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Abstract—As multithreaded programs become increasingly popular, plagiarism of multithreaded programs starts to plague the

software industry. Although there has been tremendous progress on software plagiarism detection technology, existing dynamic

birthmark approaches are applicable only to sequential programs, due to the fact that thread scheduling nondeterminism severely

perturbs birthmark generation and comparison. We propose a framework called TOB (Thread-oblivious dynamic Birthmark) that

revives existing techniques so they can be applied to detect plagiarism of multithreaded programs. This is achieved by thread-

oblivious algorithms that shield the influence of thread schedules on executions. We have implemented a set of tools collectively

called TOB-PD (TOB based Plagiarism Detection tool) by applying TOB to three existing representative dynamic birthmarks,

including SCSSB (System Call Short Sequence Birthmark), DYKIS (DYnamic Key Instruction Sequence birthmark) and JB (an

API based birthmark for Java). Our experiments conducted on large number of binary programs show that our approach exhibits

strong resilience against state-of-the-art semantics-preserving code obfuscation techniques. Comparisons against the three

existing tools SCSSB, DYKIS and JB show that the new framework is effective for plagiarism detection of multithreaded programs.

The tools, the benchmarks and the experimental results are all publicly available.

Index Terms—software plagiarism detection, multithreaded program, software birthmark, thread-oblivious birthmark

✦

1 INTRODUCTION

SOFTWARE plagiarism, an act of illegally copying
others’ code, severely affect both open source

communities and honest software companies. The
recent incidents include the lawsuit against Verizon
by Free Software Foundation for distributing Busybox
in its FIOS wireless routers [1], and the crisis of
Skype’s VOIP service for the violation of licensing
terms of Joltid [2]. Unfortunately software plagiarism
is easy to implement but difficult to detect. A study
in 2012 [3] shows that about 5%-13% of apps in the
third-party app markets are copied and redistributed
from the official Android market. The unavailability
of source code and the existence of powerful au-
tomated semantics-preserving code obfuscation tech-
niques and tools [4]–[6] are a few reasons that make
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software plagiarism detection a daunting task. Nev-
ertheless, researchers welcomed this challenge and
developed effective methods, of which software birth-
marking [7], [8] is a popular and recently well studied
technique. A birthmark is a set of characteristics ex-
tracted from a program that can be used to uniquely
identify the program. Depending on whether its ex-
traction relies on program runs, a software birthmark
can be either considered static or dynamic. Static
birthmarks, generated mainly by analyzing syntactic
features, are usually ineffective against semantics-
preserving obfuscations that can modify the syntactic
structure of a program. Besides, static birthmarks are
easily defeated by packing techniques [9], [10] which
can make processed executables rather different in
the static level. In contrast, dynamic birthmarks are
extracted based on runtime behaviors and thus are
believed to be more accurate reflections of program
semantics and more robust against obfuscations [11]–
[15]. Thus in this paper we mainly focus on dynamic
software birthmark methods.

Despite the tremendous progress in software pla-
giarism detection technology, a new trend in software
development greatly threatens its effectiveness. The
trend towards multithreaded programs is creating a
gap between the current software development prac-
tice and the software plagiarism detection technology,
as the existing dynamic approaches remain optimized
for sequential programs. Due to the perturbation
caused by non-deterministic thread scheduling, ex-
isting birthmark generation and comparison are no
longer applicable to modern software with multiple
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#include <stdio.h>

#include <pthread.h>

#include <semaphore.h>

#define N 8 

pthread_t mThread[N];

sem_t sem_a;

int tid;

void *run(void *data){

     sem_wait(&sem_a); 

     tid = (int)data;

     printf("hello world from thread %d\n", tid);

     sem_post(&sem_a);

     if(((int)data)%2==0){

         usleep(0);}

     char str[25]; 

     sprintf(str,"%04X",(int)data);

     return NULL;}

int main(int argc, char *argv[]){

     int rc, i, j;

     sem_init(&sem_a, 0, 1);

     printf("input a number please: \n");

     scanf("%d", &i); j = i;

     for (i; i < N; i++){

        rc = pthread_create(&mThread[i], NULL, run, (void *)i);

        if (rc)

           printf("create thread failed. error code = %d\n", rc);}

     for (i = j; i < N; i++)

        pthread_join(mThread[i], NULL);

     printf("main thread finished\n");

     return 0;}

Fig. 1. A simple multithreaded program

threads.
The problems with existing dynamic birthmarks

can be illustrated by a multithreaded program shown
in Figure 1. The program is a test case in the WET
project [16] with slight modifications. We apply two
typical plagiarism detection algorithms on multiple
runs of this program. One is called System Call Short
Sequence Birthmark (SCSSB) [15] and the other is a
more recent algorithm called DYKIS [17]. The details
of both algorithms will be presented in Section 2.
If the existing approaches fail to claim plagiarism
on different runs of the same small program, even
without any code modifications, the capability of such
approaches is in doubt.

Dynamic birthmarks usually give quantitative mea-
surement between 0 and 1 to indicate the similarity
between two runs. A value of 1 indicates identicalness
and 0 refers to complete difference. The measurement
is given by applying metrics, such as Cosine distance,
Jaccard index, Dice coefficient and Containment [13],
[15], [18], [19], on the birthmarks obtained by a pair of
executions. Tables 1(a) and 1(b) show the experimental
results of SCSSB and DYKIS, where the column and
row headings indicate the number of threads and the
evaluation metrics, respectively. When there is only
one thread, the program becomes sequential. Without
non-deterministic thread scheduling, the executions
are deterministic. As expected, the similarity scores

TABLE 1

Similarity scores calculated between birthmarks of

multiple runs of the sample program in Figure 1. The

column headings indicate the number of threads.

(a) SCSSB

SCSSB 1 2 4 6 8

Cosine Distance 1.000 0.898 0.670 0.569 0.469
Jaccard Index 1.000 0.76 0.439 0.363 0.265

Dice Coefficient 1.000 0.864 0.609 0.532 0.403
Containment 1.000 0.864 0.619 0.57 0.412

(b) DYKIS

DYKIS 1 2 4 6 8

Cosine Distance 1.000 1.000 0.968 0.708 0.471
Jaccard Index 1.000 1.000 0.874 0.437 0.311

Dice Coefficient 1.000 1.000 0.926 0.6 0.459
Containment 1.000 1.000 0.984 0.6 0.482

are all 1.0, pointing out correctly that the runs are
from identical programs. However, as the number of
threads increase, the similarity scores quickly deteri-
orate. As explained in Section 2, in birthmark-based
techniques a threshold ε is used to indicate plagia-
rism. A similarity score greater than 1 − ε indicates
strong possibility of plagiarism, while a score less than
ε indicates the opposite. Considering typical value of
ε is between 0.15 and 0.35, SCSSB and DYKIS will not
claim plagiarism when the number of threads is 6, and
start to claim the runs are from different programs
when the number of threads becomes 8.

The example illustrates that the existing dynamic
birthmark based approaches are inadequate in de-
tecting plagiarism of multithreaded programs because
they neglect the effect of thread scheduling. Sequential
program behavior is deterministically determined by
system inputs, including I/O, DMA, interrupts, thus
executions of highly similar programs under the same
input are similar. This assumption no longer holds for
multithreaded programs since thread schedules are
a major source of non-determinism. For a program
with n threads, each executing k steps, there can

be as many as (nk)!/(k!)
n

> (n!)
k different thread

interleavings, a doubly exponential growth in terms of
n and k. This indicates that two executions under the
same inputs can be very different, which invalidates
the basic assumption of existing approaches.

In this paper, we present TOB (Thread-Oblivious
dynamic Birthmark), a framework that can revive ex-
isting dynamic birthmarks such as SCSSB [15], DYKIS
[17], JB [18] to handle multithreaded programs. Unlike
many prior approaches [20], [21], TOB operates on
binary executables rather than source code that is
usually unavailable when birthmark techniques are
used to obtain initial evidence of software plagiarism.

This paper extends our preliminary conference pa-
per [22], and makes the following contributions:

• To the best of our knowledge, this is the first work



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2688383, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 3

that discusses the impact of thread scheduling on
birthmark based software plagiarism detection,
and proposes a solution to remedy the problem.

• We apply the var-gram [23] algorithm in birth-
mark generation. As far as we know, this is the
first time this algorithm is used for such purpose.
Our experiments confirm its effectiveness.

• We have implemented a set of tools collectively
called TOB-PD (TOB based Plagiarism Detection
tool) by integrating the principle of TOB with
existing algorithms, including SCSSB [15],
DYKIS [17] and JB [18]. The tools as well as
the source codes are publicly available at website:
http://labs.xjtudlc.com/labs/wlaq/TAB-PD/site.

• Our experiments on 418 versions of 35 different
multithreaded programs show that the new tools
are highly effective in detecting plagiarism and
are resilient to most state-of-the-art semantics-
preserving obfuscation techniques implemented
in tools such as SandMark [4], DashO [24] and
UPX. All benchmarks and the experimental data
can also be downloaded from our website.

The remainder of the paper is organized as follows.
Necessary background on software birthmarks are
described in Section 2. In Section 3 we present the
TOB framework that revives existing birthmarks. In
Section 4 the approaches for comparing the TOB-
revived birthmarks are discussed. The system design
and implementation details are described in Section 5.
Section 6 presents the empirical study, including the
evaluation on resilience and credibility of the thread-
oblivious birthmarks, the comparison with traditional
SCSSB and the integration of TOB with DYKIS and
JB. In Section 7 we discuss threats to the validity of
our approaches. Section 8 reviews related work and
finally we conclude the paper in Section 9.

2 PRELIMINARIES

2.1 Birthmark based Plagiarism Detection

A software birthmark, whose classical definitions are
as depicted in Definition 1 and Definition 2, is a set
of characteristics extracted from a program statically
or dynamically, that reflects intrinsic properties of the
program and that can be used to identify the program
uniquely.

Definition 1: Software Birthmark [8]. Let p be a
program and f be a method for extracting a set of
characteristics from p. We say f (p) is a birthmark of
p if and only if both of the following conditions are
satisfied:

- f (p) is obtained only from p itself.
- Program q is a copy of p ⇒ f (p) = f (q).

Definition 2: Dynamic Software Birthmark [25]. Let
p be a program and I be an input to p. Let f (p, I) be a
set of characteristics extracted from p when executing
p with I . We say f (p, I) is a dynamic birthmark of

p if and only if both of the following conditions are
satisfied:

- f (p, I) is obtained only from p itself when exe-
cuting p with input I .

- Program q is a copy of p ⇒ f (p, I) = f (q, I).

Based on the two conceptual descriptions, various
implementable birthmarks have been developed by
mining characteristics from different aspects of the
program, of which the SCSSB [15] extracted from
system calls, the DYKIS [13] extracted from executed
instructions, the JB [18] extracted from executed Java
APIs are several representative dynamic birthmarks.

