensitive behaviors, we filter out the behaviors
with little significance for malware analysis within two steps.

1) First, we remain the behaviors whose verbs belong to our
constructed 14 semantic groups, since most other verbs
are too general to identify their concrete actions in app
code such as “protect,” “alert,” and “infect.”

2) Second, we remain the behaviors that have close relations
with Android system. To this end, we obtain a set of
Android system sensitive concepts based on the work of
Felt et al. [25], in which they conduct research for the user
concerns about 99 smartphone risks. As a result, there are
35 sensitive concepts listed in Table IV.

C. Feature Space Construction

After the generation of sensitive behaviors, it is nontrivial to
directly utilize the sensitive behaviors for malware analysis with
machine learning algorithms due to the semantic gap between the
sensitive behaviors and the programming language. To address
this challenge, we propose two semantic matching rules by
leveraging the descriptions of Android concrete features (i.e.,
permissions, API calls, and intents), as well as the keywords in
the app code.

TABLE V
EXAMPLE OF PERMISSION MATCHING

TABLE VI
EXAMPLE OF INTENT MATCHING

1) APK Disassembling: In general, Android apps are written
in Java code and they are compiled to Dalvik code (DEX) stored
in a file called classes.dex. The required resource files and
the compiled code are packaged into an APK file. With existing
mature disassembling tools, such as apktool [26], we are able to
obtain the AndroidManifest.xml file and the Dalvik code
files. The AndroidManifest.xml file contains essential
information about an app to the Android system, including the
requested permissions and intents. It is worth noting that the
widely used third-party and advertisement libraries might affect
the performance of malware analysis. We filter out these libraries
from the Dalvik code by using the blacklist provided by [27],
[28].

2) Feature Vector Construction: Basically, the Dalvik code
is the main part of an app that we need to match with our
sensitive behaviors. Furthermore, existing approaches [2], [29],
[30] reveal that permissions and intents are significant for mal-
ware analysis. Thus, we also match such concrete features (i.e.,
permissions and intents) with our sensitive behaviors. Our two
matching rules are introduced as follows.

Rule I: Matching With Permissions and Intents: In this
paper, 140 permissions and 261 intents are collected from the
Android document [31]. However, it is not effective to directly
match the permissions and intents with the sensitive behav-
iors because of the insufficient literal meanings. Therefore,
the corresponding descriptions of the permissions and intents
are also collected to provide useful information. To match the
concrete permissions and intents with given sensitive behavior,
the collected descriptions are parsed into behaviors as introduced
in Section II-A. In addition, if the name of a permission or
an intent consists of a verb and an object, one more behavior
is constructed. Then, the extracted behaviors are matched with
the given sensitive behavior by using our similarity calculation
method. If there exists a similarity that is higher than the preset
θ, then we define that the app contains the current sensitive
behavior feature.

Tables V and VI list examples of permission matching and
intent matching, respectively. The number behinds the extracted
behavior denotes its similarity with the sensitive behavior. It is
worth noting that in Table VI, since the verb “verify” and the verb
“check” belong to the same semantic group listed in Table II,
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TABLE VII
EXAMPLE OF API CALL MATCHING

Fig. 2. Snippets of deleting a text message.

“verify” is replaced with “check” and the similarity between the
two behaviors is 1.0.

Rule II: Matching With Dalvik Code: Dalvik code is a
human-readable representation of the binary bytecode. From the
generated Dalvik code files, we initially extract the method bod-
ies by recognizing the identifies.method and.end method.
In each method body, API calls are invoked to perform specific
behaviors. For example, the API call getLine1Number() is
used to return the phone number of the device, which can be
matched with the “get—> phone number” behavior. However,
expert knowledge is needed to link the meanings of line1 number
with the phone number. Similar to permissions and intents, we
also leverage the descriptions of API calls to help us match them
with given sensitive behaviors. Table VII lists an example of API
call matching.

Unfortunately, not all the identified sensitive behav-
iors have corresponding successfully matched API calls.
For example, Fig. 2 presents the snippets of deleting a
text message, which is implemented by using the Con-
tentResolver:delete() function with the argument
of parsed string content://sms/conversations/. Di-
rectly matching the given sensitive behavior with the invoked
API call in the method body is not sound for such cases.

