

DKISB: Dynamic Key Instruction Sequence Birthmark for
Software Plagiarism Detection

Zhenzhou Tian, Qinghua Zheng, Ting Liu, Ming Fan
MOEKLINNS Lab

Department of Computer Science and Technology
Xi’an Jiaotong University, 710049, China

E-mail: zztian@sei.xjtu.edu.cn, qhzheng@mail.xjtu.edu.cn, tingliu@mail.xjtu.edu.cn, fanming.911025@mail.xjtu.edu.cn

Abstract—With the burst of open source software, software
plagiarism has been a serious threat to the healthy development of
software industry. Software birthmark reflecting intrinsic
properties of software, is an effective way for the detection of
software theft. However, most of the existing software birthmarks
face a series of challenges: (1) the absence of source code; (2)
diversity of operating systems and programing languages; (3)
various automated code obfuscation techniques. In this paper, a
dynamic key instruction sequence based software birthmark
(DKISB) is proposed. By introducing dynamic data flow analysis
into birthmark generation, we are able to produce a high quality
birthmark that is closely correlated to program semantics, making
it resilient to various kinds of semantic-preserving code obfuscation
techniques. Based on the Pin instrumentation framework, a DKISB
based software plagiarism detection system is implemented, which
generates birthmarks for both the plaintiff and defendant program,
and then make the plagiarism decision according to the similarity
of their birthmarks. The experimental results show that DKISB is
effective to either weak obfuscation techniques like compiler
optimization or strong obfuscation techniques provided by tools
such as SandMark.

Keywords—software plagiarism; dynamic key instruction
sequence; software birthmark; similarity comparison;

I. INTRODUCTION
Free or open source software projects allow users to use,

change and distribute software under certain types of license. For
example the most popular GPL (GNU General Public License)
allows users to modify GPL compliance programs freely, and
requires derivative works must also be under the GPL. However,
some companies or persons incorporate third party software into
their products without respecting their licensing terms for
commercial interests. Also there are many companies, especially
large companies who usually integrate into their projects
software components submitted in binary form by upstream
companies, and thus cannot assure these components are free of
license violations. And thus, cases about software license
violations are brought to court from time to time. For example a
former Goldman Sachs programmer was found guilty of code
theft [1] and the various disputes between Apple and Samsung
[2]. Additionally due to their weak code protection awareness of

most software developers and the appearance of various powerful
automated code obfuscation tools, making software theft a much
easier to implement but difficult to detect thing. Besides, since
most of the time software is distributed in binary form especially
for commodity software, the detection of plagiarism becomes
even harder due to the absence of source code on which level is
otherwise easier to detect with mature techniques and tools like
[16].

So a series of methods are proposed to prevent and detect
software plagiarism, and software watermarking is one of the
most well-known and earliest approaches. By embedding a
unique identifier (watermark) which is hard to remove but easy to
verify in the protected software before its distribution, it can
serve as strong evidence when filing a lawsuit related to
intellectual property. However it is believed by Collberg et al.
that “a sufficiently determined attacker will eventually be able to
defeat any watermark” [6]. Besides many software developers
prefer to use semantic-preserving code obfuscations to make their
source code obscure and difficult to reverse rather than utilizing
watermarking which requires inserting additional data into the
original code. Yet code obfuscations can just prevent others from
understanding the underlying logic of the source code but does
not hinder direct copying of them. Even worse, plagiarists can in
turn further obfuscate the source code and distribute it in binary
form to evade detection.

As such, a relatively new software theft detection technique
called software birthmark is proposed recently. A birthmark is a
characteristic that reflects intrinsic properties of a program, and
can be used to uniquely identify the program. In the literature,
software theft problem is translated into the problem of
comparing the similarity of two programs whose similarity is
further measured based on their birthmarks. The key techniques
include extraction of high quality birthmark which really can
represent the inner property of program and proper similarity
comparison methods corresponding to the birthmark. Although
the existing birthmark based techniques help to detect software
plagiarism to some extent, they are limited in that: (1) many of
the methods [16] require the existence of source code which may
never be available until strong evidences are collected while
generally suspicious plagiarized programs present themselves in

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.93

619

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.93

619

the form of binary executables; (2) applicability of these methods
is limited to specific type of operating systems or programing
languages such as the API based birthmarks [11, 7] rely on
features of Java or Windows system, thus failing to detect
software theft making using of the platform dependent
shortcomings; (3) most of them are weak to code obfuscation
techniques implemented in various automated semantic-
preserving obfuscation tools.

In this paper, a new kind of dynamic software birthmark
called DKISB is introduced to address the above limitations.
Based on the key instruction sequence captured during the
execution of a program under certain input, we firstly generate
the DKISBs for both the plaintiff and defendant program making
use of k-gram algorithm, and then calculate the similarity
between their birthmarks to decide whether they’re plagiarized or
not. By combing with dynamic data flow analysis when
generating DKISB, our birthmark is closely correlated to the
semantics of the program, making it more resilient to semantic-
preserving obfuscation techniques; Besides, DKISB operates on
binary executables directly rather than source code; Furthermore
the bottom object to be analyzed is each assembly instruction,
thus freeing our birthmark from operating system or
programming language dependent limitations. On the basis of the
famous Pin instrumentation framework, we further implemented
a DKISB based software plagiarism detection system. Finally, we
evaluated the quality of DKISB using programs of different kinds
and versions varying from compression software to image
processing software; and using various obfuscation techniques
including weak obfuscations provided by different compilers and
optimization levels, and strong obfuscations provided by special
obfuscators. Our experimental results show that the system is
able to identify all 34 obfuscated versions (including 2 deeply
obfuscated versions using multiple obfuscators) generated with
the SandMark [9] tool. This indicates that DKISB is robust
against semantic-preserving code transformations.