The two conceptual definitions of software birth-
marks require that if two programs are in copy rela-
tion, their birthmarks should be the exactly the same.
But due to many practical issues in implementing
specific birthmarks, even if q is a copy of p, their
corresponding birthmarks are not identical. Thus in
the literature of software birthmarking, the plagiarism
of two programs is decided by a threshold ε and
a function sim that computes the similarity score
between their birthmarks. The range of a similarity
score is between 0 and 1. Although a value of 0.25 was
typically used as the threshold in previous studies,
other values were used as well and we found that
the choice was quite arbitrary. Thus in our work, we
do not set ε to a particular value. Instead we analyze
its impact on the performance under a wide range of
values. Let p and pB be the plaintiff program and its
birthmark, and q and qB be the defendant program
and its birthmark. The plagiarism is decided with
Equation 1, which gives a conceptual definition of sim
that returns a three-value result: positive, negative or
inconclusive.

sim (pB, qB) =







> 1− ε positive : q is a copy of p
< ε negative : q is not a copy of p
otherwise inconclusive

(1)
A high quality birthmark manifests in that the ratio

of incorrect classifications should be low enough for a
certain ε. However, false negative is more intolerable
than false positive, since birthmarking technique is
not a proving techniques but rather a detecting tech-
nique of suspected copies [14], [15], [17], [26]. Gener-
ally in the literature, the following two properties of
a birthmark should be satisfied to make it valid. We
refer to the definitions [17] restated from the original
descriptions of Myles [27] and Choi [19].

Property 1: Resilience. Let p be a program and q be a
copy of p generated by applying semantics-preserving
code transformations τ . A birthmark is resilient to τ
if sim (pB, qB) > 1− ε.

Property 2: Credibility. Let p and q be independently
developed programs that may accomplish the same
task. A birthmark is credible if it can differentiate the
two programs, that is sim (pB, qB) < ε.
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2.2 Three Representative Dynamic Birthmarks

2.2.1 SCSSB

SCSSB (System Call Short Sequence Birthmark) [15] is
a dynamic birthmark extracted from executed system
calls that are believed to be a fundamental runtime
indicator of program behavior. Modification of system
calls usually leads to incorrect programs, and there-
fore, a birthmark generated from sequence of system
calls can be used to uniquely identify a program even
after it has been modified. In SCSSB, the sets of k-
length system call sequence is treated as the birth-
marks. The birthmark scales well, and their experi-
mental results show resilience against either evasion
techniques enabled by different compilers or powerful
obfuscations provided in Sandmark [4]. However,
as non-deterministic thread scheduling perturbs the
order of system calls, SCSSB becomes ineffective in
handling multithreaded programs. This is confirmed
by our empirical study in Section 6.

2.2.2 DYKIS

DYKIS (DYnamic Key Instruction Sequence birth-
mark) [17] is extracted from executed instructions of
a binary executable. Rather than taking the whole
instructions for birthmark generation, the authors pro-
pose the concept of key instructions. Specifically, they
treat an instruction as key instruction if it is both
value-updating and input-correlated, where value-
updating refers to that the execution of an instruction
will generate new values rather than transfer values,
and input-correlated refers to that the execution of an
instruction will introduce new taint labels (dynamic
taint analysis is conducted to acquire this). DYKIS
is then extracted from a key instruction sequence of
length k. Operating directly on the assembly instruc-
tions, DYKIS is able to detect cross-platform plagia-
rism. Also, the experimental evaluation shows that
it is resilient against various obfuscation techniques.
However, suffering from the same issue as SCSSB,
DYKIS cannot be applied for plagiarism detection of
multithreaded programs.

2.2.3 JB

Different from SCSSB and DYKIS that operate on
binary executables, JB [18] is a dynamic birthmark
for Java programs. It observes short sequences of
Java Standard API calls received by individual ob-
jects. Similar to both SCSSB and DYKIS, an API call
trace is chopped into a set of short sequences to
generate birthmarks. Organizing traces on a per-object
basis makes JB less susceptible to thread scheduling.
However, we will demonstrate that it can be further
improved with our TOB framework.

3 THREAD-OBLIVIOUS BIRTHMARKS

As illustrated by the example in Figure 1, thread
scheduling makes the behavior of a multithreaded

Fig. 2. A time window of executions between two

threads of a multithreaded program

program non-deterministic even under a fixed input.
The classical definition of dynamic software birth-
mark is no longer correct because f(p, I) 6= f(q, I)
even if q is a copy of p. In the following we give a
definition suitable for multithreaded programs.

Definition 3: Thread-Oblivious dynamic
Birthmark. Let p, q be two multithreaded programs.
Let I be an input and s be a thread schedule to p and
q. Let f (p, I, s) be a set of characteristics extracted
from p when executing p with I and schedule s. We
say f (p, I, s) is a dynamic birthmark of p if and only
if both of the following conditions are satisfied:

- f (p, I, s) is obtained only from p itself when
executing p with input I and thread schedule s.

- Program q is a copy of p ⇒ f (p, I, s) = f (q, I, s).

Similar to Definition 1 and Definition 2, Definition 3
provides an abstract guideline without considering
any implementation details. In practice it is almost
impossible to predetermine a thread schedule and
enforce the same thread scheduling across multiple
runs, especially for the programs that have been
obfuscated or even independently developed [28],
[29]. Therefore instead of enforcing thread schedules
in our algorithms, we try to shield the influence
of thread schedules on executions. That is, to make
a birthmark thread-oblivious, we must ensure that
∀s1,s2∈S , f (p, I, s1) ≈ f (p, I, s2), where S denotes the
set of all possible thread schedules of program p.

3.1 Intuition

Figure 2 depicts a typical execution snippet between
two possible threads of a multithreaded program. De-
spite there can be many different thread interleavings,
the order of the events happened in each single thread
seems not affected by thread scheduling. That is, if e1
happens before e2 in an execution, the order of two
events from the same thread will remain the same
even under different thread interleavings.

Based on the observation, we project traces on
individual threads, and then check whether two traces
match each other after the projection. Consider the
system call traces comprised of eight threads that
correspond to the case as indicated by the last column
in Table 1(a). As depicted in Figure 3, almost identical
traces are observed (except subtle differences on the
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Fig. 3. Trace comparison on the thread level. System

call No. is used to represent each system call instance.

system call futex numbered 240) after projecting the
traces on individual threads. Futex is called only when
it is likely that the program has to block for a longer
time until the condition becomes true. Its occurrences
show intrinsic randomness under different executions,
as futex is essentially designed to reduce the number
of system calls so as to improve performance. Thus
in our implementation, as described in Section 5, we
treat them as noises. After refining the traces, exact
match among all the traces under the same inputs for
the sample program can be observed.

To validate whether the hypothesis (that projected
events within individual threads are relatively
stable under different thread interleavings) also
holds among real world multithreaded programs,
we further investigated in detail the traces of ten
multithreaded programs, including blackscholes,
bodytrack, fludanimate, canneal, dedup,
ferret, freqmine, streamcluster, swaptions,
and x264, from the PARSEC benchmark suite [30].
These programs are typical complex multithreaded
programs covering different domains, such as
computer vision, video encoding, financial analytic,
animation physics and image processing. They come
with inputs of different sizes, and allow different
number of threads to start with.

In our initial empirical study, we run each pro-
gram with four threads 1 under the same inputs
multiple times. After projecting the traces on indi-
vidual threads, traces executed by blackscholes,
fludanimate, canneal and streamcluster show
perfect match. The projected traces executed by other
programs show exact match under some inputs, while
present subtle differences under some other inputs.
After manual examination, we conclude that the sub-
tle differences are due to the fact that a thread’s behav-
ior may be affected by other threads. In Section 5 we
discuss this issue further and provide an optimization
to alleviate the problem. To give a more intuitive
view of the matching, we compute the average of
similarity scores between the traces obtained under
same inputs, with the TOB-revived SCSSBs (to be
discussed in the following sections) for each program.
The gray and white columns in Table 2 summarize the

1. According to the document of the PARSEC benchmark suite,
the actual number of threads can be higher.

scores calculated without and with the trace refining.
As indicated by the scores that are all near 1.0 in
the white columns, our hypothesis applies to the real
world multithreaded programs.

Considering that more threads usually lead to more
complex thread interleaving, we vary the number of
threads that each program starts with. The left figure
in Figure 4 depicts how the average similarity scores
change for each program as the number of threads
increases. As it shows, the scores calculated with
the TOB-revived birthmarks are all very high. There
is also no significant variation across the x-axis. It
indicates that the number of threads has negligible
effect on the hypothesis.

In the third experiment, we validate whether the
hypothesis holds under different workloads. The
benchmark programs all come with input of dif-
ferent sizes, each representing a different workload.
Specifically, we use five levels of inputs, arranged in
ascending order in terms of the workloads, to drive
the executions. The five levels include Test, Simdev,
Simsmall, Simmedium and Simlarge. There is a large
span between different levels of inputs. For example,
the size of the Test input for dedup is just 6 byte,
while the size of its Simlarge input is 184MB. Thus, the
inputs provided by the benchmarks can properly test
the interleaving situation of a multithreaded program
under different levels of workloads. The right figure
in Figure 4 summarizes the results. As it shows, the
average similarity scores are all very high regardless
of the workload, and do not exhibit significant differ-
ences. This indicates that the effect of different levels
of workload on the hypothesis is trivial.

Finally, the thread interleaving can be affected by
scheduling policies. There are basically three schedul-
ing policies supported by the Linux kernel, including
SCHED OTHER, SCHED FIFO (realtime first-in-first-
out) and SCHED RR (realtime round-robin). Since all
the benchmark programs adopt the default scheduling
policy (SCHED OTHER), we make slight modifica-
tions to the source code in order to support the
other two scheduling policies. Table 3 summarizes the
average scores with respect to different scheduling
policies. As the data shows, all the scores are close
to 1.0 and score variations between different schedul-
ing policies are trivial. The results indicate that the
scheduling policy has little effect on the hypothesis.

Based on these observations, we propose a solution
to shield the influence of thread scheduling in birth-
mark generation. Figure 5 depicts our approach of
reviving existing birthmarks. Given a multithreaded
execution trace, TOB projects the trace on individual
threads. Each thread slice is insensitive to thread
scheduling so we can create a birthmark using exist-
ing techniques. Then TOB uses two models to com-
bine individual thread slice birthmarks into a thread-
oblivious birthmark for the multithreaded execution.
We use the rest of this section to explain our approach



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2688383, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 6

TABLE 2

Average of the similarity scores between the traces obtained under same inputs. For simplicity, we use SA and

SS to denote the TOB-revived birthmarks. The gray and white columns summarize the scores calculated

without and with trace refining, respectively.