To address this problem, the method body is initially to-
kenized into a bag of words. For example, ContentRe-
solver:delete() is tokenized as {“content,” “resolver,”
“delete”}. Then, we check whether each word in the sensitive
behavior is contained in the word bag. In this way, the snippets in
Fig. 2 are matched with “delete—> text message” sensitive be-
havior based on the matched words “delete” and “sms” (similar
meaning as “text message”) that are marked in red.

Next, to perform malware analysis with machine learning
algorithms, each app should be represented as a feature vector.
Specifically, for a set of n given apps X = {x1, x2, . . . , xn}
and a set of k identified sensitive behavior feature F =
{f1, f2, . . . , fk}, each app xi is represented as a feature vector
xi = 〈xi1, xi2, . . . , xik〉, where xij denotes the value of the jth
feature for the ith app. xij is calculated based on the above two
matching rules in Algorithm 2.

Algorithm 2: Calculation of Feature Value.
Input:

xi, fj // xi denotes the ith app and fj denotes the jth

sensitive behavior feature.
Output:

xij // xij denotes the output feature value.
1: xij = 0
2: Perxi

= {per} // Perxi
denotes the required

permission set of xi.
3: if ∃per ∈ Perxi

and MatchingRule− I(per, fj) then
4: xij ++
5: end if
6: Intxi

= {int} // Intxi
denotes the used intent set

of xi.
7: if ∃int ∈ Intxi

and MatchingRule− I(int, fj) then
8: xij ++
9: end if

10: Methodxi
= {md} // Methodxi

denotes the method
set of xi.

11: for each md in Methodxi
do

12: APImd = {api} // APImd denotes the API call
set of md.

13: if ∃api ∈ APImd and MatchingRule− II
(api, fj) then

14: xij ++
15: else
16: WdBagmd = {wd} // WdBagmd denotes

the word bag of md.
17: if MatchingRule− II(WdBagmd, fj) then
18: xij ++
19: end if
20: end if
21: end for
22: return xij

In Algorithm 2, xij is initially set as 0 (line 1). Then, we
extract a required permission set Perxi

and an intent set Intxi

from the AndroidManifest.xml file of app xi. After that,
we match each permission and intent in the two sets with the
given sensitive behavior fj with matching rule I, and increase the
feature value with 1 if there exists a successful matching (lines
2–9). Next, we construct a method set Methodxi

by extracting
the methods from the Dalvik code, and match each method with
fj with matching rule II (lines 10–21). Note that our features
are different from the binary features (e.g., permissions and API
calls) that are set as 1 or 0, we not only consider the occurrence of
corresponding sensitive behavior but also calculate its frequency
of occurrence. By doing so, the feature vector constructed for
each app contains more information than those constructed
based on binary features.

D. MD and Classification

Finally, we conduct two malware analysis tasks, MD, and FC.
Note that the labels attached to the feature vectors for the two
tasks are different.
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For the task of MD, there are two types of labels, malicious,
and benign, which are denoted as 1 and 0, respectively. In other
words, if a given appxi is a malicious one, then its corresponding
label yi is set as 1, or the label is set as 0 if the app is benign.
However, for the task of malware classification, the label yi
belongs to one of the malware family names, such as geinimi or
droidkungfu.

Therefore, for each task a dataset is initially constructed and
represented as D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Then,
the dataset is split into a training dataset and a testing dataset.
By applying known machine learning algorithms on the training
dataset, different classifiers are generated. After that, each sam-
ple xi in the testing dataset will be fed into the classifier and a
label y′i will be returned. If y′i is equal to yi, then the sample is
correctly classified with the generated classifier, or it is wrong.

III. EVALUATION

To evaluate CTDroid, we first introduce the study setup of
our experiments, and then address the following five research
questions.

