
DBPD: A Dynamic Birthmark-based Software

Plagiarism Detection Tool

Zhenzhou Tian, Qinghua Zheng, Ming Fan, Eryue Zhuang, Haijun Wang, Ting Liu*

Ministry of Education Key Lab For Intelligent Networks and Network Security

Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China

{zztian, fanming.911025, hjwang.china}@stu.xjtu.edu.cn; {qhzheng, tingliu}@mail.xjtu.edu.cn; zhuang8225@126.com

Abstract: With the burst of open source software, software

plagiarism has been a serious threat to the software industry. In this

paper, we present the demo tool DBPD: Dynamic Birthmark-based

Software Plagiarism Detection. Major features of DBPD could be

summarized as: 1) dynamic birthmark. The execution process of

software is captured to generate the birthmark reflecting intrinsic

properties of software; 2) high availability. It is available for cross-

platform and binary executable’s plagiarism detection; 3)

customizable. The birthmarks, similarity calculation metrics and

detection criteria are configurable. The DBPD is implemented using

C++ and Java, and currently can work under both Windows and

Linux system. Three dynamic birthmarks are implemented in DBPD

to identify the software according to its instruction, stack operation

and system call.

Keywords: software plagiarism detection, dynamic birthmark

I. INTRODUCTION

Free and open source software projects allow users to use,
change and distribute software under certain types of license
such as the well-known GPL. However, driven by the huge
commercial interests, some individuals and companies
incorporate third party software or libraries into their own
products without respecting the licensing terms. Recent
incidents include the lawsuit against Verizon by Free Software
Foundation for distributing Busybox in its FIOS wireless
routers [1], and the crisis of Skype’s VOIP service for the
violation of licensing terms of Joltid. The unavailability of
source code and the existence of powerful automated semantic-
preserving code transformation tools, make the plagiarism an
easy to implement but difficult to detect thing.

Software birthmark, a set of characteristics extracted from a
program that reflect the program’s intrinsic properties and that
can be used to uniquely identify the program, is a promising
way for solving the plagiarism detection problem. However,
despite the tremendous progress of birthmark based plagiarism
detection approaches, seldom tools are publically available.
The rare few tools as far as we find are SandMark [2], Stigmata
[3] and Birthmarking [4]. The former two are static birthmark
based which are believed to be fragile faced with semantic-
preserving code obfuscation techniques, and the last one is
dynamic birthmark based which is believed to have better
performance than the previous two static birthmarks, yet they
all suffer the problem of language dependence, since they’re

only valid for java programs. Also, there are some mature tools
such as the JPlag [5] that target at source code which is not
always available, since plagiarists are not likely to provide their
source code before certain evidences are collected. Thus more
powerful and practical tools are in urgent needs to fill the gap
of birthmark based plagiarism detection research and practice.

It is a generally accepted fact that dynamic birthmarks
being abstractions of runtime behaviors are believed to be more
accurate reflections of program semantics than static
birthmarks. Therefore, we implement a demo tool DBPD for
plagiarism detection using dynamic birthmark techniques.
Three dynamic birthmarks are implemented in DBPD to
identify the software, including DKISB (dynamic key
instruction sequence birthmark) [6], SODB (call stack
operation dynamic birthmark) [7] and SCSSB (system call
short sequence birthmark) [8]. Since all of them can work
directly on binary executables, DBPD can analyze various
programing languages.

II. TOOL OVERVIEW AND IMPLEMENTATION

A. Tool Overview

Fig.1 shows the overview of the DBPD. It consists of three

main modules: the dynamic analysis module, the birthmark

generator, the similarity calculator and decision maker. The

modular architecture qualifies it with good scalability of easily

introducing new kinds of dynamic birthmark methods.

Given two binary executables the plaintiff (original

program), the defendant (suspicious program) and a set of

inputs, DBPD executes both programs with the same input one

by one. Meantime, the dynamic analysis module monitors the

executions, performs dynamic analysis and collects execution

profiles containing three kinds of events: key instructions,

stack operations, and system calls. After sequences of both

plaintiff and defendant programs are available, they are fed

into the birthmark generator where noises are filtered, valid

Fig. 1 Design overview of DBPD

Dynamic

Analysis

Module

 Similarity Calculator

& Decision Maker

Plaintiff

Binary

Defendant

Binary

Input

DKISB

Generator

SODB

Generator

SCSSB

Generator

Birthmark Generator

*Ting Liu is the corresponding author. The research was supported in part by
National Science Foundation of China (91118005, 91218301, 61221063,
61203174), 863 Program (2012AA011003), The Ministry of Education

Innovation Research Team (IRT13035), Key Projects in the National Science

and Technology Pillar Program of China (2012BAH16F02).

740

Fig. 2 DBPD: the dynamic birthmark based plagiarism detection tool

execution traces are constituted and either of the three kind

birthmarks are extracted according to user configuration. Next,

similarity scores are computed between the birthmarks of

plaintiff and defendant in the similarity calculator. Finally, the

decision maker judges whether the defendant is innocent or

guilty according to the scores calculated and a given threshold.