Cosine Distance Jaccard Index Dice Coefficient Containment

SA SS SA SS SA SS SA SS

blackscholes 0.990 1.000 0.989 1.000 0.935 1.000 0.936 1.000 0.965 1.000 0.965 1.000 0.970 1.000 0.970 1.000
bodytrack 0.995 1.000 0.992 1.000 0.873 1.000 0.873 1.000 0.929 1.000 0.921 1.000 0.937 1.000 0.944 1.000

canneal 0.972 1.000 0.979 1.000 0.944 1.000 0.948 1.000 0.960 1.000 0.964 1.000 0.963 1.000 0.968 1.000
dedup 0.941 0.991 0.819 0.989 0.568 0.991 0.502 0.989 0.714 0.994 0.619 0.989 0.738 0.997 0.672 0.989
ferret 0.896 1.000 0.860 1.000 0.579 0.995 0.727 1.000 0.703 0.998 0.783 1.000 0.720 1.000 0.827 1.000

fludanimate 0.943 1.000 0.950 1.000 0.906 1.000 0.924 1.000 0.924 1.000 0.935 1.000 0.927 1.000 0.938 1.000
freqmine 0.963 0.997 0.973 0.996 0.766 0.932 0.785 0.950 0.857 0.962 0.872 0.971 0.864 0.965 0.882 0.975

streamcluster 0.884 0.996 0.885 0.998 0.800 0.993 0.878 0.998 0.839 0.995 0.881 0.998 0.846 0.996 0.884 0.998
swaptions 0.989 0.992 0.983 0.988 0.922 0.978 0.918 0.988 0.956 0.986 0.943 0.988 0.966 0.993 0.953 0.988

x264 0.845 0.999 0.889 0.999 0.795 0.998 0.866 0.999 0.820 0.999 0.877 0.999 0.829 0.999 0.888 0.999
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Fig. 4. Validation of the hypothesis under different number of threads and different workloads. Since similar

results are observed, only Containment scores measured for SA birthmarks are given here to save space.

TABLE 3

Validation of the hypothesis under different scheduling policies. To save space, only results measured with SA

birthmarks are given here.

Cosine Jaccard Dice Containment

OTHER FIFO RR OTHER FIFO RR OTHER FIFO RR OTHER FIFO RR

blackscholes 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000 0.999
bodytrack 1.000 1.000 1.000 0.994 0.989 0.990 0.997 0.994 0.995 0.999 0.997 0.999

canneal 1.000 0.999 0.999 0.999 0.998 0.998 0.999 0.999 0.998 0.999 0.999 0.999
dedup 0.993 0.980 0.992 0.973 0.960 0.976 0.983 0.971 0.985 0.992 0.979 0.992
ferret 0.999 0.999 0.999 0.986 0.989 0.985 0.993 0.994 0.992 0.997 0.998 0.997

fluidanimate 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
freqmine 0.996 0.995 0.996 0.912 0.902 0.894 0.951 0.945 0.940 0.954 0.948 0.944

streamcluster 0.996 0.996 0.998 0.990 0.990 0.994 0.993 0.993 0.996 0.996 0.996 0.998
swaptions 0.994 0.993 0.996 0.986 0.987 0.990 0.991 0.991 0.993 0.994 0.995 0.997

x264 1.000 1.000 0.999 0.998 0.998 0.998 0.999 0.999 0.999 1.000 0.999 0.999

in details. Note that although in this paper we fo-
cus on birthmarks in set format, birthmarks in other
formats such as sequences or graphs can also utilize
TOB to handle multithreaded programs. In the latter
case appropriate algorithms for thread slice birthmark
generations and comparisons need to be developed.

3.2 Birthmark for Individual Threads

In order to shield the influence of non-deterministic
scheduling, TOB annotate each event in an execution

trace with thread identifier. It then project the trace on
thread identifiers to obtain sub-traces, each of which
belongs to a single thread. As a result, the birthmarks
extracted from the sub-traces can remain same even
under different thread schedules.

Formally, let an execution trace of program p un-
der input I be trace(p, I) = 〈e1, e2, · · · , en〉. Each
recorded event ei is an instruction, a system call
or an API, along with its thread identifier that
is denoted as ei.tid. We define its projection on
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thread-oblivious

Fig. 5. TOB framework that revives traditional birth-

mark to thread-oblivious birthmark

thread t to be an ordered subsequence slice (p, I, t) =
〈ei|ei ∈ trace (p, I) ∧ ei.tid = t〉. The projections of all
the threads appearing in the trace form a partition
of trace(p, I), and we refer to each subsequence
slice(p, I, t) as a thread slice.

TOB further abstract each subsequence into a set of
short sequences. Two methods are used to partition a
sequence. One is the typical k-gram algorithm that is
widely used in birthmark generation literature [13],
[15], [18], [27]. which partitions a sequence with a
length k windows, generating a set of fixed-length
short sequences called k-grams. The other is the var-
gram algorithm [23] that divides a subsequence into
variable-length short sequences called var-grams. var-
gram algorithm is widely used in behavior pattern
mining, and is believed to be more natural description
of program behavior [31], [32]. In this paper, it is
applied for the first time to extract birthmarks.

Similar to the typical dynamic birthmarks such as
SCSSB, DYKIS, and JB, the set of key-value pairs
is taken as the birthmark for each thread slice. The
keys and values consist of all unique grams and their
corresponding frequencies, respectively. Definition 4
gives the definition of thread slice birthmark.

Definition 4: Thread Slice Birthmark. Given a
thread slice slice(p, I, t), we treat the key-value pair
set birth (p, I, t) = {(g, freq (g, I, t))} as the thread
slice birthmark of slice(p, I, t), where g is a unique
gram and freq(g, I, t) is its frequency in gram(p, I, t).

3.3 Thread-Oblivious Birthmark Generation

With the availability of birthmark for each individual
thread, TOB provides two models, Slice Aggregation
(SA) and Slice Set (SS), to generate thread-oblivious
birthmarks for multithreaded programs. Defined in
Definition 5, SA generates birthmarks by aggregating
all thread slice birthmarks into a single set of key-
value pairs, where the keys are the unique k-grams
or var-grams in any of the thread slice birthmark,
and the values are frequencies of corresponding k-
grams or var-grams. If a key is owned by multiple
thread slice birthmarks, its frequency is the sum of the
individual frequencies. As described in Definition 6,
SS treats the thread identifiers as the keys and their
corresponding thread slice birthmarks as the values.

The two models produce thread-oblivious birthmarks
birthSA(p, I) and birthSS(p, I) from thread slice birth-
marks. We also use birth(p, I) to represent a birthmark
if we do not care whether it is obtained by SA or SS.

Definition 5: Slice Aggregation Model.
The slice aggregation model is a map

f : {birth (p, I, t) |0 ≤ t < m}
f
−→ birthSA(p, I), where

m is the number of threads and birthSA(p, I) =
{(g, freq(g, I))|g ∈ ∪

0≤t<m
gram(p, I, t), freg(g, I) =

∑

0≤t<m

(freq(g, I, t))}.

Definition 6: Slice Set Model. The slice set model is

a map f : {birth (p, I, t) |0 ≤ t < m}
f
−→ birthSS(p, I),

where m is the number of threads and birthSS(p, I) =
{(t, birth(p, I, t)) |0 ≤ t < m}

4 PLAGIARISM DETECTION WITH TOB-
REVIVED BIRTHMARKS

The approaches provided by TOB framework lead
to four types of thread-oblivious birthmarks, i.e., SA
birthmarks and SS birthmarks extracted with k-gram
or var-gram algorithms, when reviving a traditional
dynamic birthmark. In this section, we describe how
to detect plagiarism on top of these birthmarks.

4.1 Similarity Calculation

Different similarity calculation methods should be
adopted depending on the specific format of birth-
marks. State-of-the-art birthmarks mainly exist in
three forms: sequences, sets and graphs. For birth-
marks in sequence format, their similarity can be
computed with pattern matching methods, such as
calculating the longest common subsequences [33]
[34]. Birthmarks in set form are usually generated by
dividing sequences into short subsequence to make
comparisons efficient. SCSSB, DYKIS, as well as many
other birthmark methods [8], [13], [18], [27], [35],
[36] utilize such principle. Then various methods
widely used in the field of information retrieval are
adopted for calculating the similarity between sets,
including Dice coefficient [19], Jaccard index [18],
and Cosine distance [13]. Computing the similarity
of graphs is relatively more complex. It is conducted
by either graph monomorphism [11] or isomorphism
algorithms [20], or by translating a graph into a vector
using algorithms such as random walk with restart
[37], or possibly by mapping graphs to values, with
techniques such as the Centroid [38], [39] and struc-
ture measurement [40]. Unfortunately these existing
methods cannot be directly applied for comparing
thread-oblivious birthmarks.

4.1.1 Similarity Calculation for SA Birthmarks

According to its definition, birthSA(p, I) is in the
format of key-value pair set, therefore similarity com-
putation methods such as Cosine distance, Jaccard
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index, Dice coefficient and Containment can be used2.
However, two different thread-oblivious birthmarks
may be considered identical because these metrics
do not consider frequency of the elements. In order
to address this issue we add a factor θ to each of
the traditional metric to take into consideration the
frequencies of the keys in a birthmark.

Given a SA birthmark A =
{(k1, v1) , (k2, v2) , · · · , (kn, vn)}, let kSet(A) be
the set of keys in A. That is, kSet (A) =
{k1, k2, · · · , kn}. Given a second SA birthmark
B = {(k′1, v

′
1) , (k

′
2, v

′
2) , · · · , (k

′
m, v′m)}, let

U = kSet (A) ∪ kSet (B). We convert set U to

vector
→

U =
〈

k′′1 , k
′′
2 , · · · , k

′′
|U |

〉

by assigning an

arbitrary order to the elements in U . Let vector
−→
A =

〈

a1, a2, · · · , a|u|
〉

, where

ai =

{

vi, if (k′′i , vi) ∈ A
0, if (k′′i , vi) /∈ A

Likewise we define
−→
B =

〈

b1, b2, · · · , b|U |

〉

. And we
calculate θ as:

θ =
min

(
∣

∣

∣

→

A
∣

∣

∣
,
∣

∣

∣

→

B
∣

∣

∣

)

max
(
∣

∣

∣

→

A
∣

∣

∣
,
∣

∣

∣

→

B
∣

∣

∣

)

where
∣

∣

∣

−→
A
∣

∣

∣
=

√

∑

ai∈
→

A

a2i , and
∣

∣

∣

−→
B
∣

∣

∣
=

√

∑

bi∈
→

B

b2i .