The contributions of this paper are summarized as follows:

• We proposed a new kind of dynamic software birthmark
called DKISB which can be used for software plagiarism
detection.

• By combing with dynamic data flow analysis when
generating DKISB, our birthmark is closely correlated to
the semantics of the program, making it more resilient to
semantic-preserving obfuscation techniques.

• Based on the Pin instrumentation framework, we
implemented a DKISB based software theft detection
system, and evaluated the performance of the system on
various kinds and versions of programs and obfuscation
techniques.

The remainder of this paper is organized as follows: Section 2
reviews related work in software plagiarism detection literature
and program characterization. Section 3 introduces the main idea
of DKISB based software theft detection method, including the

specific definition and extraction method of DKISB, and the
means to compare similarity and make final plagiarism decision.
The design overview of the DKISB based theft detection system
on the basis of Pin is also presented in this part. The quality of
DKISB is evaluated in Section 4 through plenty of experiments.
Finally conclusions are drawn in Section 5.

II. RELATED WORK
There are similar research areas that are related to our work in

that they all characterize software to identify it uniquely,
including software watermarking, plagiarism detection, clone
detection, malware identification and so on.

Software watermarking [10] is one of the earliest ways to
protect and detect software theft. By embedding a unique
identifier (watermark) which is hard to remove but easy to verify
in the protected software before its distribution, it can serve as
strong evidence when filing a lawsuit related to intellectual
property. Different from birthmark based method, additional
codes need to be added to the program; besides, watermark can
contain program owner information while birthmark only
reflects similarity between two programs. Nagra et al. classified
watermarks into four types according to their functionality:
Authorship Mark, Fingerprinting Mark, Validation Mark and
Licensing Mark.

Comparing to watermarking techniques, software birthmark is
a relatively new technique for software theft detection. We’ll
group them into two categories: static and dynamic.

Static source code based birthmarks: Tamada [13] et al.
proposed four types of static birthmarks consisting of constant
values in field variables, sequence of method calls, inheritance
structure and used classes. The detection result depends on the
average similarity from the four birthmarks. However their
birthmarks are vulnerable to obfuscations and are only available
to Java programs. In [16] a source code theft detection system is
implemented by mining program dependency graphs (PDGs)
and by calculating similarity between PDGs through subgraph
isomorphism algorithms.

Static binary code based birthmarks: Myles and Collberg [17]
proposed a k-gram based static birthmark for Java. Set of Java
bytecode sequences of length k are taken as the birthmark, and
similarity between birthmarks are calculated through set
operations while ignoring frequency of each element. They
compared their birthmark with Tamada’s using several tiny java
programs and shows better robustness, but is still vulnerable to
code transformation attacks. A static API birthmark is put
forward by Seokwoo Choi et al. [19] to detect plagiarism of
windows applications. They firstly define a function birthmark
as a set of API calls within k depths of the call tree rooted at the
function. Then program similarity is defined as the maximum
value among all possible function matchings. Thus transforms
the problem of calculating the similarity between two programs

620620

as finding a maximum weighted bipartite matching. They
evaluated their birthmark with several obfuscated versions
generated with different compilers, and it shows pretty well
resilience. However we’ve no idea of its robustness against
special obfuscators.

Dynamic software birthmarks: Myles and Collberg [20]
suggested a dynamic birthmark based on whole program path
generated by compressing a whole dynamic control flow trace
into WPP form to uniquely identify program. Schuler [11] takes
Java standard API call sequences at object level as a dynamic
birthmark for java programs. And it exhibits better performance
than WPP birthmark. Tamada [21] introduced two API based
birthmarks for windows executables extracted at runtime:
Sequence of API Function Calls (EXESEQ) and Frequency of
API Function Calls (EXEFREQ). However these methods are all
language dependent no matter they are windows API based or
java API based. So Wang et al. [7] proposed two dynamic
birthmarks based on system calls: System Call Short Sequence
birthmark (SCSSB) and Input Dependent System Call
Subsequence birthmark (IDSCSB). However both birthmarks
have limited applicability to software that has few system calls
such as computation-centered programs. Later in [12], by
introducing data flow and control flow dependency analysis,
they proposed a system call dependency graph based birthmark
(SCDG). Recently [5] they suggested to characterize software
with core values and applied it to software theft detection and
algorithm plagiarism detection.

There also exist several birthmarks based on dynamic
instructions. In [18] a whole dynamic instruction trace is
recorded during program execution from which a dynamic
birthmark is directly extracted applying the k-gram algorithm.
But this birthmark cannot even identify two versions generated
from the same program with different compiler optimization
levels. By treating the dynamic slices generated with dynamic
slicing techniques rather than the whole instruction sequence as
program characterization, Bai et al. [14] proposed a dynamic
birthmark for java based on MSIL instructions rather than
assembly instructions. Their birthmark is also compared with
Myles’s k-gram birthmark through a single small program and
exhibits better robustness. Our DKISB differs from their’s in
that it’s operating-system and language free, and it combines
dynamic data flow analysis to make it more robust against
various semantic-preserving code transformations.

