
Automated Bug Reproduction from User Reviews for Android
Applications∗

Shuyue Li
Xi’an Jiaotong University

lishuyue1221@stu.xjtu.edu.cn

Jiaqi Guo†
Xi’an Jiaotong University

jasperguo2013@stu.xjtu.edu.cn

Ming Fan
Xi’an Jiaotong University
mingfan@mail.xjtu.edu.cn

Jian-Guang Lou
Microsoft Research Asia
jlou@microsoft.com

Qinghua Zheng
Xi’an Jiaotong University
qhzheng@mail.xjtu.edu.cn

Ting Liu‡
Xi’an Jiaotong University
tingliu@mail.xjtu.edu.cn

ABSTRACT
Bug-related user reviews of mobile applications have negative influ-
ence on their reputation and competence, and thus these reviews are
highly regarded by developers. Before bug fixing, developers need
to manually reproduce the bugs reported in user reviews, which is
an extremely time-consuming and tedious task. Hence, it is highly
expected to automate this process. However, it is challenging to do
so since user reviews are hard to understand and poorly informative
for bug reproduction (especially lack of reproduction steps). In this
paper, we propose RepRev to automatically Reproduce Android
application bugs from user Reviews. Specifically, RepRev leverages
natural language processing techniques to extract valuable infor-
mation for bug reproduction. Then, it ranks GUI components by
semantic similarity with the user review and dynamically searches
on apps with a novel one-step exploration technique. To evalu-
ate RepRev, we construct a benchmark including 63 crash-related
user reviews from Google Play, which have been reproduced suc-
cessfully by three graduate students. On this benchmark, RepRev
presents comparable performance with humans, which successfully
reproduces 44 user reviews in our benchmark (about 70%) with
432.2 seconds average time. We make the implementation of our ap-
proach publicly available, along with the artifacts and experimental
data we used [4].

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

∗This work was supported by National Key R&D Program of China (2016YFB1000903),
National Natural Science Foundation of China (61632015, 61772408, U1766215,
61721002, 61532015, 61833015, 61902306), Ministry of Education Innovation Research
Team (IRT_17R86), and Project of China Knowledge Centre for Engineering Science
and Technology.
†Work done during an internship at Microsoft Research Asia.
‡Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7123-0/20/05. . . $15.00
https://doi.org/10.1145/3377813.3381355

KEYWORDS
Bug Reproduction, Android Applications, User Review Analysis

ACM Reference Format:
Shuyue Li, Jiaqi Guo, Ming Fan, Jian-Guang Lou, Qinghua Zheng, and Ting
Liu. 2020. Automated Bug Reproduction from User Reviews for Android
Applications. In Software Engineering in Practice (ICSE-SEIP ’20), May 23–
29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3377813.3381355

1 INTRODUCTION
Negative user reviews, especially bug-related ones, may influence
the reputation of mobile applications and prevent users from down-
loading it. As shown in a survey, 5% of users will abandon the app
after encountering bugs [9]. Thus, the app developers have to fix the
bugs mentioned in user reviews as soon as possible. After receiving
a bug-related user review, the first step is to compose test cases for
bug reproduction. This process involves many human efforts, in-
cluding natural language comprehension, app usage knowledge and
test case composition. It is expected to relieve developers from this
time-consuming and tedious task with some automated approaches.

There is much previous work [9, 10, 21] on mining or catego-
rizing user reviews from app stores to help developers understand
users’ requests in time. Some work also tries to link bug-related
user reviews to relevant code snippets [34] or stack traces [15].
These work demonstrates the possibility of utilizing user reviews
in app quality assessment and assurance.

In this work, we aim to design an automated approach to re-
produce bugs from user reviews. To this end, we first conduct an
empirical study to understand: 1) how end-users describe crash bugs
and 2) the challenges in reproducing crashes from user reviews.
To answer the first question, we inspect 3,497 bug-related reviews
(Dataset I) from Google Play, and summarize three characteristics
of user reviews in perspective of bug reproduction (discussed in
detail in Section 2). To answer the second question, we construct a
benchmark including 63 bug-related user reviews, which have been
reproduced manually. By examining these reviews, we find out the
following challenges: 1) Extracting useful information from noisy
user reviews. User reviews usually contain irrelevant contents to
the crash, e.g., users’ complaints. It is challenging to distinguish
useful information for bug reproduction from the noise. 2) Leverag-
ing limited useful information to reproduce crashes. In most cases,
user reviews do not contain concrete reproduction steps and are

https://doi.org/10.1145/3377813.3381355
https://doi.org/10.1145/3377813.3381355

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Shuyue Li, Jiaqi Guo, Ming Fan, Jian-Guang Lou, Qinghua Zheng, and Ting Liu

poorly informative for bug reproduction. Considering the huge
and unbounded GUI space of an app, it is challenging to effectively
reproduce the crash with such limited useful information.