Thus the modified metrics are defined as following:

Ex− Cosine (A,B) =
→

A •
→

B
∣

∣

∣

→

A

∣

∣

∣

∣

∣

∣

→

B

∣

∣

∣

× θ;

Ex− Jaccard (A,B) = |A∩B|
|A∪B| × θ;

Ex−Dice (A,B) = 2|A∩B|
|A|+|B| × θ;

Ex− Containment (A,B) = |A∩B|
|A| × θ;

The similarity of two SA birthmarks, simc(A,B), can
be calculated with Ex-Cosine(A,B), Ex-Jaccard(A,B),
Ex-Dice(A,B) or Ex-Containment(A,B), by specifying
c to either of the four metrics.

4.1.2 Similarity Calculation for SS Birthmarks

The SS birthmarks are also in the format of key-value
pair set. But unlike SA birthmarks where the keys are
grams and values are corresponding frequencies, each
key-value pair in SS birthmarks consists of a thread
identifier and its thread slice birthmark. Although
the keys, i.e. thread identifiers, have clear physical
meaning, such definition actually makes it difficult
to compare SS birthmarks. This is because a thread
identifier is just a label that is assigned by another
forking thread during dynamic execution. This means
thread identifies can vary across different runs of
same or difference programs.

2. All of the four metrics were used to compute birthmark
similarities. We implemented all of them after slight modification
in our prototype.

Fig. 6. Schematic diagram of bipartite matching mod-

elling for birthmarks generated by the SS model

Since the main purpose of software birthmarking
is to detecting rather than proving plagiarism, false
negative is more serious than false positive. Con-
sidering that further investigation can be conducted
once plagiarism is detected, we calculate the maximal
similarity between two SS birthmarks. To achieve
this, we reduce the problem of calculating similar-
ity between SS birthmarks into finding a maximum
weighted bipartite matching as illustrated in Figure 6.
In particular, each node marked by a thread identifier
corresponds to a thread slice birthmark of the thread,
and a weighted edge denotes the similarity between
two thread slice birthmarks.

Formally, let A= {(t1, birth (p, I, t1)) , · · · ,
(tm, birth (p, I, tm))} and B= {(t′1, birth (p

′, I, t′1)) ,
· · · , (t′n, birth (p

′, I, t′n))} be two SS birthmarks. A
m × n similarity matrix is generated by comparing
between every pair of thread slice birthmarks in
A and B using either of the four metrics defined
in Section 4.1.1. Note that the definition can be
applied to thread slice birthmarks directly. For
example, when Ex-Jaccard is chosen, simc(t1, t

′
1) =Ex-

Jaccard(birth(p, I, t1), birth(p
′, I, t′1)).

simMatr (A,B) =











simc (t1, t
′

1) . . . simc (t1, t
′

n)
simc (t2, t

′

1) . . . simc (t2, t
′

n)
...

. . .
...

simc (tm, t′1) . . . simc (tm, t′n)











A valid match can be found by applying
any maximum weighted bipartite matching
algorithms, formally denoted as MaxMatch (A,B) =
{(u1, v1) , (u2, v2) , · · · , (ul, vl)} where l = min (m,n),
ui ∈ kset (A), vi ∈ kset (B), ui 6= uj if i 6= j,

vi 6= vj if i 6= j, and
l
∑

i

simc (ui, vi) has the

maximum value among all possible matchings.
Finally, the similarity of two SS birthmarks are
calculated with the following formula: sim (A,B) =
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∑

(ti,t′j)∈MaxMatch(A,B)
simc(ti,t′j)×(cnt(ti)+cnt(t′j))

m
∑

i=1
cnt(ti)+

n
∑

j=1
cnt(t′j)

,

where cnt (ti) = |kSet (birth (p, I, ti))|, and
cnt

(

t′j
)

=
∣

∣kSet
(

birth
(

p′, I, t′j
))∣

∣.

4.2 Plagiarism Detection

The purpose of extracting birthmarks and calculating
their similarity is to eventually determine whether
there exists plagiarism. False negatives are possible
due to sophisticated code obfuscation techniques that
camouflage stolen software. One of our goals is to
make our approach resilient to these techniques and
tools. False positives, are also possible, even though
executions faithfully reveal program behavior un-
der a particular input. For example, two indepen-
dently developed programs adopting standard error-
handling subroutines may exhibit identical behavior
under error-inducing inputs [17]. In order to alleviate
this problem, the calculation of the similarity score
between two programs is based on various birthmarks
obtained under multiple inputs.

Let p and q be the plaintiff and defendant. Given a
set of inputs {I1, I2, · · · , In} to drive the execution of
the programs, we obtain n pair of birthmarks (for each
birthmark type) {(A1, B1) , (A2, B2) , · · · , (An, Bn)}.
The similarity score between programs p and q is

calculated by sim (p, q) =
n
∑

i=1

sim (Ai, Bi)

/

n. That is,

the existence of plagiarism between p and q is decided
by the average of similarity scores of their birthmarks
and the threshold ε.

5 DESIGN AND IMPLEMENTATION

We have applied the TOB framework to revive three
typical birthmarks, including SCSSB [14], DYKIS [17]
and JB [18]. This leads a set of tools that are collec-
tively called TOB-PD. All the tools follow the same
workflow as depicted in Figure 7, except for some
differences in the implementation of each module. For
example, the tracer for DYKIS is implemented on top
of PIN [41] to monitor executed instructions of binary
executables, while the tracer for JB is implemented
with ASM [42] to monitor API calls of Java programs.
To avoid redundancy, in this paper we mainly discuss
the implementation details of applying TOB to revive
SCSSB. We name the enhanced thread-oblivious birth-
marks SCSSBSA and SCSSBSS accordingly.

5.1 Tracer

The tracer for SCSSB is called sysTracer, which is
implemented as a PIN [41] plugin. By instrumenting
each call point to recognize the system calls and
collect required information, sysTracer produces
a system call sequence for each program run. The
format of the sequence is illustrated in Figure 8, where

each line corresponds to a system call record. A sys-
tem call record contains a thread identifier, a system
call number with which we uniquely identify each
system call, the name of the system call, parameters
when it is called, and its return value. These attributes
are separated with “#”.

5.2 Pre-Processor

The raw sequences extracted by sysTracer are not
appropriate for birthmark generation yet. The pre-
processor needs to parse the system call records and
eliminate unnecessary information. First, failed calls
are eliminated from the system call sequence because
they do not affect the behavior characteristics of a
program [14], [15]. This is accomplished by checking
the return value attribute of each system call record.
In addition, as discussed in Section 3.1, the nature
of system call futex determines that its occurrences
vary across multiple executions. Besides, the memory
management system calls such as mmap, brk etc. also
show intrinsic randomness across different runs. We
treat all the records corresponding to these system
calls as noises, and remove them from the sequence.

We know that for multithreaded programs multiple
executions under the same input may vary signifi-
cantly, which is the reason that we are focusing on
more stable thread slices for our birthmark generation.
However, even thread slices may vary due to the facts
that a thread’s behavior may be affected by other
threads and there exist other random factors like OS-
state related operations. In particular, a system call
that has been executed in one thread in the first run
may appear in another thread in the second run.

Since such randomness are unavoidable, we execute
a program multiple times under the same input to
obtain a series of traces. We then select two most
similar traces for plaintiff and defendant within the
TraceSelector, implemented as a sub-module of
the pre-processor. In our implementation, by default
TraceSelector select traces based on their Ex-
Containment similarity, but other similarity metrics
can be used as well. Effectiveness of this optimization
will be evaluated in Section 6.3.4.

5.3 Birthmark Generator

Following the procedure depicted in Figure 5, the
birthmark generator performs thread slicing on a pre-
processed trace, generates thread slice birthmarks and
then produce the thread-oblivious birthmarks using
the SA and SS models. Both k-gram and var-gram
algorithms are implemented. There are several algo-
rithms for mining var-grams and we choose Teire-
sias [23], a well-known algorithm initially developed
for discovering rigid patterns in unaligned biological
sequences. It outperforms other var-gram algorithms
[43], [44] in that it is capable of discovering all patterns
without enumerating the solution space.
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Fig. 7. Overview of the TOB based plagiarism detection tool TOB-PD

2#4#__NR_write#(0x6, 0xb2fcd0ef, 0x1, 0x90307d0, 0x1, 0xb2fcd064)#0x1

2#162#__NR_nanosleep#(0xb2fcd340, 0x0, 0x1bbc, 0xb1367010, 0x1bbc, 0xb2fcd248)#0x2

4#102#__NR_socketcall#(0x9, 0xb13570c0, 0xb41bfff4, 0x0, 0xb05004bc, 0xb13570a8)#0x14

4#3#__NR_read#(0x5, 0xb1357202, 0xa, 0x9030748, 0xa, 0xb1357164)#0x1

4#168#__NR_poll#(0xb0500498, 0x2, 0xffffffff, 0x0, 0xb5dfbff4, 0xb1357160)#0xffffffff

Fig. 8. Instances of elements comprising the system

call sequence

5.4 Similarity Calculator & Decision Maker

These two modules implement the algorithms dis-
cussed in Sections 4.1 and 4.2, respectively. In the
similarity calculator, scores are computed with each
of the four similarity metrics for SA birthmarks. For
SS birthmarks, we use each of the four metrics to
calculate the weight of the edges in the bipartite
graph. This produces four SimMatr correspondingly.
For each SimMatr, the Kuhn-Munkres algorithm [45]
is used to find a maximum weighted bipartite match-
ing. The decision maker decides plagiarism by the
average value of multiple similarity scores against a
predefined threshold ε that varies between 0 and 0.5.

6 EXPERIMENTS AND EVALUATION

We have conducted extensive experiments for eval-
uating the effectiveness of our TOB method. Table 4
lists the names and some other basic information of
our benchmarks. The columns under #Ver give the
number of versions of each program, where Column
Total gives the total number of versions including the
original program and its obfuscated versions, while
the other four columns S1, S2, S3 and S4 give the
number of obfuscated versions generated with differ-
ent obfuscation strategies. The meaning of S1, S2, S3

and S4 are explained below. Column Size gives the
number of kilobytes in the largest version, with its
version number listed in Column Version. Following
is a summary of our testing environment.

• The benchmarks consist of 35 mature multi-
threaded software implemented in C/C++ or
Java.

• We process the programs with the following ob-
fuscation strategies for evaluating the resilience
of our methods.

– S1: We use two different compliers gcc and
llvm with various optimization levels to
compile source code.

– S2: We apply publicly available code
obfuscators, including Sandmark, Zelix

KlassMaster, Allatori, DashO,

Jshrink, ProGuard and RetroGuard,
that provide strong obfuscations.

– S3: We utilize packing tool UPX to obfuscate
binaries.

– S4: We generate programs that adopt differ-
ent scheduling policies.

• We evaluate the credibility of our methods with
independently developed programs in the same
and different categories.

• All the programs are executed with multiple in-
puts that represent different workloads. And a
program is executed four times for each input.
All the execution traces are collected on a desktop
(with Intel(R) i5-3270@3.2GHz CPU and 2.0GB
Memory) that runs the Linux (Ubuntu 12.04)
system.