One of the most close research field to software plagiarism
detection is clone detection that aims to find duplicate code (or
to say clones) within a single program to help improve software
maintenance, program comprehension, and software quality.
Most existing clone detection algorithms operate on source code
only. And there have been many mature systems [15, 3, 4] which
implement efficient and accurate clone analysis on large scale
software. Similar to theft detection, clone detection identifies

cloned fragments by firstly translating the program into a set of
characteristics based on which clone detection techniques can be
categorized into the following types: String-based, Token-based,
AST-based, PDG-based, and Memory-State-based.

III. DKISB BASED SOFTWARE PLAGIARISM
DETECTION

In this section, several important concepts and definitions are
introduced first, followed by description of our DKISB based
software plagiarism detection method.

A. Dynamic Key Instruction Sequence Based Birthmark
Before introducing the main idea of DKISB, definition of

software birthmark and dynamic software birthmark which we
borrowed from Tamada et al. [21] and Myles et al. [20] are
presented first to ease further discussion. They are the first
formal definitions and have been restated in most subsequent
papers in the literature.

1) Software Birthmark.
A software birthmark is a set of characteristics extracted from

a program that reflects intrinsic properties of the program and
can be used to identify the program uniquely. It can be
categorized into two types: static birthmark and dynamic
birthmark, where the former is generated mainly by analyzing
syntactic features of a program and thus is weak to sematic-
preserving obfuscations while the latter is extracted based on
runtime behavior that reflects how inputs are processed by a
program and thus is more correlated to program semantics and
robust against obfuscations. Now we give their definitions.

Definition 1. (Software Birthmark) Let p,q be two programs
or components. Let f be a method for extracting a set of
characteristics from the programs or components. We say f(p) is
a birthmark of p if both of the following conditions are satisfied:

� f(p) is obtained only from p itself.
� Program q is a copy of () ()p f p f q� = .

Definition 2. (Dynamic Software Birthmark) Let p,q be two
programs or program components. Let I be an input to p and q.
Let f(p,I) be s set of characteristics extracted from p when
executing p with input I. Then f(p,I) is a dynamic birthmark of p
only if both of the following conditions are satisfied:

� f(p,I) is obtained only from p itself when executing p with
input I.

� Program q is a copy of () (), ,p f p I f q I� = .

2) DKISB.
Our birthmark is based on dynamic instruction sequence and

so it belongs to the dynamic birthmark category. It’s believed
that a high quality birthmark should be closely related to the
semantics of a program. Computer state get updated with the

621621

execution of each single instruction, so instruction sequence
recorded during program execution is a reflection of how inputs
are processed by the program and is closely related to program’s
semantics, thus making it a good birthmark candidate. However
taking the whole sequence as a birthmark is too large or even
impossible for further analyze. So we propose the concept of
dynamic key instruction based on which can greatly reduce the
size of instruction sequence from which DKISB is extracted
further.

 So what is required for an instruction to make itself a key
instruction? Firstly we believe that they should be relatively
unique, so instructions of specific types (for example mov, push,
etc.) which exist widely in most programs and which constitute a
large part of the dynamic instruction trace are just noises which
do not represent unique behavior of a program, and so should be
eliminated confidently. Besides they should be closely related to
program semantics, so comparing to instructions like mov etc.
whose functionality is just to transfer data between memory or
CPU or both while no new values are generated but just get
migrated, instructions whose execution will generate new values
(such as add, shl, etc.) or so called value-updating instructions as
defined in [5] reflect how the program computes, and thus are
better reflections of program semantics; At last, semantics is a
formal representation of how inputs are processed by the
program, so instructions related to inputs are more related to
semantics. Based on dynamic taint analysis, we can acquire the
correlation between instructions and inputs. And we call
instructions whose execution will change the taint labels of
registers or memory units as input-correlated instructions.

Based on the above discussions, we now give the definition of
key instruction, DKISB etc.

Definition 3. (Dynamic Key Instruction) Let (),trace p I be
an execution trace composed of dynamic instructions executed
during program run under input I, then for each instruction c that
belongs to (),trace p I , we say c is a key instruction under input
I if the following two conditions are satisfied:

� c is a value-updating instruction.
� c is a input-correlated instruction.

Definition 4. (K-Gram) Let 1 2, , , nt e e e= � be a sequence of
which each element can be a word, a character, an object, or in
our case an instruction (specifically, mnemonic of the
instruction). Define a sliding window of length k , and generate a
subsequence () ()1 1, , , ,j j j kjsub t e e e+ + −= � { }1,2, , 1j n k∈ − +� by
sliding the window over t with stride one each time. Then we
refer to () jsub t as a k-gram.

Definition 5. (DKISB) Let () 1 2, , , , ns p I ins ins ins= � be a
key instruction sequence recorded during runtime of program

p under input I . Let () 1 2, , , , nt p I e e e= � be the mnemonic

sequence by extracting mnemonic of each instruction in (),s p I .

Let () (){ }1 1, | , , ,j j j j j kSet p I g g e e e+ + −= = � , { }1,2, , 1j n k∈ − +� be

a set of k-grams. Then we call the set of key-value pairs
() (){ () }1 2

' ' ' ' '
1 2, | , ,I

p m m m m mBirth k g freq g g Set p I and m m g g= ∈ ∀ ≠ ≠

where ()'
mfreq g represents frequency of '

mg in (),Set p I as the
dynamic key instruction sequence based birthmark for p under
input I , briefly called DKISB.