RQ 1: Which classifier and parameters (i.e., θ and ε) are
appropriate for CTDroid? (Section III-B)

RQ 2: Can CTDroid detect Android malware with high TPR
and low FPR? (Section III-C)

RQ 3: Can CTDroid classify Android malware into their
correct families with high accuracy? (Section III-D)

RQ 4: Can CTDroid handle a large scale of apps with high
efficiency? (Section III-E)

RQ 5: To what extent is CTDroid resistant to code obfusca-
tion techniques? (Section III-F)

A. Study Setup

1) Data Collection: CTDroid analyzes two main types of
datasets: First, technical blogs, which contain the natural
language contents about Android malware. Second, Android
malware and benign apps, which are used to evaluate the
performance of CTDroid for MD and FC.

a) Technical Blogs: In general, the technical blogs are
written by researchers with specialized knowledge. Therefore,
we utilize the contents in the technical blogs to mine sensitive
behaviors that might do harmful activities to users potentially.
The corpus of technical blogs is crawled from ten websites,
including nine security companies websites [32]–[40] and the
well-known personal website of Jiang [41], from 2010 to 2017.
Given that we focus on Android malware analysis, we use the
keywords such as “Android,” “malware,” and “malicious” to
filter out the irrelevant blogs. We pick these ten security websites
because of their expert analysis on Android malware, and we
believe in their analysis result described in the crawled technical
blogs. In summary, we collect 1385 Android malware related
technical blogs that are listed in Table VIII. The time distribution
of the collected blogs is illustrated in Fig. 3. The collected blogs
as well as their extracted behaviors can be found online.3

3[Online]. Available: https://drive.google.com/file/d/1slhs9kCm4leQ2S01SP6
MR3vsId4VXcnG/view?usp=sharing

TABLE VIII
DESCRIPTIONS OF COLLECTED TECHNICAL BLOGS

Fig. 3. Time distribution of collected technical blogs.

TABLE IX
DESCRIPTIONS OF THREE DATASETS USED FOR MD

b) Android Malware and Benign Apps: To evaluate the
performance of CTDroid for MD and FC, we apply it on four
malware datasets, including three widely used datasets provided
by Gnome project [42], Drebin [3], and FalDroid [43], and a new
dataset constructed by ourselves by collecting recent malware
samples from Palo Alto [39]. Specifically, for MD, we collect
an equal number of most popular (10 000+ downloads) benign
apps from Google Play [44] in the same period and add them to
the four provided malware datasets. Each benign app has been
uploaded to the VirusTotal [45], a website that contains 50+
virus engines, to make sure that no virus engine reports it as
malicious. Therefore, four datasets that contain both malware
and benign apps are constructed for MD. For convenience, the
four datasets are named as MD-I, MD-II, MD-III, and MD-IV,
and their descriptions are listed in Table IX. For FC, given that
we need to split each dataset into a training set and a testing set,
we remove the malware families that contain only one sample.
For convenience, the four datasets are named as FC-I, FC-II,
FC-III, and FC-IV, and their descriptions are listed in Table X.

2) Evaluation Metrics: For MD, the TPR is used to denote
the percentage of malware that are correctly predicted as mal-
ware, and the FPR is used to denote the percentage of benign
apps that are incorrectly predicted as malware. The goal of any
MD research is to achieve a high value for TPR and a low value
for FPR. For FC, the term classification accuracy is used to

https://drive.google.com/file/d/1slhs9kCm4leQ2S01SP6MR3vsId4VXcnG/view?usp=sharing
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TABLE X
DESCRIPTIONS OF THREE DATASETS USED FOR FC

denote the percentage of malware that are correctly classified
into their corresponding families.

3) Baseline Approaches: We compare the performance of
CTDroid in MD and FC with three baseline approaches, i.e.,
FeatureSmith [30], FalDroid [43], and MaMaDroid [46]. The de-
scriptions of the three baseline approaches are listed as follows.

1) Zhu and Dumitras proposed FeatureSmith [30], which first
identifies 173 concrete features, including permissions,
API calls, and intents, which occur in scientific papers.
Then, they extract the identified features from the An-
droidManifest.xml file and Dalvik code for MD.
There are three main differences between our work and
FeatureSmith. We will discuss them in Section V-C.

2) Fan et al. proposed FalDroid [43], which first constructs
fregraphs from the malware samples within the same
family to denote their common malicious behaviors. Then,
they regard each fregraph as a feature and construct a
feature space for malware analysis.

3) Mariconti et al. proposed MaMaDroid [46], which first
builds a behavioral model in the forms of a Markov chain
from the sequence of extracted API calls performed by
apps. Then, it extracts features from the Markov chain to
perform malware analysis.

All the experiments are conducted with a ten-fold cross val-
idation on a quad-core 3.20 GHz PC running Ubuntu 14.04(64
bit) with 16 GB RAM and 1 TB hard disk.