With these settings, we mainly evaluate the re-
silience and credibility of the thread-oblivious birth-
marks on the specific TOB implementation SCSSBSA

and SCSSBSS . The overall quality of the TOB-revived
birthmarks are further compared with the original
SCSSB [15] and between each other3, with respect
to three performance metrics. Finally, we illustrate
the effectiveness and easiness of applying the TOB
framework to two other typical dynamic birthmarks.

It should be noted that, for birthmarks generated
with the k-gram algorithm, different values of k lead
to different birthmarks even for the same execution
trace. In previous studies [15], [17], [18], [22] where
k-gram is also used to generate birthmarks, setting
the value of k to 4 or 5 is believed to be a proper
compromise between accuracy and efficiency. To be
fair, when reviving these traditional birthmarks and
comparing with them, we adopt the same k values.

6.1 Validation of Resilience Property

6.1.1 Resilience to Different Compilers and Optimiza-

tion Levels

Different compilers and optimization levels usually
lead to different binaries from the same source code.
We firstly validate whether the revived birthmarks
can handle such relatively weak semantics-preserving
code transformations. Specifically, we choose the ten

3. Note that not all programs can start execution with a specified
number of threads. Even if the number of threads can be specified,
there is no guarantee that certain number can be maintained when
program runs. Thus, for the sake of fairness, when comparing
the traditional and TOB-revived birthmarks, we do not manually
specify but let a program itself to determine the number of threads
to handle different workloads.
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TABLE 4

Benchmark programs

Name Size(kb) Version
#Ver

Name Size(kb) Version
#Ver

Total S1 S2 S3 S4 Total S1 S2 S3 S4

pigz 294 2.3 23 19 - 1 2 luakit 153.4 d83cc7e 1 - - - -
lbzip 113.3 2.1 1 - - - - midori 347.6 0.4.3 1 - - - -
lrzip 219.2 0.608 1 - - - - seaMonkey 760.9 2.21 1 - - - -

pbzip2 67.4 1.1.6 1 - - - - Daisy 201.9 SIR 37 - 35 1 -
plzip 51 0.7 1 - - - - Elevator 92.1 SIR 44 - 42 1 -
rar 511.8 5.0 1 - - - - Groovy 59.5 SIR 44 - 42 1 -

cmus 271.6 2.4.3 1 - - - - Pool 205.7 SIR 30 - 28 1 -
mocp 384 2.5.0 1 - - - - blackscholes 23 Parsec3.0 23 19 - 1 2

mp3blaster 265.8 3.2.5 1 - - - - bodytrack 3,368 Parsec3.0 13 9 - 1 2
mplayer 4,300 r34540 1 - - - - fludanimate 126.6 Parsec3.0 23 19 - 1 2

sox 55.2 14.3.2 1 - - - - canneal 414.7 Parsec3.0 23 19 - 1 2
arora 1,331 0.11 1 - - - - dedup 388 Parsec3.0 23 19 - 1 2

chromium 80,588 28.0.1500.71 1 - - - - ferret 2,150 Parsec3.0 23 19 - 1 2
dillo 610.9 3.0.2 1 - - - - freqmine 227.6 Parsec3.0 23 19 - 1 2

Dooble 364.4 0.07 1 - - - - streamcluster 103 Parsec3.0 23 19 - 1 2
epiphany 810.9 3.4.1 1 - - - - swaptions 94 Parsec3.0 23 19 - 1 2

firefox 59,904 24.0 1 - - - - x264 896.3 Parsec3.0 23 19 - 1 2
konqueror 920.1 4.8.5 1 - - - -

TABLE 5

Statistical differences of the pigz versions generated

with different compilers and optimization levels

Size(Kb) #Functions #Instructions #Blocks #Calls

Max. 295 415 22178 3734 2376
Min. 84 342 13860 2672 1031
Avg. 151.75 380.25 16269 3068.9 1206.8

Stdev. 60.53 23.4 2679 286.58 280.9

PARSEC benchmark4 programs and a compression
program pigz as the experimental subjects. Two com-
pilers llvm3.2 and gcc4.6.3 are used to compile
the source code of each program with different op-
timization levels (-O0, -O1, -O2, -O3 and -Os) and
the debug option (-g) switched on or off. Such setup
leads to 20 different executables for each experimental
subject5. Table 5 gives the statistical differences on
the size, number of functions, number of instructions,
number of blocks and number of function calls be-
tween the 20 binaries of pigz. The data indicate that
even weak code transformations can make significant
differences to the produced binaries.

Pair-wise similarity is calculated between the bi-
naries of each program with our methods. Figure 9
illustrates the distribution of the similarity scores.
There are four subfigures, each corresponding to one
the four metrics utilized for similarity computation.
In each subfigure, the horizontal axis represents the
thread-oblivious birthmarks, the vertical axis repre-
sents the percentage of birthmark pairs belonging to
each similarity range as specified in the legend. For
simplicity, we mark SA and SS birthmarks generated
with k-gram algorithm as SA K and SS K in the
figures. Correspondingly birthmarks generated with

4. http://parsec.cs.princeton.edu/
5. Ten binaries are generated for bodytrack, since we fail to

compile its source code with llvm.

var-gram algorithm are marked as SA V and SS V.
It can be observed that the majority scores are in

the 90%-above region for either kind of birthmark
regardless of the similarity metrics. These observa-
tions indicate that the thread-oblivious birthmarks
exhibit strong resilience against obfuscations caused
by different compilers and optimization levels.

6.1.2 Resilience to Obfuscation Tools

In this section, we evaluate the resilience of our
methods against advanced obfuscation techniques.
In particular, we use the Java bytecode obfuscation
tool SandMark [4] to generate a group of obfuscated
versions, which are then converted to x86 executables
by GCJ [46]. Since Sandmark can only obfuscate Java
programs, thus the 4 multithreaded Java programs
from the SIR Benchmark Suite6, including Daisy,
Elevator, Groovy and Pool are used as the ex-
perimental subjects. We design similar experiments as
those conducted in [14], [17] to measure the resiliency
of the thread-oblivious birthmarks against single ob-
fuscations, where only one obfuscation technique is
applied at a time, and multiple obfuscations, where
multiple obfuscation techniques are applied at the
same time.
a) Single obfuscation
We apply the 39 obfuscation techniques implemented
in Sandmark on each program one at a time and
generate a series of obfuscated versions. In order to
ensure correctness of these transformations, all obfus-
cated versions are tested with a set of inputs and ver-
sions with wrong outputs are eliminated. We finally
obtained 116 successfully obfuscated versions. There
are 40 failed transformations. The failures are because
certain obfuscation techniques cannot be applied, GCJ
fails to compile obfuscated versions, or obfuscated
versions no longer give correct outputs.

6. http://sir.unl.edu/content/sir.php
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Fig. 9. Similarity distribution graph for birthmarks of the copies generated with different compilers and

optimization levels

b) Multiple obfuscations
As indicated by the 40 failures in the prior section,
transformations with a single obfuscation are not
always successful. Not surprisingly, applying multiple
obfuscations simultaneously can significantly increase
the failure rate. To facilitate our experiments, we
adopt the method used in [14], [17] where the obfus-
cators in SandMark are classified into two categories:
data obfuscators and control obfuscators. Only the
obfuscators in the same category are applied simul-
taneously to the same experimental subject.

Besides the SandMark obfuscators, six other com-
mercial and open source obfuscation tools, includ-
ing Zelix KlassMaster7, Allatori8, DashO9,
JShrink10, ProGuard11 and RetroGuard12 that
support layout, data and control flow obfuscations
are also selected. Under the requirement of semantic
equivalence between the original and the transformed
programs, we turn on as many obfuscators as possible
for each tool. Together with the two categories of
SandMark, such setup leads to eight deeply obfus-
cated versions for each experimental subject.

The similarity scores are calculated between the
birthmarks of each original program and all its obfus-
cated versions. According to the experimental results,
most scores locate in the 70%-above region. In the
cases where Ex-Cosine metric is used, most scores
are in 90%-100% interval. These observations give a
strong evidence that the thread-oblivious birthmarks
are resilient to the semantics-preserving code obfus-
cations.

6.1.3 Resilience to Packing Tools

The packing tools [9], [10], which implement various
binary obfuscation techniques as well as compression
and encryption techniques, are widely used to hide
the maliciousness of malware or to protect software

7. http://www.zelix.com/klassmaster
8. http://www.allatori.com
9. https://www.preemptive.com/products/dasho
10. //www.e-t.com/jshrink.html
11. http://proguard.sourceforge.net
12. http://java-source.net/open-source/obfuscators/retroguard

from illegal modification and cracking. Such tech-
niques may be used to evade plagiarism detection.
This strategy can defeat most static birthmarks as it
significantly modifies the syntax of a program.

The only publicly available packing tool we know
that handles ELF, the executable file format under
Linux, is UPX13. We process the previously used bina-
ries with UPX. Similarity scores are calculated between
birthmarks of the original programs and their corre-
sponding UPX-packed versions. The results show that
the majority scores are above 70%. It indicates that
the thread-oblivious birthmarks are resilient against
packing techniques.

6.1.4 Resilience to Different Scheduling Policies

A possible approach that plagiarized program adopts
to evade detection is to exploit different schedul-
ing policies different from the original program. As
shown in Section 3.1, the scheduling policy a multi-
threaded program adopts has insignificant effect on
the executions if viewed at the thread level. Thus,
even if the defendant program adopts a different
policy, we can simply compare the plaintiff with
the defendant by trying all possible policies. This is
doable as the source code of the plaintiff is always
available, by modifying which we can set different
policies. But we believe our methods still work even if
we do not adjust the scheduling policy of the plaintiff
to the same as the defendant.

To validate it, we generate three versions that adopt
SCHED OTHER, SCHED FIFO and SCHED RR, re-
spectively, for the previously used C/C++ programs.
We use the version that adopts the default policy as
the plaintiff. We process the other two versions that
adopt FIFO and RR policy with UPX, and take them
as the the defendants. The experimental results that
all scores are above 80% indicate that the TOB-revived
birthmarks are not affected by scheduling policies.

6.2 Validation of Credibility Property

Credibility of a birthmark is evaluated by its
capability of distinguishing independently developed

13. http://upx.sourceforge.net/
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programs. Three types of widely used multithreaded
Linux applications are selected as our experimental
subjects, including 6 compression software (lbzip2,
lrzip, pbzip2, pigz, plzip and rar), 10 web
browsers (arora, chromium, dillo, Dooble,

luakit, midori, epiphany, firefox,

konqueror and seaMonkey), and 5 audio players
(cmus, mocp, mp3blaster, mplayer and sox).