B. DKISB Based Software Plagiarism Detection
1) Similarity Calculation.

In the literature of birthmark based plagiarism detection, the
similarity between two programs is measured by the similarity of
their birthmarks. According to the manifestations of birthmarks,
different methods should be chosen to properly calculate the
degree of similarity. Generally speaking, birthmarks mainly exist
in three forms: sequences, sets and graphs. Similarity of
sequences can be computed with pattern matching methods, such
as calculating the longest common subsequences (LCS) [7, 5]
and so on. There are many methods to calculate similarity for sets
that are widely adopted in the field of information retrieval, for
example the Dice coefficient [19], the Jaccard index [11] etc.
Computing the similarity of graphs is relatively complex where
graph or subgraph isomorphism algorithm [16, 12] such as the
VF graph matching algorithm can be used.

Our birthmark is a set composed of key-value pairs, the type
of keys may not be so rich as other static k-gram birthmarks [17,
18] or dynamic birthmarks extracted from the whole instruction
sequences [18, 14] according to the definition of DKISB. So the
computed similarity values have a high probability to be the close
with each other if we adopt calculation methods such as Jaccard
index, Dice coefficient etc. that ignore frequencies of elements in
the set. Besides, the frequency of each element which is not
available to static methods also reflects how inputs are processed,
and should be an important part of the birthmark. So we make
use of the Cosine distance to measure the similarity of two
birthmarks. The formal description is as follows:

For software birthmarks { }1 1 2 2, , , , , ,n nA k v k v k v= �

and { }' ' ' ' ' '
1 1 2 2, , , , , ,m mB k v k v k v= � , let () ()S keySet A keySet B= ∪ .

Then construct a vector ()1 2, , , lA a a a=
��

� of which each element

()
()

,

0,
i i

i
i

v if S keySet A
a

if S keySet A

� ∈�= �
 ∉��

, where 1 i l≤ ≤ and iv is the value of

key iS in A . Likewise ()1 2, , , lB b b b=
��

� can be constructed, and
then similarity of two birthmarks A and B can be calculated

with (), A Bsim A B
A B

•=
�� ��
�� �� .

622622

2) Plagiarism Detection.
The purpose of extracting birthmarks and calculating their

similarity is to eventually make a decision of whether two
programs are plagiarism. Since our DKISB belongs to dynamic
birthmark category, so multiple similarity scores are calculated
by providing multiple inputs to exclude the influence of random
factors, and average of the scores is taken as evidence to make
the final decision.

Formally, Let AP and BP be two programs to be analyzed.
The DKISBs extracted from each of them by providing a series
of inputs 1 2, , , nI I I� are 1 2, , , nA A A� and 1 2, , , nB B B� . Then
the similarity between program AP and BP can be calculated with

()
()

1

,
,

n

j j
j

A B

sim A B
sim P P

n
==
�

whose value is between 0 and 1. Then

we determine whether two programs are copies according to their
similarity score and a threshold ε as follows:

()
1 ,

, ,
A B

A B A B

P P are classified as copies
sim P P P P are classified as independent

otherwise inconclusive

ε
ε

≥ − �
�= ≤ �
� �

In our plagiarism detection system, we choose the value of ε
to be 0.2 as adopted by Schuler et al. [11], which means: two
programs whose similarity score is in the range of [0, 0.2] are
classified as independent, (0.2, 0.8) as inconclusive, and [0.8, 1]
as copies. A smaller threshold value is desired but it may lead to
many false classifications.

C. System Design
Fig.1 shows the overview of our dynamic birthmark system.

The plaintiff binary represents the original program owned by its
developer while the defendant binary represents suspicious
program that may have plagiarized the plaintiff. The system
comprise five modules: dynamic analysis module where key
instructions are recognized and recorded, pre-processor that aims
to extract mnemonics and peel off operands, birthmark generator
where DKISB is generated, similarity calculator where the
similarity score of two DKISBs are computed, and decision
maker that outputs final detection result.

Given two programs plaintiff and defendant and a series of
inputs, our system runs the two programs with the same input one
by one. Meantime, the dynamic analysis module monitors the
execution of each program in a fine granularity of instruction
level, it identifies and records key instructions in real time and
finally outputs a key instruction sequence. After the two
sequences of both plaintiff and defendant program are ready, they
are feed into the pre-processor module to remove operands of
each instruction. Then birthmark generator will generate two
DKISBs whose similarity score is further calculated by the
similarity calculator. Finally detection result of whether is
plagiarism or not is made by the decision maker according to the

similarity scores computed under different inputs and the given
threshold ε .

Of all the modules, dynamic analysis module is one of the
most important part of the whole system that is in charge of the
monitoring of a program, and performs dynamic taint analysis to
identify and record key instructions. It consists of Pin [8] and
DKISExtractor, where the former is a well-known dynamic
instrumentation framework provided by Intel for its rich API and
high efficiency, and the latter is a plugin distributed as a pintool
that we developed based on libdft which is a data flow analysis
framework implemented on the basis of Pin. DKISExtractor and
Pin work together to identify key instructions and generate a key
instruction sequence per run.

IV. EVALUATION
A high quality birthmark manifests in that the ratio of false

classifications (both inconclusive and incorrectly classified are
treated as false classifications) should be rather low for a given
ε . Specifically, the similarity scores between a program and its
derivation versions generated by applying various semantic-
preserving transformation techniques should be high enough so
as to recognize copies, while scores between independently
developed programs should be low enough to distinguish them.
Generally, the following two properties of a birthmark should be
evaluated in the literature. We restate them by referring to
descriptions of Myles et al. [17] and Seokwoo et al. [19].