B. RQ 1: Which Classifier and Parameters (i.e., θ and ε) are
Appropriate for CTDroid?

To choose the appropriate classifier for CTDroid, five different
machine learning algorithms, including decision tree [47],
k-nearest neighbors [48], logistic [49], multilayer percep-
tron [50], and random forest [51], are applied in our approach.
Specifically, we first combine the four datasets and remove the
same samples. The combined dataset contains 11535 distinct
samples. We also add the same number of benign apps into
the combined dataset. Then, we construct five corresponding
classifiers based on these algorithms and apply them for MD
on the combined dataset. Note that here we initially set our two
important parameters, i.e., θ and ε, as 0.9 and 3, respectively.

Fig. 4 illustrates the MD performance of CTDroid on the
combined dataset with five different classifiers. The result shows
that random forest outperforms the other four classifiers. When
FPR is 0.01, the TPR of random forest can achieve 0.939, much
higher than those of the other classifiers. The main reason for the
superior performance of random forest is that it is an ensemble
classifier that leverages the out-of-bag errors as an estimate of
the generalization error to improve its performance, whereas
the others are base classifiers. Therefore, due to the superior

Fig. 4. Detection performance of CTDroid on the combined dataset with five
different classifiers.

Fig. 5. TPR values (FPR = 0.01) of CTDroid on the combined dataset and
numbers of generated sensitive behavior features with different ε.

performance of random forest among the five classifiers, random
forest is selected as our default classifier in later experiments.

Next, we investigate the influence of θ and ε to our perfor-
mance. θ controls the similarity calculation between extracted
behaviors; ε controls the threshold value of filtering out useless
clusters. To set an appropriate θ, we manually construct a set
of behaviors with similar meanings and then calculate their
similarities between any two behaviors. We find that all the
calculated similarities are higher than 0.9. Thus, θ is set as 0.9
in this paper. ε is a parameter to balance the size of feature space
and detection performance. The higher of ε, the fewer sensitive
behavior features will be, but we might miss some significant
features if ε is too high. However, if the ε is too low, we might
introduce some useless features. To select an appropriate ε, we
vary the values of ε as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30,
40, 50, 100}. The TPR values (FPR = 0.01) of CTDroid and
numbers of generated sensitive behavior features with different
ε are illustrated in Fig. 5. We find that with the increase of ε, the
number of features decreases. Moreover, the TPR value starts
to decrease when ε is higher than 3. Therefore, to achieve high
performance, ε is set as 3.

When the θ and ε are set as 0.9 and 3, respectively, in this
paper, 145 features are extracted from collected blogs. For
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Fig. 6. MD performance of CTDroid and three baseline approaches with all features on four MD datasets. (a) MD-I dataset. (b) MD-II dataset. (c) MD-III dataset.
(d) MD-IV dataset.

the extracted features, we find that the most frequent behavior
feature is “send—> text message.” The following features are
about getting personal information, including the phone number,
device id, imei, and the serial number. For the verbs of extracted
features, “get,” “send,” and “use” are the most common ones,
indicating that getting personal information and sending them
to the remote server are the prevailing malicious behaviors for
existing malware samples. Moreover, we find that there exists
one interesting behavior feature, i.e., “make—> screenshot,”
which is not used in existing methods. The screenshot will be
stored and send to the remote server instead of the exact personal
information, thus making it hard to detect with only permission
or API features.

Answer to RQ 1: We select random forest as our default
classifier due to its superior performance. In addition, θ and
ε are set as 0.9 and 3, respectively.

C. RQ 2: Can CTDroid Detect Android Malware With High
TPR and Low FPR?

To answer RQ 2, we evaluate the MD performance of CTDroid
on four datasets and compare it with three baseline approaches,
i.e., FeatureSmith [30], FalDroid [43], and MaMaDroid [46].
Specifically, for each dataset, we train four random forest classi-
fiers but four different feature sets. In this paper, when ε = 3, 145
features are extracted from collected blogs. For FeatureSmith,
173 features are identified from scientific papers. However,
for FalDroid, its feature space is constructed from the training
dataset, thus the feature number of FalDroid varies from different
datasets. For MaMaDroid, 121 features are extracted.