Firstly, we validate whether the TOB-revived birth-
marks can distinguish programs in different cate-
gories. Similarity scores between the 6 compression
programs and the 5 audio players are computed.
According to the experimental results, the majority
of the scores are below 10%. These data indicate that
thread-oblivious birthmarks have strong credibility in
distinguishing independently developed programs.

Distinguishing programs in the same category is
more challenging because they may overlap greatly
in their functionality. Figure 10 depicts the similarity
score distribution for the ten web browsers. It can
be observed that about 90% of the scores are below
30%. Also as illustrated by Columns Avg in Table 6,
the average scores are all around 0.1. Similar results
are observed between the compression software and
between the audio players.

There are several similarity scores above 40%. This
is because some of the browsers share the same
layout engine. Our manual inspection discovers that
five of the browsers (arora, Dooble, epiphany,

luakit and midori) are all Webkit-based. In order
to observe the effect of overlapped functionality on
thread-oblivious birthmarks, we give the average sim-
ilarity scores between these Webkit-based browsers in
Column Avg+, and the average similarity scores be-
tween Webkit-based and non-Webkit-based browsers
in Column Avg-. It can be observed that the values
in Column Avg+ are 3 to 5 times greater than those
values in Column Avg-. Since the goal is to detect
whole program plagiarism, we believe the experimen-
tal results show strong credibility for real-world appli-
cations where certain libraries are shared. If there exist
trivial programs that simply calls the same third-party
functions, it is hard to give a conclusive judgment
even with manual examination.

6.3 Comparison with Traditional Birthmarks

This section compares the overall performance of the
TOB-revived SCSSBs against the original SCSSB. We
utilize the three evaluation metrics adopted in [17],
including URC, F-Measure and MCC. URC measures
resilience and credibility, while the other two are more
comprehensive metrics introduced for amending the
problem of URC that focuses only on the rate of
correct classifications. All the comparison pairs of
programs from Section 6.1 to Section 6.2 are taken as
the experimental subjects.

6.3.1 Performance Evaluation with Respect to URC

Resilience and credibility reflect from different aspects
the qualities of a birthmark. URC (Union of Resilience
and Credibility) [47], defined below, is a metric pro-
posed for evaluating the overall performance of birth-
marks that considers both aspects.

URC = 2×
R× C

R+ C
(2)

In the definition R represents the ratio of correctly
classified pairs where there exists plagiarism and C
represents the ratio of correctly classified pairs where
there is no plagiarism. The value of URC ranges from 0
to 1, with higher value indicating a better birthmark.
Let EP be the set of pairs of programs such that
∀ (p, q) ∈ EP , q is a copy of p, and JP be the set of
pairs such that ∀ (p, q) ∈ JP , a plagiarism detection
method believes that q copies p. Similarly, let EI
be the set of pairs such that ∀ (p, q) ∈ EI , q and
p are independent, and JI be the set of pairs that
are deemed independent by a plagiarism detection
method. R and C are formally defined as:

R =
|EP ∩ JP |

|EP |
and C =

|EI ∩ JI|

|EI|
(3)

As indicated by Equation 1, the detection result
depends on the value of threshold ε. Therefore in the
experiments we vary the value of ε from 0 to 0.5. Note
that ε cannot be greater than 0.5, otherwise plagiarism
can be claimed to exist and non-exist at the same time.
Figure 11 shows the results. In each subfigure, the
data for SCSSB as well as its TOB-revived SA and
SS birthmarks are depicted by the lines marked with
square, triangle and circle symbols, respectively.

It can be observed from the figures that the SA
and SS birthmarks do not exhibit significant difference
regardless of similarity metrics. Meanwhile, both have
greater URC values than SCSSB’s across the x-axis. It
can also be observed that SCSSB’s curves are closer
to the curves of its TOB-revived versions when Ex-
Cosine is adopted, indicating similarity calculation us-
ing such metric is less sensitive to thread scheduling.
Moreover, the curves of var-gram generated birth-
marks are above the corresponding curves of k-gram
generated birthmarks, especially for SCSSB. This indi-
cates the superiority of applying var-gram algorithm
to birthmark generation.

6.3.2 Performance Evaluation with F-Measure and

MCC

As explained in work [17], URC mainly measures the
rate of correct classifications, while inconclusiveness is
considered as incorrect classification. Thus, URC gives
better results with higher value of ε in Figure 11.
As the value of ε increases, the chance of inconclu-
siveness becomes smaller, leading to less incorrect
classifications.



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2688383, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 14

Fig. 10. Similarity distribution graph for birthmarks of the web browsers

TABLE 6

Credibility evaluation of the thread-oblivious birthmarks using software in the same category

K-GRAM VAR-GRAM

SA SS SA SS

Avg Avg+ Avg- Avg Avg+ Avg- Avg Avg+ Avg- Avg Avg+ Avg-

Ex-Cosine 0.137 0.334 0.078 0.133 0.314 0.079 0.075 0.156 0.041 0.078 0.167 0.041
Ex-Jaccard 0.090 0.213 0.046 0.072 0.163 0.034 0.068 0.128 0.042 0.068 0.132 0.040

Ex-Dice 0.134 0.322 0.078 0.103 0.238 0.056 0.100 0.189 0.069 0.092 0.173 0.060
Ex-Containment 0.166 0.364 0.111 0.135 0.281 0.087 0.128 0.208 0.097 0.106 0.186 0.068

Fig. 11. Performance evaluation with respect to URC. The left four figures depict the curves for birthmarks

generated with k-gram, the right four figures depict the curves for birthmarks generated with var-gram

To address the problem, similarly as in work [17],
the birthmark methods are further compared against
two other metrics, F-Measure and MCC (Matthews
Correlation Coefficient) [48]. However, these two met-
rics cannot be directly applied as they mainly measure
binary classifications. Thus, the definition of sim is re-
vised as following by removing the inconclusiveness:

sim (pB, qB) =

{

≥ 1− ε q is a copy of p
< 1− ε q is not a copy of p

(4)
F-Measure is based on the weighted harmonic mean

of Precision and Recall:

F-Measure =
2× Precision×Recall

Precision+Recall
(5)

where Precision and Recall are defined as following:

Precision =
|EP ∩ JP |

|JP |
and Recall =

|EP ∩ JP |

|EP |

MCC, defined below, is regarded as one of the best
metrics that evaluate true and false positives and
negatives by a single value.

MCC =
TP × TN − FP × FN

√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
(6)
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TP , TN , FP and FN are the number of true pos-
itives, true negatives, false positives and false neg-
atives, respectively, that can be computed with the
following formulas:

TP = |EP ∩ JP | ; FN = |EP ∩ JI|

FP = |EI ∩ JP | ; TN = |EI ∩ JI|

Figure 12 depicts the experimental results with
respect to F-Measure and MCC, respectively. Over-
all, similar results are observed as in the evaluation
against URC. The TOB-revived birthmarks almost al-
ways outperform SCSSB across the whole x-axis.

More specifically, consider the curves summarizing
the results with respect to F-Measure. The TOB-
revived birthmarks outperform SCSSB mainly in the
right region with relatively small thresholds. With rel-
atively large thresholds the performance is very simi-
lar. Taking the upper-left figure that depicts results for
k-gram generated birthmarks and calculated with Ex-
Containment as an example, SCSSB performs almost
as well as its TOB-revived ones until the value of ε
becomes smaller than 0.55. But its F-Measure value
decreases sharply when adopting a smaller threshold.
To see the reason for the sharp decrease, we check the
specific Precision, Recall and F-Measure values under
different thresholds. According to the data, there is
almost no difference between the Precision values of
SCSSB and its TOB-revived ones under all thresholds.
Also, the Recall value of SCSSB is almost identical
with its TOB-revived ones, until it decreases sharply
from threshold 0.5.

The reason for the sharp decrease on Recall value
is the following. Due to the combined impacts from
obfuscations and thread interleavings, the SCSSB of
plagiarized pairs are greatly affected, which leads to
low similarity scores. As the Recall values of SCSSB
indicate, only about 58% scores are above 0.75, and
only about 6% scores are above 0.9. But for the
TOB-revived ones, there are about 90% scores that
are above 0.9. Such results indicate that the thread-
oblivious birthmarks are resilient to obfuscations and
thread interleavings.

Figure 13 shows that SCSSB can differentiate pla-
giarized pairs and independent pairs even though the
range of similarity scores is small. This explains the
almost identical Precision values between SCSSB and
its TOB-revived ones. In birthmark based plagiarism
detection literature, plagiarism is determined by the
similarity score and a threshold. Unfortunately, with-
out abundant real-world plagiarism samples, deciding
a threshold value is an arbitrary decision. In the ideal
but unrealistic case, we hope the similarity scores
for plagiarized pairs are all 1.0, and for independent
pairs are all 0. Thus, we believe the greater the dif-
ference between the two type of scores, the better a
birthmark method is. As indicated by the boxplots in
Figure 13, the TOB-revived birthmarks exhibit much

better distinct similarity scores. In particular, the TOB-
revived birthmarks achieve 100% detection accuracy
at ε = 0.34, where neither false positives nor false
negatives are observed.

6.3.3 Comparing the Birthmarks with AUC Analysis

As discussed above, the birthmark methods exhibit
different performance under different thresholds. To
give an intuitive comparison, we compute the AUC

(Area Under the Curve) values for each method with
respect to the URC, F-Measure and MCC metrics.
The AUC value gives a proper overall performance
summary for each birthmark method. A larger value
of AUC indicates better birthmark quality. The results
are summarized in the white areas of Table 7. It can
be observed that the AUC values of the TOB-revived
birthmarks are all larger than those of SCSSB’s.

We quantify the performance gains PerGain by tak-
ing the original SCSSB as baseline. The quantification
indicates the improvement of each thread-oblivious
birthmark against the original birthmark, with respect
to the same similarity metric and the same perfor-
mance evaluation metric.

PerGain =
AUCtob −AUCorg

AUCorg

× 100%

, where AUCtob and AUCorg represent the AUC value
of the thread-oblivious birthmark and the original
birthmark respectively. For example, the PerGain
value with respect to Ex-Containment similarity and
URC metric for SCSSBSA generated with k-gram is:

0.822− 0.56

0.56
× 100% = 47%

The average and maximal performance gains are
summarized in the last row of Table 7. As the data in-
dicate, TOB-revived birthmarks improve the original
birthmark. The maximum performance gains happen
for those SS birthmarks generated with k-gram and
calculated with the Ex-Jaccard similarity, where 129%,
46% and 94% improvements are obtained with respect
to URC, F-Measure and MCC metrics, respectively.
Additionally, it can be observed that the AUC values
based on var-gram are larger than those based on k-
gram, indicating the superiority of applying var-gram
algorithm to birthmark generation.

6.3.4 Evaluation of the TraceSelector Optimization

As mentioned in Section 5.2, we perform an opti-
mization that chooses two most similar sequences
from plaintiff and defendant programs to reduce the
randomness of thread interleaving. In this section, we
evaluate the impact of such optimization.