Dynamic Analysis
Module

Key Instruction
Sequence

Pre-Processor

Birthmark Similarity
Calculator

Plaintiff
Binary

Defendant
Binary

Input

k

Decision Maker

S1

Detection Result

S2Sn

S1,S2, ,Sn are similarity values under different inputs

Birthmark Generator

�

Fig. 1 DKISB based software plagiarism detection system

623623

Property 1. (Resilience) Let p be a program and 'p be a
derivative version generated by applying semantic-preserving
code transformations τ to p . Then we say a birthmark pB is

resilient to τ if ()', 1sim p p ε≥ − .

Property 2. (Credibility) Let p and q be independently
developed programs which may accomplish the same task. Then
we say a birthmark pB is credible if (),sim p q ε≤ .

 It should be noticed that the extracted DKISB is different
even for the same instruction sequence each time we choose a
different value for the parameter k of k-gram algorithm, thus
causing the similarity scores to change with k . Hence it is
necessary to study whether there exists a k value that makes the
similarity scores between plagiarized programs are high while the
similarity scores between independently implemented programs
are low. So we’ll firstly study the impact of the value of k to the
similarity calculation between programs, then the quality of
DKISB will be evaluated against the two properties mentioned
above with a fixed k value.

A. Impact of Parameter K
1) Impact of k to similarity scores between software of

different categories.
 We selected four image processing software: sixiv, feh, pho,
and qiv which are widely used in Linux system to compare their
similarity with programs 1 of other categories including
compression, encryption etc. under different k values. Firstly key
instruction sequences were extracted for all of them, followed by
the generation of DKISBs by varying the value of parameter k .
Then cosine distance was computed for each pair of the
birthmarks to measure similarity. Determining the similarity
based on a single input may not be credible, so multiple and
various types of inputs 2 (including jpg, png, bmp, gif etc.) were
provided, and average score of similarity was calculated.

 The blue area in TABLE I illustrates how similarity changes
between qiv and other types of programs by varying k .
Plagiarism does not exist between image processing software and
others, which means the similarity scores should be rather low to
make the birthmark effective. As we can see, the similarity scores
between qiv and programs of other categories are rather high
when DKISBs are generated with 1-gram, and the scores
decrease sharply by increasing the k value, then remain almost
unchanged when a certain k value (here we say 4 or 5) is
reached. There are similar results for the other three image
processing software, they’re not listed in the table but contribute
to the calculation of average scores (shown in the dark grey
areas) due to space limitations.

1 The benchmark consists of representative programs widely used in

previous papers and several newly added experimental objects.
2 All the experiments conducted below will be feed with multiple

inputs by default.

2) Impact of k to similarity scores between software of same
categories.

The functionalities for software of same categories overlap to
a great extent, for example bzip and gzip are two very popular
and widely used software that both implement compression and
decompression. So it’s necessary to study how similarity scores
change with k between programs that are in the same category
but are independently implemented. As illustrated in the green
area and corresponding dark grey areas of TABLE I, similarity
scores decrease sharply until k increases to a certain value (say 4
or 5 here). It shows that birthmarks generated with k value of
four or five are enough to recognize independently developed
programs.

3) Impact of k to similarity scores between plagiarized
software.

Here we treat binaries compiled from the same source code
but with different compilers or optimization levels, and the ones
generated with semantic-preserving obfuscation techniques as
copies, which means the similarity between them should be
rather high. It can be observed from the orange area and
corresponding dark grey areas of TALBE I that, similarity scores
between plagiarized program pairs are indeed very high and
present a slightly rather than sharply (as illustrated in the last two
experiments) decreasing trend as k increases, which also reflects
the robustness of DKISB in a way.

Based on the above observations, we can conclude that
similarity scores calculated based on DKISB decrease as the
value of k increases, and then remain unchanged when a certain
k value is reached between programs no matter plagiarism exists
or not. Moreover, we can see that similarity scores between
independently implemented programs have been low enough to
distinguish them when 4 or 5 is adopted for the value of k ,
meanwhile scores between plagiarized program pairs are also
enough to identify copies. Besides, a larger k doesn’t seem to
offer more benefit but just introduces more computation efforts.
In the reset of the paper, all experiments conducted adopt a
default k value of 4 which provides a good tradeoff between
efficiency and accuracy.

B. Resilience
1) Resilience to different compilers and compiler

optimization levels.
Software plagiarist may try to evade detection by choosing a

different compiler or changing compiler optimization levels
which can be seemed as a kind of weak semantic-preserving code
transformations. Here, two compression software: gzip-1.2.4 and
bzip2-1.0.6 are chosen to evaluate the resilience property of
DKISB against different compilers and optimization levels. In
our experiments, three versions (4.4, 4.5, and 4.6) of gcc
compiler are selected and multiple optimization levels (O1-O3)
are adopted to compile each of the programs. Then the generated
executables are executed against our detection system where
DKISBs are generated and similarity scores are calculated.

624624

TABLE I. Impact of parameter k
Category Name K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

Similairty of
Software in
Different

Categories

qiv--VS--bzip2 0.496 0.128 0.056 0.027 0.006 0.005 0.004 0.004 0.004 0.004
qiv--VS--cksum 0.469 0.033 0.013 0.01 0.008 0.006 0.006 0.006 0.006 0.006
qiv--VS--gzip 0.409 0.001 0 0 0 0 0 0 0 0

qiv--VS--md5sum 0.748 0.4 0.058 0.038 0.018 0.017 0.016 0.016 0.016 0.016
qiv--VS--opensslMD4 0.662 0.32 0.153 0.136 0.135 0.134 0.132 0.131 0.129 0.127
qiv--VS--opensslMD5 0.72 0.433 0.124 0.124 0.12 0.118 0.116 0.114 0.111 0.109

qiv--VS--opensslRMD160 0.668 0.281 0.1 0.075 0.073 0.071 0.07 0.068 0.066 0.063
qiv--VS--opensslSHA1 0.564 0.251 0.202 0.205 0.204 0.202 0.201 0.199 0.197 0.194