To tackle the challenges and achieve our goal, we propose RepRev
to automatically Reproduce Android application bugs from user
Reviews. Firstly, RepRev reduces the noise and extracts the most
useful information from user reviews by exploiting several natural
language processing techniques. Then, a guided search strategy
with one-step exploration is designed to effectively trigger the bugs.
The search strategy mainly consists of two techniques: 1) GUI com-
ponent ranking. It ranks current GUI components on screen by its
semantic similarity with bug description in the user review. 2) one-
step exploration. It enhances information about a GUI component
by interacting with it when the components on the current screen
lack of enough information to guide the exploration. We implement
RepRev and evaluate it on the benchmark aforementioned. It suc-
cessfully reproduces 44 out of 63 user reviews (about 70%) with an
average time of 432.2 seconds. The experimental results indicate
that RepRev could be useful in assisting developers with automated
bug reproduction from user reviews.

This paper makes the following contributions:

(1) Two datasets of user reviews are collected and open to the re-
search community [4]. Through an empirical study on them,
the characteristics of bug-related user reviews are summa-
rized in the perspective of bug reproduction. These results
can help the developers to understand how non-technical
end-users describe the crashes they encountered.

(2) We propose a novel approach RepRev to automatically repro-
ducing crashes with a depth-first search guided by user re-
views. Specifically, RepRev extracts informative words from
user reviews and uses these words to rank each GUI com-
ponent in the search. A one-step exploration technique is
proposed to further improve the efficiency of our search.

(3) RepRev is implemented and evaluated on the benchmark.
It presents comparable performance as human developers,
which successfully reproduces 44 user reviews in our bench-
mark (about 70%) with an average time of 432.2 seconds.

The rest of this paper is organized as follows. Section 2 presents
an empirical study on bug-related user reviews. Section 3 introduces
our approach in detail. In Section 4, we present the experimental
results of RepRev and discuss some limitations in Section 5. Even-
tually, we introduce the related work about our research in Section
6 and conclude the paper in Section 7.

2 EMPIRICAL STUDY
In this section, we conduct an empirical study on bug-related user
reviews to explore: (i) how users describe the crash bugs; and (ii)
the challenges to reproduce crash bugs from user reviews.

2.1 Data Collection
Two datasets of bug-related user reviews are used in our empiri-
cal study. Dataset I is taken from the public resource [16], which
contains 288,065 user reviews from Google Play, involving 395
open source apps. Following the data collection practice in recent
work [21], we filter with keyword “crash” and collect 3,497 (about
1.2%) crash bug-related reviews in total.

Table 1: Details of Dataset II. #All, #Cra and #Rep are the
number of all reviews, the crash-related reviews, and the re-
produced crash-related reviews

App Category Downloads Reviews
#All #Cra #Rep

Amaze Tools 1,000,000+ 680 19 2
Ankidroid Education 1,000,000+ 1124 19 19
Brave Communication 10,000,000+ 3400 28 0
Cgeo Entertainment 1,000,000+ 1529 9 1
Duckduckgo Tools 1,000,000+ 1640 15 0
Gnucash Finance 100,000+ 852 15 5
K9 Communication 5,000,000+ 1002 29 3
Kiwix Books & Reference 500,000+ 521 25 9
Lightning Communication 500,000+ 365 21 3
Materialistic News & Magazines 100,000+ 463 15 3
Mysplash Personalization 50,000+ 272 23 7
Omninotes Productivity 100,000+ 520 5 0
Phonograph Music & Audio 1,000,000+ 1000 16 6
Redreader News & Magazines 50,000+ 560 14 4
Shuttle Music & Audio 1,000,000+ 680 12 1
Twidere Social 500,000+ 360 6 0
Wordpress Productivity 10,000,000+ 1000 27 0
Total 16,383 292 63

Dataset II, including 16,383 user reviews, is collected by ourselves.
Table 1 shows the details of the apps we choose and the number
of user reviews of each app. We choose two most popular open
source apps from each category in Google Play. We then collect
the reviews between 2015 and 2019 for each app and filter 292 bug-
related (about 1.78%) user reviews with the same method on Dataset
I. After that, we recruit three graduate students to reproduce the
bugs manually. As a result, we successfully reproduce at least one
bug for 17 apps. Thus, our benchmark is established on the user
reviews from these 17 apps.