To simulate the worst case caused by thread inter-
leavings, two least similar traces are selected from the
executions of the plaintiff and defendant programs.
The gray areas in Table 7 summarize the AUC values
without optimization. By comparing with the values
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Fig. 12. F-Measure and MCC curves for the birthmark methods. The upper-left four figures depict the F-Measure

curves for birthmarks generated with k-gram under each similarity metric, the upper-right four figures depict the

F-Measure curves for birthmarks generated with var-gram, the bottom-left four figures and the bottom-right four

figures similarly depict the MCC curves for birthmarks generated with k-gram and var-gram respectively.
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Fig. 13. Boxplots that summarize the statistical distribution of similarity scores corresponding to the very upper-

left figure in Figure 12
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TABLE 7

AUC analysis results

(a) With respect to URC evaluation metric

K-GRAM VAR-GRAM

SCSSBSA SCSSBSS SCSSB SCSSBSA SCSSBSS SCSSB

Ex-Containment 0.878 0.822 0.874 0.837 0.45 0.56 0.875 0.856 0.884 0.875 0.58 0.749
Ex-Cosine 0.883 0.834 0.873 0.835 0.787 0.799 0.895 0.884 0.897 0.884 0.624 0.821
Ex-Dice 0.885 0.845 0.88 0.857 0.426 0.543 0.889 0.879 0.895 0.889 0.538 0.739
Ex-Jaccard 0.878 0.864 0.88 0.872 0.236 0.38 0.903 0.899 0.909 0.903 0.462 0.726

PerGain(%) - 59\127 - 61\129 - - - 16\24 - 17\24 - -

(b) With respect to F-Measure evaluation metric

K-GRAM VAR-GRAM

SCSSBSA SCSSBSS SCSSB SCSSBSA SCSSBSS SCSSB

Ex-Containment 0.978 0.98 0.976 0.979 0.72 0.782 0.993 0.994 0.994 0.995 0.778 0.918
Ex-Cosine 0.989 0.989 0.986 0.988 0.92 0.938 0.993 0.993 0.992 0.993 0.818 0.959
Ex-Dice 0.972 0.974 0.971 0.976 0.703 0.769 0.991 0.992 0.992 0.993 0.753 0.9
Ex-Jaccard 0.96 0.966 0.964 0.968 0.579 0.663 0.988 0.99 0.99 0.992 0.698 0.867

PerGain(%) - 26\46 - 26\46 - - - 9\14 - 9\14 - -

(c) With respect to MCC evaluation metric

K-GRAM VAR-GRAM

SCSSBSA SCSSBSS SCSSB SCSSBSA SCSSBSS SCSSB

Ex-Containment 0.823 0.802 0.821 0.808 0.483 0.51 0.894 0.894 0.903 0.904 0.389 0.619
Ex-Cosine 0.889 0.876 0.88 0.874 0.734 0.744 0.892 0.894 0.893 0.893 0.468 0.774
Ex-Dice 0.795 0.782 0.793 0.788 0.461 0.496 0.879 0.883 0.894 0.896 0.371 0.586
Ex-Jaccard 0.728 0.73 0.737 0.739 0.338 0.381 0.868 0.877 0.884 0.885 0.318 0.5

PerGain(%) - 56\92 - 57\94 - - - 47\75 - 48\77 - -

between the gray columns without optimization and
white columns with optimization, we can see that
the performance of the original SCSSB always gets
improved after the optimization. We use the following
equation to quantify the improvement achieved by the
optimization:

OptiGain =
AUCopt −AUCnoOpt

AUCnoOpt

× 100%

As shown by the OptGain values in Table 8, the
performance gains achieved by the optimization are
significant. Conclusion can be drawn that such opti-
mization helps to a large extent alleviate the problem
of SCSSB in applying to multithreaded programs.
Yet as indicated by the data in Table 7, it is still
not adequate to handle the disturbance of thread
interleavings. This also demonstrates the significant
impact thread interleaving could enforce on tradi-
tional SCSSB. On the other hand, the improvement
for the TOB-revived ones are much less significant,
indicating much less impact of thread interleaving
on thread-oblivious birthmarks. Besides, as shown
by the negative values, the optimization sometimes
can make the overall performance of TOB-revived
birthmarks worse.

The optimization, which pre-select more similar ex-
ecution traces of the plaintiff and defendant, improve

the similarity scores for both plagiarized pairs and
independent pairs. It means that the optimization
enhances the resilience but weakens the credibility,
as larger similarity scores bring not only less false
negatives but also more false positives. Consider the
two bold font values -6.4 and 24.4 in Table 8, which are
the OptGain values for SCSSBSA and SCSSB (gener-
ated with k-gram and measured with Ex-Containment
similarity) with respect to URC. Table 9 gives their
corresponding resilience (reflected by R in equation 3),
credibility (reflected by C in equation 3) and URC val-
ues. The gray columns summarize the values without
the optimization, and the white columns summarize
the values with the optimization.

As the data show, resilience of both SCSSB and
SCSSBSA is enhanced after the optimization, while
credibility of both birthmarks is weakened. However,
the degree for the resilience promotion of SCSSB
are rather obvious compared with the degree of its
credibility reduction, leading to a significant increase
in its URC values. On the other hand, the degree for
credibility reduction of SCSSBSA are more obvious
than the degree of its resilience promotion, resulting
in minor decrease in its URC values. Similarly, the
negative OptGain values in terms of MCC can also
be explained, as the number of false positives the
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TABLE 8

OptGain values for the TraceSelector optimization

URC F-Measure MCC

SCSSBSA SCSSBSS SCSSB SCSSBSA SCSSBSS SCSSB SCSSBSA SCSSBSS SCSSB

K-
GRAM

Ex-Containment -6.4 -4.2 24.4 0.2 0.3 8.6 -2.6 -1.6 5.6
Ex-Cosine -5.5 -4.4 1.5 0.0 0.2 2.0 -1.5 -0.7 1.4
Ex-Dice -4.5 -2.6 27.5 0.2 0.5 9.4 -1.6 -0.6 7.6
Ex-Jaccard -1.6 -0.9 61.0 0.6 0.4 14.5 0.3 0.3 12.7

V-
GRAM

Ex-Containment -2.2 -1.0 29.1 0.1 0.1 18.0 0.0 0.1 59.1
Ex-Cosine -1.2 -1.4 31.6 0.0 0.1 17.2 0.2 0.0 65.4
Ex-Dice -1.1 -0.7 37.4 0.1 0.1 19.5 0.5 0.2 58.0
Ex-Jaccard -0.4 -0.7 57.1 0.2 0.2 24.2 1.0 0.1 57.2

optimization brings are larger than the number of
false negatives it reduces. Birthmarking is a detect-
ing technique of suspected plagiarisms rather than
a proving technique [14], [15], [17], false negative is
more critical than false positive. Thus, we believe the
optimization is proper and necessary.

6.4 Performance of the Analysis

This section presents the analysis performance of
SCSSB and its TOB-revived ones. Both the birthmark
methods involve basically two phases: the dynamic
analysis phase that traces program executions (Phase
I) and the static detection phase that extracts birth-
marks and calculates similarities (Phase II).

For Phase I, our measurement indicates that on av-
erage a program is observed to become about 3 times
slower once PIN and our tracer plugin are attached.
The tracing overhead is observed smaller for larger
inputs. It is because the overhead imposed by PIN’s
runtime environment alone (that is runs a program
using PIN without any instrumentation or analysis)
become trivial compared to the total runtime.

For Phase II, no significant difference on calcu-
lation overhead is observed between the methods.
Specifically, for k-gram generated birthmarks, Phase
II takes on average 54ms, 58ms and 67ms for process-
ing a trace pair for SCSSBSA, SCSSBSS and SCSSB,
respectively. For var-gram generated birthmarks, the
corresponding average time are 2.43s, 2.44s, and 2.43s,
where the variable-pattern mining costs the most
time.

6.5 Applying TOB to Other Birthmarks

In this section, we further demonstrate the application
of TOB on two other representative dynamic birth-
marks. One is DYKIS [17] that is based on executed
key instructions, and the other one is JB [18] that
is based on executed APIs of a Java program. For
simplicity, we use the k-gram algorithm only. We
use DYK TR, DYK SA, and DYK SS to represent the
original DYKIS and its TOB-revived versions using SA
and SS models, respectively. Similarly we have JB TR,
JB SA, and JB SS for JB.

6.5.1 Reviving DYKIS with TOB

For DYKIS [17], we use the 20 pigz binaries gener-
ated with different compilers and optimization levels
as the experimental subjects. Figure 14 illustrates the
distribution graph of the similarity scores calculated
between the birthmarks of the 20 pigz binaries. As
it shows, all the scores of thread-oblivious birthmarks
are above 70%, while for DYKIS there are quite a num-
ber of scores below 70%. It indicates the effectiveness
of applying the TOB framework on DYKIS.

6.5.2 Reviving JB with TOB

For JB [18], the 4 Java programs as well as their
149 single and deep obfuscated versions are used
as the experimental subjects. Similarity scores are
calculated between the original Java programs and
their obfuscated versions. No significant differences
are observed between the original JB and its TOB-
revived ones. This is because JB is extracted from
API call sequences at object level. Similar to the TOB
framework that slices traces by thread, JB essentially
slices traces by Java objects that greatly mitigates
the effect of thread scheduling. However, JB is only
applicable to Java programs, while our TOB frame-
work can be applied to transforming existing dynamic
birthmarks, including JB, into thread-oblivious ones.
In addition, the larger average and minimum scores
as summarized in Table 10 show that the TOB-revived
birthmarks indeed improve the original JB, although
not significantly.

7 THREATS TO VALIDITY

Dynamic birthmarks are extracted from execution
traces, therefore execution monitoring is necessary. It
is an undeniable fact that the monitoring itself may
affect the thread interleavings during the execution of
a multithreaded program. Many other factors such as
workload, scheduling policies, and runtime environ-
ments affect the interleavings as well. However, we do
not believe these issues cause an unfair comparison
against traditional birthmarks.