Average Similarity Score of Software Listed above 0.592 0.231 0.088 0.077 0.071 0.069 0.068 0.067 0.066 0.065
Average Score of All Software in Different Categories Tested 0.472 0.162 0.063 0.053 0.049 0.048 0.047 0.047 0.046 0.045

Similarity of
Software in the
Same Category

bzip-VS-gzip 0.496 0.009 0.006 0.004 0.004 0.004 0.004 0.003 0.003 0.003
bzip--VS--zip 0.544 0.01 0.005 0.004 0.004 0.003 0.003 0.003 0.003 0.003

cksum--VS--md5sum 0.592 0.084 0 0 0 0 0 0 0 0
opensslMD5--VS--opensslRMD160 0.837 0.569 0.302 0.166 0.091 0.063 0.051 0.038 0.024 0.012

opensslMD5--VS--opensslSHA 0.963 0.645 0.409 0.196 0.097 0.052 0.033 0.026 0.026 0.026
opensslMD5--VS--opensslMD4 0.955 0.745 0.488 0.312 0.178 0.15 0.126 0.099 0.086 0.071

opensslMD5--VS--cksum 0.683 0.121 0.004 0.002 0.001 0 0 0 0 0
pho--VS--feh 0.653 0.402 0.306 0.301 0.298 0.296 0.293 0.292 0.29 0.29

Average Similarity Score of Software Listed above 0.507 0.18 0.090 0.069 0.058 0.054 0.053 0.050 0.049 0.048
Average Score of All Software in the Same Category Tested 0.741 0.372 0.186 0.115 0.084 0.074 0.07 0.066 0.064 0.062

Similarity
Between

Plagiarized
Software

Jlex--VS--Jlex_ClassSplitter 1 1 1 1 1 1 0.999 0.999 0.999 0.999
Jlex--VS--Jlex_SplitClasses 1 1 1 1 1 1 0.999 0.999 0.999 0.999

bzip(gcc44_o0--VS--gcc45_o0) 1 1 1 1 1 1 1 1 1 1
gzip(gcc46_o0--VS--gcc44_o0) 1 1 1 1 1 1 1 1 1 1
bzip(gcc44_o2--VS--gcc44_o1) 0.966 0.958 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.945
bzip(gcc44_o3--VS--gcc44_o1) 0.969 0.962 0.951 0.951 0.951 0.951 0.951 0.951 0.95 0.95
gzip(gcc44_o1--VS--gcc44_o3) 1 1 1 1 1 1 1 1 1 1

Average Similarity Score of Software Listed above 0.991 0.989 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985
Average Score of All Plagiarized Software Tested 0.986 0.983 0.978 0.978 0.978 0.978 0.977 0.977 0.977 0.977

It is observed that all the similarity scores are rather high
(much higher than the detection bound 0.8), indicating that
DKISB is resilient to different compilers and optimization levels.
Similar results are also observed among all the binaries of gzip.

2) Resilience to special obfuscation tools.
 In this section, we’ll evaluate the resiliency of DKISB against
advanced obfuscation techniques implemented in special tools.
Unfortunately no available binary obfuscators (obfuscators such
as Upx, WinUpack etc. that only implement code compression,
encryption and packing obfuscations are ignored, since
executables processed with them must be decompressed or
decrypted during runtime, and our dynamic birthmark has innate
immunity to them) are found except the commercial obfuscator
CloakWare Security Suite.

So here, we choose to use the Java byte code obfuscation tool
SandMark [9], which implements a series of advanced semantic-
preserving transformation techniques including 15 application
obfuscations, 7 class obfuscations, and 17 method obfuscations to
generate a group of obfuscated versions. Since our system works
on binary executables, so obfuscated versions of Java byte code
are converted to x86 executables first with GCJ, the GNU ahead-
of-time Compiler for Java.

JLex, a lexical analyzer generator written in Java, is selected
as the experimental subject, which is also used in [7, 5]. We
conducted the same experiments as in [5] to measure the
resiliency of DKISB against single and multiple obfuscations.

a) Resilience to single obfuscation
Similarity scores are calculated between the original JLex and

its obfuscated versions (32 successfully obfuscated versions3)
generated by applying a single obfuscation technique a time.
Besides, we compare JLex to programs that are totally different
but can share same inputs to show the differences. The
experimental results show that the similarity scores of JLex to its
obfuscated ones are all as high as 1.0 (much higher than 0.8)
while scores of JLex to totally different programs are all below
the threshold 0.2, which means no false classifications exist. It
indicates that our DKISB is resilient to single semantic-
preserving code transformations.

b) Resilience to multiple obfuscation
A plagiarist may attempt to evade detection by applying

multiple obfuscation techniques to a single program so as to
generate a deeply obfuscated version. However, applying many
obfuscators to a single program could raise practical issues of
correctness of the target program and efficiency [7]. So we
adopted the method as used in [7, 5] where all obfuscators are
classified into two categories: data obfuscators and control
obfuscators. Then obfuscators of same category are applied to

3 Seven obfuscators of SandMark failed to transform JLex, so we can’t

test them all.