Fig. 6 presents the MD performance of CTDroid and three
baseline approaches with their all features using receiver op-
erating characteristic plots. The plots illustrate the relationship
between the TPRs and the FPRs of the four classifiers. Note that
the term #fea in Fig. 6 denotes the number of extracted features.
The results demonstrate that CTDroid gets an almost equally
performance with FeatureSmith and FalDroid, and performs
better than MaMaDroid on the four datasets. For example,
on the MD-I dataset, when the FPR is 0.01, all of CTDroid,
FeatureSmith, and FalDroid have a TPR around 0.958, while
the TPR of MaMaDroid is only 0.869.

Even CTDroid gets a fairly good performance for MD when
FPR is 0.01, it still incorrectly classifies about 13 benign apps
as malware on the MD-I dataset. The main reason to explain
the incorrectly classified samples is that some words contain

multimeanings, thus affecting the performance of semantic
matching approach introduced in Section II-C. For example,
if a method body contains the string value “Please contact me,”
CTDroid would extract the wrong sensitive concept “contact”
and incorrectly identify the related features from the method.

Recall that our proposed features not only consider the occur-
rence of corresponding sensitive behavior, but also calculate its
frequency of occurrence, thus our features would contain more
information than the binary features generated by FeatureSmith
and FalDroid. To evaluate the effectiveness with few features,
we compare the detection performance of CTDroid and baseline
approaches with top-m features ranked by information gain [52].

Fig. 7 presents the detection performance of the four ap-
proaches with top ten (m = 10) features ranked by information
gain. The results on all the four datasets demonstrate that with
only ten features CTDroid outperforms the baseline approaches
due to the more informative features. For example, on the MD-II
dataset, when the FPR is 0.01, CTDroid gets a TPR of 0.9, while
the TPRs of FeatureSmith, FalDroid, and MaMadroid are 0.503,
0.340, and 0.710, respectively.

To further investigate the information gain of different fea-
tures, we vary the values of m from 1 to 50 and calculate the
cumulative information gain of the top-m ranked features. As
illustrated in Fig. 8, on all the four datasets, the cumulative
information gains of CTDroid are higher than those of baseline
approaches. When m is set as 10, the cumulative information
gain of CTDroid is 1.243 on the MD-II dataset, more than
those of FeatureSmith, FalDroid, MaMaDroid, i.e., 1.130, 0.978,
1.144. Moreover, we find that the cumulative information gain
of MaMaDroid hardly changes when m is higher than about 15,
indicating that most of the features extracted by MaMaDroid
have little significance for malware analysis.

Answer to RQ 2: CTDroid gets a high performance for MD
with a TPR of 0.958 when the FPR is only 0.01. Furthermore,
the features extracted by CTDroid are more informative than
those of three baseline approaches.

D. RQ 3: Can CTDroid Classify Android Malware Into Their
Correct Families With High Accuracy?

To evaluate the FC performance of CTDroid, we apply it on
the four datasets, i.e., FC-I, FC-II, FC-III, and FC-IV. Further-
more, we compare CTDroid with the three baseline approaches.
The results are listed in Table XI, where the values marked
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Fig. 7. MD performance of CTDroid and three baseline approaches with top ten features ranked by information gain on four MD datasets. (a) MD-I dataset.
(b) MD-II dataset. (c) MD-III dataset. (d) MD-IV dataset.

Fig. 8. Cumulative information gain of features ranked by information gain on four MD datasets. (a) MD-I dataset. (b) MD-II dataset. (c) MD-III dataset.
(d) MD-IV dataset.

TABLE XI
CLASSIFICATION PERFORMANCE OF CTDROID AND THREE BASELINE APPROACHES ON FOUR DIFFERENT DATASETS

Fig. 9. Cumulative information gain of features ranked by information gain on four FC datasets. (a) FC-I dataset. (b) FC-II dataset. (c) FC-III dataset. (d) FC-IV
dataset.

in bold denote the highest classification accuracy for each
dataset.

In Table XI, columns 3 and 4 list the classification perfor-
mance of the three approaches with their all features. With all the
145 sensitive behavior features, CTDroid performs best on FC-I

dataset, FC-II dataset, and FC-IV dataset. However, on FC-III
dataset, the accuracy of CTDroid is about 0.02 less than that of
FalDroid. Columns 5 and 6 list the classification performance
of the three approaches with top ten features ranked by infor-
mation gain. With only ten features, CTDroid outperforms the
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Fig. 10. CDFs of the run-time overhead for text preprocessing and feature
vector construction.

baseline approaches. For example, on FC-III dataset, CTDroid
can get an accuracy of 0.859, much higher than those of baseline
approaches.