B. Implementation

The dynamic analysis module is implemented based on the

dynamic instrumentation framework Pin [10]. It consists of

three sub-modules: DKISExtractor, StackTracer and

SysTracer. They are responsible for the monitoring, analysis

and collection of key instructions, stack operations and system

calls respectively.

Three sub-generators implemented in the birthmark
generator are in charge of the extraction of the three kind
dynamic birthmarks accordingly. The DKISB [6] is extracted
using k-gram algorithm from dynamic key instructions which
refer to instructions that are both value updating and input-
correlated. Since the underlying object that DKISB operates on
is each assembly instruction, thus endows DBPD the ability of
cross-platform plagiarism (for example, plagiarizing programs
originally in linux platform to windows) detection. The SODB
[7] is generated by analyzing the behavior of call stack during
program executions. It utilizes the law of push and pop
operation of call stack to uniquely identify a program, and
believes that the laws of homologous programs are also the
same. The SCSSB [8] is extracted from system call sequences
which were originally widely used for intrusion detection to
detect irregularities in the behavior of a program. Despite the
high detection ability of DKISB, it suffers the scalability
problem. For the other two birthmarks, only method calls need
to be monitored, thus they have much lower overhead and
better scalability. Therefore, for relatively larger programs, the
other two birthmarks are preferred. This allows users to have
more choices according to their requirements.

Four different similarity metrics including Cosine Distance,
Jaccard Index, Dice Coefficient and Containment are supported
in the similarity calculator. There’s a default metric for each
kind of birthmarks, but allows users to specify other metrics as
the case may be. C++ is used for the implementation of the
dynamic analysis module. The user interface and all the other
modules are implemented in Java. Benefit from the support of
pin for both the Windows and Linux systems, as well as the

TABLE I. Detection ability of three birthmarks adopting the default

detection threshold of 0.25

 Precision Recall F-Measure

DKISB 1.00 0.96 0.98

SODB 1.00 0.98 0.99

SCSSB 1.00 0.83 0.91

platform independence of Java, DBPD is able to work under

both systems. Fig. 2 shows the interface of our DBPD.

III. EVALUATION SETUP

We evaluated the detection performance of DBPD under

both Windows and Linux with plenty of experimental objects.

Specially, all the three birthmark techniques implemented are

assessed for ability of recognizing plagiarism utilizing various

semantic-preserving code transformation techniques including

adopting different compilers (llvm and gcc), using powerful

tools such as the shelling tools (like UPX, ASProtect etc.) and

the obfuscation tools (like SandMark, Allatori etc.), and the

ability of distinguishing independently developed programs

using plentifully programs that have similar and different

functionalities. Totally 186 different versions generated from

38 software are used for the evaluation. As summarized in

Table I the precision, recall and F-Measure values of the three

birthmark techniques, we can see that all the birthmark

methods show high detection ability with rather low false

classification rates. The usability of DBPD is also confirmed

by eight intern students with no prior experience of plagiarism

detection.

IV. CONCLUSION AND FUTURE WORK

In this demo, we present DBPD, a tool for software
plagiarism detection using dynamic birthmarks. To the best of
our knowledge, it’s and will be the first publically available
plagiarism detection tool that can handle binary executables
directly, and the first tool that support cross-platform
plagiarism detection. In the future work, more static and
dynamic birthmark techniques such as the thread-aware
birthmarks [9] will be integrated to improve detection accuracy,
and more programming languages will be supported in DBPD.

REFERENCES

[1] http://sourceauditor.com/blog/tag/lawsuits-on-open-source/.

[2] SandMark. http://sandmark.cs.arizona.edu/.

[3] Stigmata. http://stigmata.sourceforge.jp/implementation.html.

[4] Birthmarking. https://www.st.cs.uni-saarland.de/birthmarking/.

[5] JPlag. http://jplag.ipd.kit.edu/.

[6] Tian Z, Zheng Q, Liu T, et al. DKISB: Dynamic Key Instruction
Sequence Birthmark for Software Plagiarism Detection[C]. In:
HPCC'13.Zhang Jia Jie, Hu Nan: IEEE, 2013.

[7] Fan M, Tian Z, Liu T, et al. SODB: A Novel method for Software
Plagiarism Detection based on Stack Operation Dynamic Birthmark[C].
In: CTCIS'14. Hu Bei, 2014. Unpublished.

[8] Wang X, Jhi Y, Zhu S, et al. Detecting Software Theft via System Call
Based Birthmarks[C]. In:ACSAC'09.Washington DC, USA: IEEE, 2009.

[9] Tian Z, Zheng Q, Liu T, et al. Plagiarism Detection for Multithread
Software Based on ThreadAware Software Birthmarks[C]. In: ICPC'14.
Hyderabad, India,: ACM, 2014.

[10] Pin. https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instru
mentation-tool.

741