625625

TABLE II. Obfuscators used to generate Jlex_contrl and Jlex_data
Control Obfuscation Data Obfuscation

Transparent Branch Insertion,
Simple Opaque Predicates,

Reorder Instructions,
Dynamic Inliner,
Method Merger,

Inliner,
Insert Opaque Predicates

Array Folder,
Integer Array Splitter,

Promote Primitive Registers,
Variable Reassigner,
Duplicate Registers,

Merge Local Integers,
Boolean Splitter

JLex one by one, and finally we got two deeply obfuscated
versions: JLex_control and JLex_data. The specific obfuscators
used are listed in TABLE II while the order applied is random.
The similarity scores computed of JLex to JLex_control and
JLex_data are correspondingly 0.978 and 1.0, both are much
higher than 0.8. This indicates that DKISB is resilient even to
rather complex obfuscations.

The results show that DKISB has better performance (higher
score between obfuscated versions and lower score between JLex
and others) than system call based birthmarks [7], and as good
performance as value based birthmark [5].

C. Credibility
1) Similarity between different versions of the same

program.
To evaluate the credibility of DKISB, we firstly compare

different versions of the same program. Here five different
versions of gizp are taken as the subjects, which are all compiled
with gcc4.6 and optimization level of O2. Then the similarity
between different versions is calculated.

As illustrated in TABLE III, the similarity scores between
different versions of gzip are all very high (average score is
larger than 0.99 for each version pair). It indicates that during the
process of software evolution, code of previous versions are
usually shared and reused by new versions, which also means
that the new versions will generally inherit most of the features of
older versions. This also shows that our DKISB is a good
reflection of the intrinsic characteristics of a program.

Besides, we also compared similarities between two different
versions of image processing software. Specially, feh2.3 is
compared with feh2.9.2, and qiv2.23 is compared with qiv2.2.4.
They both illustrated high similarity as close as to 1.0. By
viewing the upgrade report of qiv2.2.4, we found that the new
version just fixed several bugs submitted in the previous version,
which means code is modified slightly and that’s why the two
versions can have such a high similarity.

2) Similarity between programs of the same category.
In this section, programs in the same categories are compared

to prove the credibility of DKISB. Although programs in the
same categories usually overlap greatly in their functionalities,
they can be rather different in the code level if implemented
independently due to different algorithms adopted, different
design patterns applied, different mode of thinking and coding
habits of developers’ etc.

In our experiments, three kinds of software are chosen,
including 4 image processing software, 3 compression and
decompression software, and 7 encryption and decryption
software. Multiple inputs are provided for software of same
categories to mitigate the impact of causal factors and average
similarity scores are calculated.

The experimental results are shown in the blue area of
TABLE IV. We can see that most of the similarity scores are
relatively low. For programs that are independently implemented,
their similarity scores are as close as to 0, as illustrated by the
gzip-bzip pair and the cksum-md5sum pair. The similarities
between the series of openssl programs are slightly higher but
most are still below 0.2. This is because these programs share the
same front end for preprocessing parameters etc. while their
kernel modules are implemented differently. We believe that
lower scores can be acquired by filtering out the instructions
executed in the shared module, and this can be accomplished by
specifying where to attach and detach Pin.

Besides, we observe that the similarity scores of gzip-zip pair
and md5sum-opensslMD5 pair are both as high as 0.9. According
to the documentations of gzip and zip projects, they are both
based on the compression algorithm deflate which is also
implemented in the zLib library. And gzip contains code from
zLib while zip is dynamically linked to system-wide zLib, which
is as also confirmed in [5]. This explains why they have such a
high similarity score, and also convincingly demonstrate the
credibility of our DKISB in a way.

In addition, the similarity scores between image processing
software are relatively high. This is due to that they share many
image processing libraries which can be learned by checking the
dependencies of each program with the apt-get depends
command. For example, the dependencies of pho are totally
included in the ones of qiv, causing their similarity score to be
more than 0.9. As for qiv (which is implemented on the basis of
imlib2 and gtk2) and feh (whose implementation is based simply
just on imlib2), only part of the dynamic libraries are shared, so
their similarity is relatively low (0.302 here). The consistency
between the containment of dependencies among these programs
and similarity scores calculated with our birthmarks proved the
credibility of DKISB once again.

3) Similarity between programs of different categories.
In this section, we calculated the similarity scores between

software in different categories. As the experimental result shown
in the green area of TABLE IV, all the scores are below the
threshold 0.2, which means no false classifications exist.

TABLE III. Similarity of different versions of gzip

name gzip1.2.4a gzip1.2.4 gzip1.3.13 gzip1.4 gzip1.5
gzip1.2.4a 1 1 0.995 0.992 0.997
gzip1.2.4 - 1 0.995 0.992 0.997

gzip1.3.13 - - 1 0.997 0.992
gzip1.4 - - - 1 0.995
gzip1.5 - - - - 1

626626

TABLE IV. Similairty between independently implemented programs

Category

Compression And
Decomression Image Processing Encryption And Decryption

Gzip Bzip Zip Qiv Feh Pho Sxiv Cksum Md5sum OL-
MD4

OL-
MD5

OL-
RMD160

OL-
SHA

OL-
SHA1

Compression And
Decompression

Gzip 1.00 0.004 0.914 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bzip - 1.000 0.004 0.027 0.007 0.051 0.004 0.063 0.000 0.000 0.000 0.000 0.000 0.001
Zip - - 1.000 0.010 0.013 0.010 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Image Processing
Qiv - - - 1.000 0.302 0.930 0.562 0.010 0.038 0.136 0.124 0.075 0.104 0.205
Feh - - - - 1.000 0.301 0.578 0.011 0.001 0.003 0.006 0.008 0.007 0.006
Pho - - - - 1.000 0.530 0.053 0.016 0.128 0.104 0.068 0.097 0.191
Sxiv - - - - - - 1.000 0.005 0.016 0.122 0.101 0.065 0.093 0.194