We further calculate the cumulative information gain of the
three approaches when m varies from 1 to 50. As illustrated in
Fig. 9, the results suggest that the cumulative information gains
of CTDroid on all the four datasets are much higher than those
of baseline approaches, indicating that our proposed features are
more informative compared with those of baseline approaches.

Answer to RQ 3: CTDroid performs well on malware clas-
sification with a 97.9% accuracy. Furthermore, its accuracy
can achieve 93.5% with only ten features, which is much
better than three baseline approaches.

E. RQ 4: Can CTDroid Handle a Large Scale of Apps With
High Efficiency?

To answer RQ 4, we investigate the run-time overhead of
CTDroid. For the four procedures introduced in Section II, text
preprocessing for blogs and feature vector construction for apps
are the two main procedures that require more computation
resource than the other two procedures. The cost of text pre-
processing and feature construction depends on the number of
collected blogs and the number of apps, respectively.

The cumulative distribution function of run-time overhead
for the two procedures are illustrated in Fig. 10. The left figure
presents that 91.3% blogs require less than 60 s to extract the
behaviors from their content by using Stanford Parser. In total,
11 h is required to implement the text preprocessing for all
the 1385 collected blogs. The right figure presents that 0.5 s
is needed on average to construct a feature vector for each
given app after the disassembling. The cost of disassembling
of apks is the same as the other approaches, since it is the
necessary step to analyze apps for all the three approaches
statically. It is worth noting that the text preprocessing and the
feature vector construction procedures could be conducted on
several PCs in parallel, thus further reducing the total run-time
overhead.

For the sensitive behavior generation procedure, with a set of
about 208 K extracted behaviors as input, 10 min is needed for
the clustering of behaviors and outputting the set of sensitive
behaviors. Finally, the construction of random forest classifier
used for malware analysis requires less than 1 min.

We also investigate the efficiencies of the three baseline
approaches. For FeatureSmith, its run-time overhead is similar
to ours, since both of the two approaches process feature en-
gineering from contents written in natural language. However,
FalDroid relies on graph analysis that requires about one week to
construct the fregraph-based feature space. Furthermore, more
than 2 s is needed to generate the feature vector for a given
app after the disassembling. For MaMaDroid, about two days
are needed to construct all the call graphs and extract feature
vectors for all the apps.

Answer to RQ 4: CTDroid requires only 0.5 s on average to
construct the feature vector for each app after its disassem-
bling. The low run-time overhead allows CTDroid to work
efficiently and be scalable to a large number of apps.

F. RQ 5: To What Extent is CTDroid Resistant to Code
Obfuscation Techniques?

To evaluate the resilience of CTDroid to code obfuscation
techniques, we only consider the techniques that try to increase
the values of sensitive behavior features, since the technique of
deleting code that reduces the feature values might affect the
functionalities of original apps. For example, the code obfus-
cation techniques can add the value of feature “send—> text
message” from 0 to 1, but it is hard to reduce it from 1 to 0
without affecting the app’s functionality of sending messages.

In general, the code obfuscation techniques for Android mal-
ware can be categorized into two main groups: First, typical
obfuscation techniques such as class renaming, inserting of
useless instructions. Second, advanced obfuscation techniques
such as reflection techniques and encryption packer.

For the typical obfuscation techniques, we first leverage the
popular Android obfuscator named as DashO [53] to perform
class renaming obfuscation techniques on 20 randomly selected
samples. Then, we compare the feature vectors extracted from
the original samples and the obfuscated samples. The results
show that such typical obfuscation techniques would have no
effect on our approach. However, the inserting of useless in-
structions might increase the feature values. For example, if the
attacker inserts a string “we will send a text message” into a
method, our approach will incorrectly match the “send—> text
message” feature. This technique might misguide CTDroid to
classify a benign app as malicious, but can hardly misguide a
malware into benign. To evaluate the resilience of CTDroid to
such technique, we first randomly select 100 malware from the
MD-I dataset as the testing set. Then, we increase the values
of t randomly selected features with 1. After that, we fed these
obfuscated feature vectors into constructed classifier to detect
whether their corresponding output labels are still 1, indicating
that the obfuscation techniques do not affect the detection result.
We vary the t from 1 to 145 and repeat this experiment 100
times. The results are shown in Fig. 11, where the false negative
rate (FNR) denotes the percent of malware samples that are
incorrectly classified as benign after the changing of feature
vectors. We observe that when t is less than 20, nearly no
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Fig. 11. FNRs of CTDroid for the obfuscation of increasing feature values
by 1.