For a multithreaded program, it is possible that
the effect of scheduling causes it to execute different
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TABLE 9

Impact analysis of the optimization to birthmark credibility and resilience

Threshold
SCSSBSA generated with k-gram SCSSB generated with k-gram

Resilience Credibility URC Resilience Credibility URC

0 0 0 0 0 0 0 0 0 0 0 0 0
0.05 0.84 0.86 0.63 0.5 0.72 0.63 0.02 0.02 0.66 0.53 0.04 0.04
0.1 0.88 0.9 0.8 0.66 0.84 0.76 0.02 0.06 0.82 0.63 0.04 0.11
0.15 0.94 0.95 0.89 0.71 0.91 0.81 0.03 0.21 0.89 0.71 0.05 0.32
0.2 0.95 0.95 0.91 0.77 0.93 0.85 0.19 0.43 0.96 0.79 0.31 0.56
0.25 0.95 0.95 0.93 0.8 0.94 0.87 0.37 0.58 0.97 0.84 0.53 0.69
0.3 0.99 1 0.96 0.84 0.98 0.91 0.45 0.71 0.97 0.94 0.62 0.81
0.35 1 1 0.97 0.91 0.98 0.95 0.61 0.74 0.98 0.96 0.75 0.84
0.4 1 1 0.98 0.95 0.99 0.97 0.73 0.81 0.99 0.96 0.84 0.88
0.45 1 1 0.99 0.96 0.99 0.98 0.8 0.81 0.99 0.96 0.84 0.88
0.5 1 1 1 0.97 1 0.98 0.81 0.84 0.99 0.99 0.89 0.91

Fig. 14. Similarity distribution graph for DYKIS and its TOB-revived thread-oblivious ones

TABLE 10

Effectiveness of applying the TOB framework to JB

JB SA JB SS JB TR

Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

Ex-Cosine 0.983 1.000 0.554 0.983 1.000 0.602 0.983 1.000 0.555
Ex-Jaccard 0.970 1.000 0.530 0.979 1.000 0.618 0.963 1.000 0.470

Ex-Dice 0.976 1.000 0.503 0.978 1.000 0.527 0.964 1.000 0.453
Ex-Containment 0.986 1.000 0.545 0.985 1.000 0.596 0.978 1.000 0.508

paths across multiple runs even under the same input.
In such cases, the execution traces of multiple runs
apparently can become different even after projection
on individual threads, which may lead to the failure
of our methods. But as indicated by our experiments
conducted on the various types of real multithreaded
programs, the thread-oblivious birthmarks always il-
lustrate good performance. Thus we believe such
cases rarely happen in practical programs. Besides,
as discussed in Section 5 and Section 6.3.4, we adopt
an optimization that select two most similar traces
from plaintiff and defendant for further birthmark
generation. Thus even if the mentioned cases happen,
the optimization helps alleviate the problem.

The thread-oblivious birthmarks improve upon tra-
ditional birthmark with TOB framework. Thus they
suffer the same limitation of dynamic birthmarks in
exhaustively covering all behaviors of a program. In

the experiments, despite large number of executions,
the inputs still constitute only a small proportion of
the whole input space. This is the fundamentally chal-
lenge for all dynamic birthmarks. One way to alleviate
the concerns is to combine with testing techniques. We
take it as one of our future work.

Effectiveness of the TOB framework is mainly
evaluated on whole program plagiarism detec-
tion, where a complete program is copied and
then disguised through various automatic semantics-
preserving transformations. One problem plagiarism
detection researches face is the lack of real-world
plagiarism cases [49], [50]. In recent years, whole
program plagiarism on mobile markets starts to rise,
and many of the stolen apps have been processed with
obfuscation techniques to evade plagiarism detection.
According to a recent study [51], about 5%-13% of
apps in the third-party app markets are copied and
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redistributed from the official Android market. This
potentially provides rich real-world plagiarism cases.
Yet, identifying potential pairs of apps that plagiarism
may exist is extremely labor-intensive. Also, tracing
apps needs nontrivial efforts because our tracers sup-
port the monitoring of binary executables and Java
bytecodes. Thus, we take it as one of our future work.

Besides whole program plagiarism, there exists
many cases that only part or a library of a program is
copied. The main problem of using dynamic birth-
marks to detect partial plagiarism is that they are
mainly based on the similarity of program executions.
Therefore, if there is only a small portion of code
being copied, these approaches give low similarity
scores. Improved upon existing dynamic birthmarks,
the thread-oblivious birthmarks suffer the same prob-
lem. A straightforward solution is to instrument only
the suspicious part. But this requires manual efforts
and domain knowledge.

8 RELATED WORK

Broadly speaking, the research areas related to our
work include software watermarking [25], [52] which
protects software copyrights and detects piracy, pla-
giarism detection, as well as code clone detection [53],
[54] and malware identification [55], [56] that detect
clones or maliciousness by characterizing software
with features. In this section we focus on the discus-
sion of birthmark based software plagiarism detection
techniques. Works targeting source code will not be
discussed here, and there have already been many
mature detection systems and tools [20], [21], [57].

8.1 Static birthmark based software plagiarism

detection

Myles and Collberg [27] proposed k-gram based static
birthmarks, where sets of Java bytecode sequences of
length k are taken as the birthmarks. The similarity
between two birthmarks was calculated through set
operations that ignore the frequency of elements in the
set. Although being more robust than birthmarks pro-
posed Tamada [8], the birthmarks were still vulnera-
ble to code transformation attacks. Weighted k-gram
based static birthmarks [47] improved upon Myles
and Collberg’s [27] by taking the frequency of each
k-length operation code sequence into consideration.
However, the improvement in detection ability seems
minor while introducing extra cost in computing
change rate of k-gram frequencies. A static birthmark
based on disassembled API calls from executables is
put forward by Seokwoo et al. [19] to detect plagia-
rism of windows applications. The requirement for
de-obfuscating binaries before applying their method
is too restrictive and thus reduces its availability. Park
[12] proposed a static birthmark by extracting all
possible sequences of object instructions from a CFG
of each method, and applied it for detecting common

modules in Java packages. Yet this method suffered
high time consumption since a mass of traces can be
extracted if the CFG is complex. Hemel et al. [58] sug-
gested three methods to find potential cloned binaries
within a program repository by simply treating bi-
naries as normal files. Specifically, similarity between
two binaries were evaluated by calculating the ratio of
shared string literals, by calculating the compression
ratio, and by computing binary deltas. Since no syn-
tactic or semantic attributes of binary executables are
considered, efficiency is assured but low detection ac-
curacy is expected. Lim used control flow information
that reflected runtime behaviors to supplement static
approaches [59]. Recently he proposed to analyze
stack flows obtained by simulating operand stack
movements to detect copies [60]. But they are only
available to Java programs. An obfuscation-resilient
method based on longest common subsequence of
semantically equivalent basic blocks was proposed by
Luo et. al. [61]. They utilized symbolic execution to
extract from basic blocks symbolic formulas, whose
pair-wise equivalence are compared via a theorem
prover. Being static analysis method, accuracy can not
be assured since it has difficulty in handling indirect
branches. In addition, symbolic execution combined
with theorem proving is not scalable.

There are also some work focusing on detecting pla-
giarism for smartphone applications. DroidMOSS [3]
detects plagiarism by applying fuzzing hashing on in-
struction sequences. Yet simple obfuscations, such as
noise injection can evade the detection of DroidMOSS,
since no semantic information is used. DNADroid
[62] achieves plagiarism detection by constructing
and comparing program dependence graphs between
methods. Since considering data dependencies, this
method are more robust. ViewDroid [51] proposes
the feature view graph birthmark by capturing users’
navigation behaviors. But it’s vulnerable to dummy
view insertion and encryption attacks.

8.2 Dynamic birthmark based software plagia-
rism detection

Myles and Collberg [7] suggested the whole program
path (WPP) birthmark generated by compressing a
whole dynamic control flow trace into a directed
acyclic graph form to uniquely identify program.
Even with compression the method does not scale,
and it’s susceptible to various loop transformations.
Schuler [18] treated Java standard API call sequences
at object level as dynamic birthmarks for Java pro-
grams. Such approach exhibited better performance
than WPP birthmark, but they also pointed out that
their method was affected by thread scheduling. Sim-
ilar principle was applied in Tamada’s work [63],
where API calls of windows executables executed dur-
ing runtime were used to derive two kind birthmarks:
Sequence of API Function Calls (EXESEQ) and Fre-
quency of API Function Calls (EXEFREQ). Apparently
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API based birthmarks are all language dependent. To
address the problem Wang et al. [15] proposed System
Call Short Sequence birthmark (SCSSB), that treat the
sets of k-length system call sequences as birthmarks.
However, as we illustrated it has limited applicability
to multithreaded programs.

Liu et al. [34], [49] suggested to characterize soft-
ware with core values and applied it to software and
algorithm plagiarism detection. Tian et al. [17], [64]
proposed the DYKIS birthmark based on dynamic
key instruction sequences. By introducing dynamic
taint analysis into birthmark generation, these birth-
mark methods were resilient to various semantics-
preserving code transformations. LoPD [65], a pro-
gram logic based approach was designed for soft-
ware plagiarism detection by leveraging symbolic
execution and weakest precondition reasoning to find
semantic dissimilarities. Despite these methods are
resilient, they all suffer the scalability problem, since
they all operates on the instruction granularity, and
either taint analysis or symbolic execution with con-
straint solving is computational non-trivial.

By integrating data flow and control flow depen-
dency analysis, Wang et al. [14] proposed a system
call dependency graph based birthmark, and graph
isomorphism is utilized for calculating similarity be-
tween birthmarks. Patrick et al. [11] proposed a heap
graph birthmark for JavaScript utilizing heap mem-
ory analysis, and graph monomorphism algorithm
was applied for similarity computation. But to be
effective, these graph based birthmarks require that
the programs under protection to have prominent
referencing structures. Also, since graph isomorphism
and monomorphism algorithms are NP-complete in
general, several thousand nodes will make the meth-
ods impractical to use.

9 CONCLUSION

As multithreaded software become increasingly more
popular, current dynamic software plagiarism detec-
tion technology geared toward sequential programs
are no longer sufficient. This paper fills the gap
by proposing a thread-oblivious software plagiarism
detection framework (TOB) that revives existing dy-
namic software birthmarks. We have developed a set
of tools collectively called TOB-PD by applying the
TOB framework to three typical dynamic birthmarks,
including SCSSB, DYKIS and JB. The extensive ex-
periments conducted on 418 versions of 35 different
programs show that the proposed approaches are not
only accurate in detecting plagiarism of multithreaded
programs but also robust against most state-of-the-
art semantics-preserving obfuscation techniques. In
addition, a suite of benchmarks of multithreaded
programs are complied. We believe there will be more
research on plagiarism detection for multithreaded
programs. The existence of such benchmarks will be

beneficial for researchers to conduct experiments and
present their findings. The benchmarks, the TOB-PD
tools as well as the experimental data are all available.

Our work addresses the challenges of applying
dynamic birthmark based approaches for whole pro-
gram plagiarism detection of multithreaded software.
As far as we know, this is the first work that discusses
the impact of thread scheduling on birthmark based
plagiarism detection, and the first work that propose
thread-oblivious birthmarks for solving the problem
systemically. In recent years, whole program plagia-
rism of mobile apps has becomes a serious problem.
About 5% to 13% of apps in third-party app markets
are copied and redistributed from the official Android
market. We plan to conduct case studies and optimize
our approaches for this domain.
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