Encryption And
Decryption

Cksum - - - - - - - 1.000 0.000 0.004 0.002 0.001 0.001 0.013
Md5sum - - - - - - - - 1.000 0.238 0.927 0.159 0.142 0.010
OL-MD4 - - - - - - - - - 1.000 0.312 0.053 0.174 0.285
OL-MD5 - - - - - - - - - - 1.000 0.166 0.196 0.150

OL-RMD160 - - - - - - - - - - - 1.000 0.077 0.068
OL-SHA - - - - - - - - - - - - 1.000 0.109

OL-SHA1 - - - - - - - - - - - - - 1.000

V. CONCLUSION
In this paper, a dynamic birthmark called DKISB is proposed

based on the key instruction sequence, to solve some of the
limitations in birthmark based software plagiarism detection
literature. By introducing dynamic data flow analysis into
birthmark generation, we are able to produce a high quality
birthmark that is resilient to various kinds of obfuscation
techniques. Further, based on the Pin instrumentation framework,
a DKISB based software plagiarism detection system is
implemented which firstly generate birthmarks for both the
plaintiff and defendant program, and then make the plagiarism
decision by comparing the similarity of their birthmarks. Finally,
plenty of experiments are conducted on various programs, and
the results show that the resilience and credibility of DKISB are
pretty well.

ACKNOWLEDGMENT
The research was supported in part by National Science

Foundation of China under Grant Nos. 91118005, 91218301,
61221063; National High Technology Research and
Development Program 863 of China under Grant No.
2012AA011003; Cheung Kong Scholar’s Program; Key Projects
in the National Science and Technology Pillar Program under
Grant No. 2011BAK08B02; Doctoral Fund of Ministry of
Education of China (20110201120010) and the Fundamental
Research Funds for the Central Universities.

REFERENCES
[1] http://www.fbi.gov/newyork/press-releases/2010/nyfo121010.htm
[2] http://www.tuicool.com/articles/j2INVn
[3] Kamiya T, Kusumoto S, Inoue K. CCFinder: a multilinguistic token-based

code clone detection system for large scale source code[J]. Software
Engineering, IEEE Transactions on. 2002, 28(7): 654-670.

[4] Jiang L, Misherghi G, Su Z, et al. DECKARD: Scalable and Accurate
Tree-Based Detection of Code Clones[C]. In: ICSE '07.Washington, DC,
USA: IEEE Computer Society, 2007. 96-105.

[5] Jhi Y, Wang X, Jia X, et al. Value-based program characterization and its
application to software plagiarism detection[C]. In: ICSE '11.New York,
NY, USA: ACM, 2011. 756-765.

[6] Collberg C, Carter E, Debray S, et al. Dynamic path-based software
watermarking[C]. In: PLDI '04.New York, NY, USA: ACM, 2004.

[7] Wang X, Jhi Y, Zhu S, et al. Detecting Software Theft via System Call Bas
ed Birthmarks[C]. In: ACSAC '09.Washington, DC, USA: IEEE Computer
 Society, 2009. 149-158..

[8] Luk C, Cohn R, Muth R, et al. Pin: building customized program analysis
tools with dynamic instrumentation[C]. In: PLDI '05.New York, NY, USA:

[9] Collberg C, Myles G R, Huntwork A. Sandmark-a tool for software
protection research[J]. Security & Privacy, IEEE. 2003, 1(4): 40-49.

[10] Collberg C, Thomborson C. Software watermarking: models and dynamic
embeddings[C]. In: POPL '99. NY, USA: ACM, 1999. 311-324.

[11] Schuler D, Dallmeier V, Lindig C. A dynamic birthmark for java[C]. In:
ASE '07.New York, NY, USA: ACM, 2007. 274-283.

[12] Wang X, Jhi Y, Zhu S, et al. Behavior based software theft detection[C].
In: CCS '09.New York, NY, USA: ACM, 2009. 280-290.

[13] Tamada H, Nakamura M, et al. Design and evaluation of birthmarks for
detecting theft of java programs.[C]. In: IASTED 2004. 569-574.

[14] Bai Y, Sun X, Sun G, et al. Dynamic k-gram based software birthmark[C].
In: ASWEC, 2008. 644-649.

[15] Kim H, Jung Y, Kim S, et al. MeCC: memory comparison-based clone
detector[C]. In: ICSE '11.New York, NY, USA: ACM, 2011. 301-310.

[16] Liu C, Chen C, et al. GPLAG: detection of software plagiarism by program
dependence graph analysis[C]. In: KDD, 2006. 872-881.

[17] Myles G, Collberg C. K-gram based software birthmarks[C]. In: SAC
'05.New York, NY, USA: ACM, 2005. 314-318.

[18] Bin L, Fenlin L, Xin G, et al. A Software Birthmark Based on Dynamic Op
code ngram[C]. In: ICSC '07.Irvine CA, United states,2007. 37-44

[19] Choi S, Park H, et al. A static API birthmark for Windows binary
executables[J]. Journal of Systems and Software. 2009, 82(5): 862-873.

[20] Myles G, Collberg C. Detecting software theft via whole program path
birthmarks[M]. Information security, Springer, 2004, 404-415.

[21] Tamada H, Okamoto K, et al. Dynamic software birthmarks to detect the
theft of windows applications[C]. In: ISFST 2004.

627627