TABLE XII
FNRS OF CTDROID FOR THE OBFUSCATION OF INCREASING

FEATURE VALUES FROM 1 TO 5

malware is incorrectly classified. The highest FNR is 0.63%,
indicating that on average less than 1 malware sample in the
testing set is affected by the obfuscation techniques.

Moreover, we also vary the increased feature values as {1, 2,
3, 4, 5}. Note that here we fix the number of t as 20. Table XII
lists the average FNRs with different increased feature values
from 1 to 5. The results demonstrate that with the increase of
feature values, the FNR increases. The main reason is that if the
feature value changes a lot, the corresponding sample will be
regarded as an abnormal one, thus causing the increase of FNR.
To limit the affect caused by inserting useless instructions, it
is a promising way to combine dynamic analysis techniques
with our approach to filter out the code that would never be
executed.

For the advanced typical techniques, the reflection techniques
that can hide some function invocations would not affect the
constructed feature vectors, since the API calls that use the
reflection techniques are still contained in their method bodies.
Specifically, to evaluate the resilience of CTDroid to reflection
techniques, we randomly select 20 samples that use the reflection
techniques. Then, we leverage DroidRA [54], an open-source
tool, to perform reflection analysis on these samples to transform
the reflection methods into normal methods. For example, the
reflection method getDeclaredMethod(“getITelephony,” null)
will be transformed to getITelephony(). The results show that the
vectors have no changing. Therefore, our approach is resilient
to the reflection techniques.

The encryption packer such as Ijiami [55] and Bangcle [56],
can hide the actual Dex code, thus making the disassembled tools

such as apktool [26] unable to obtain the Dalvik code. However,
with existing unpacker tools such as PackerGrind [57] we can
recover the actual Dex files.

As to the native code, since we limit our analysis to the Dalvik
code, thus CTDroid might miss the malicious activities imple-
mented in the native code. However, we could take advantages of
existing binary analysis frameworks, such as Angr [58], which
can help us analyze the native code and detect the malicious
activities. We will explore this tool in future work.

Answer to RQ 5: CTDroid is resilient to typical obfus-
cation techniques and reflection techniques. In addition, CT-
Droid can handle advanced packing techniques by leveraging
existing tools.

IV. LIMITATIONS AND THREATS TO VALIDITY

Our evaluation is subject to threats to validity, many of which
are induced by limitations of our approach. The most important
threats and limitations are listed as follows.

A. Threats to Internal Validity

In the sensitive behavior generation procedure, a set of An-
droid system related concepts is used to filter out the useless be-
haviors. However, we cannot ensure the completeness of this set.
Missing related concepts would make CTDroid miss sensitive
behaviors. In future work, we plan to add more related concepts
into this set by manually analyzing the malicious activities of
recent malware samples.

B. Threats to External Validity

We extract the sensitive behavior features from a set of techni-
cal blogs collected from 2011 to 2017. Even these features work
well on three widely used datasets, they might not be effective
for the malware samples that are developed after 2017. In future
work, we plan to collect more recent technical blogs and try to
extract more detailed features for better malware analysis.

C. Matching of Abstract Behaviors

In addition to the specific sensitive behaviors generated by
using 14 semantic groups and a set of Android system related
concepts, there are some abstract behaviors that we fail to
accurately match them with the Dalvik code. For example, we
cannot detect whether a given app contains the abstract behavior
“launch—> root exploits,” since the presence of root exploits in
malware relies on expected runtime environment (e.g., specific
vulnerable device driver or preconditions) [59]. In future work,
we plan to transform the abstract behaviors into a list of specific
behaviors and then design more specific features to address the
limitation of matching abstract behaviors.
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V. RELATED WORK

A. Android Malware Analysis

With the recent surge in research interest in the area of Android
device security, a large number studies focusing on mobile mal-
ware analysis have been conducted. These studies fall into two
general categories: signature-based and machine-learning-based
approaches.

Signature-based approaches look for specific patterns of mal-
ware behavior. Enck et al. [60] proposed the Kirin security
service for Android, which designs nine rule templates to match
the undesirable properties in security configuration bundled
with apps. Grace et al. [61] proposed a proactive scheme to
spot zero-day Android malware, and developed a system called
RiskRanker to analyze whether an app exhibits malicious be-
havior. Zhou et al. [62] proposed a permission-based behavioral
footprinting scheme to detect new samples of known malware
families and then applied a heuristic-based filtering scheme
to identify inherent behaviors of unknown malware families.
Feng et al. [63] proposed Astroid, which automatically generate
the malware signature by analyzing a maximally suspicious
common subgraph that is shared between all known instances
of a malware family.

Machine learning-based approaches extract features from app
code and apply standard machine learning algorithms to perform
a classification task. Wang et al. [2] proposed an approach for
malware analysis based on requested permissions, which are
security-aware features that restrict the access of apps to the
core facilities of devices. Arp et al. [3] proposed Drebin, which
performs a broad static analysis, gathering as many features of
an app as possible such as permissions, API calls, and strings
in Dalvik code. These features are then embedded in a joint
vector space for Android malware analysis. Meng et al. [64]
proposed a precise semantic model of Android malware based
on deterministic symbolic automaton, from which semantic
features are extracted for malware analysis. Hou et al. [65]
proposed HinDroid, which first constructs a structured heteroge-
neous information network and then uses multikernel learning
to perform malware analysis.

B. NLP for Android

With the development of NLP techniques, there are some
approaches that analyze the Android-related contextual content
to improve the analysis of relative tasks, such as risk assessment,
privacy analysis, and malware analysis.

Rahul et al. [66] proposed WHYPER, which leverages NLP
and automates risk assessment of mobile apps by revealing
discrepancies between app descriptions and their true functional-
ities. Qu et al. [67] proposed AutoCog, which can automatically
assess description-to-permission fidelity of apps by extracting
semantic information from the descriptions. Yu et al. [68] pro-
posed PPChecker, which adopts NLP and program analysis
techniques to automatically identify the incomplete, incorrect
or inconsistent privacy policies. Slavin et al. [69] proposed a
framework that detects the privacy violation based on a privacy-
policy-phrase ontology and a set of matching from API calls to

policy phrases. Gorla et al. [70] proposed CHABADA, which
first groups the Android apps into clusters according to their
description topics and then identify outliers in each cluster with
respect to the API call usage.

C. Differences With FeatureSmith

The most related work is FeatureSmith proposed by Zhu
and Dumitras [30]. FeatureSmith identifies 173 concrete named
entities (i.e., permissions, API calls, and intents) that are asso-
ciated with keywords (i.e., malware family names) in scientific
papers with NLP techniques. Then, they apply these features for
malware analysis.

There are three main differences between FeatureSmith and
our work, which are as follows.

1) Different datasets used for feature engineering: Feature-
Smith mines behaviors from scientific papers, while we
mine the behaviors from the technical blogs. We believe
that the technical blogs contain more detailed descriptions
about Android malware behaviors rather than scientific
papers due to their page limit.

2) Different sensitive behavior identifying methods: Feature-
Smith identifies the sensitive behaviors with the keywords
of malware families, such as geinimi and droidkungfu.
However, this method might lose some behaviors that do
not occur with such keywords. To address this limitation,
we propose a clustering-based approach to mine the sen-
sitive behaviors among all the extracted behaviors.

3) Different sensitive behavior matching rules: FeatureSmith
matches the behaviors to concrete features based on key-
word search in the contextual content. Thus, they cannot
handle the content that does not contain any concrete
features, while we propose two matching rules to bridge
the sematic gap between the programming language with
the sensitive behaviors.

VI. CONCLUSION

In this paper, we proposed a novel system, CTDroid, to auto-
matically construct informative features for malware analysis
by analyzing a corpus of Android malware related technical
blogs. To evaluate the effectiveness of constructed features, we
evaluated CTDroid for two tasks, i.e., MD and FC. Our exten-
sive evaluation results showed that CTDroid can achieve high
accuracy and efficiency. Furthermore, our features presented
more information than those of binary features proposed by the
state-of-the-art approaches.
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