We collect open source apps since we need to inspect both the
stack trace and source code to validate whether the crash is exactly
the one reported in the user review. But RepRev can also apply to
the apps without source code.

2.2 Characteristics of Bug-Related User
Reviews

To understand how users describe the bugs they encounter, we care-
fully inspect the bug-related reviews. Specifically, three graduate
students are invited to this task. Each participant independently
read each review and label what characteristics are exhibited by
the review. After labeling, we manually go through the labels to
find out the conflicts. Once the conflict of a label is detected, the
participants are asked to discuss the results with the aim of reach-
ing a consensus. Afterwards, we update characteristics for each
review according to the decisions taken during the discussion. The
characteristics are summarized into three categories:
Characteristic 1: Containing A Lot of Noises. Noise words,
such as misspelled, repetitive, and garbled characters, are frequently
observed in user reviews since most of them are casually written
by users with mobile interfaces. Moreover, users may describe not
only the bugs they encounter but also their complaints, suggestions,
and other topics like the price. These bug-irrelevant contents can
also be regarded as noise. Considering Case 1 in Fig. 1, the user

Automated Bug Reproduction from User Reviews for Android Applications ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

Case 2: Missing Key Specifications of Bugs

Click reset progress option in cards crashes the app.

Still consistently crashes after synching.

Case 3: Missing Key Specifications of Bugs

It is crashing when I try to add a photo from camera.

Case 4: Describing Actions with Specific Patterns

Crash when a photo is added.

Case 5: Describing Actions with Specific Patterns

Case 1: Containing A Lot of Noise

This app is cancer I've spent hours trying to get it to
work and when I finally do it turns the screen
sideways and the app crashes. This app is total
garbage.

Figure 1: Examples of bug-related user reviews.

provides little and even ambiguous information about the crash but
uses most of the words to express his/her subjective opinion.
Characteristic 2: Missing Key Specifications of Bugs. A de-
tailed specification of actions that a user takes before a crash hap-
pens is critical for crash reproduction. However, we observe that
there are only 0.29% of bug-related reviews describing the complete
actions to reproduce a crash. About 20% of bug-related user reviews
only complain about the poor user experience caused by crashes
but do not provide any information about how crashes happen. In
most cases, users tend to describe the last action that they take
or the last state of the app before a crash happens. For example,
in Case 2 of Fig. 1, the user only says that he/she clicks the reset
progress option before a crash happens, but how to reach the reset
progress option is never mentioned. In Case 3 of Fig. 1, the user
complains that the app crashes after finishing a synchronization.
Such characteristic significantly sets bug-related user reviews apart
from bug reports in which detailed reproduction steps are required.

Additionally, due to the critical Android fragmentation problem,
the device and Android OS on which the apps run are essential
for crash reproduction. Unfortunately, there are only about 6% of
bug-related user reviews reporting information about the device,
Android OS, and OS version.
Characteristic 3: Describing Actions with Specific Patterns.
We observe that the user tend to refer to the GUI component, when
they describe the action. It can be observed in about 60% of bug-
related user reviews in our dataset. Considering the Case 2 example
shown in Fig. 1, there is a button with text “Reset Progress” shown
in the screen, and the user refers to the button with its text. We
also notice there are 65% of bug-related user reviews using specific

grammar patterns like verb-object and passive nominal subject to
describe actions, such as the Case 4 and Case 5 in Fig. 1.

2.3 Challenges in Reproducing Reviews
To better understand the challenges in reproducing crashes from
user reviews, we try to manually reproduce crashes in the 292 bug-
related reviews in Dataset II. Since users rarely describe the device,
Android OS, and OS version (Characteristic 2), we choose the most
recent 4 versions of the app before the date of the user review posted.
In terms of OS, we only consider the official Android OS released
by Google. Since the reviews we collect range between 2015 to
2019, we choose the 5 dominated OS versions in this period as our
target, including Android 6.0, 7.0, 7.1, 8.0 and 8.1 [26]. As a result,
we have 20 different configurations for each app. Three graduate
students were recruited to manually reproduce crashes from these
bug-related reviews. Each of the participants had more than half
a year experience in Android development. For each bug-related
user review, we allow a participant to explore a configuration in 30
minutes to reproduce the crash. If the participant cannot reproduce
the crash in all configurations, we consider the crash reported in
the review as unreproducible. Overall, the reproduction of the 292
bug-related user reviews costs us about 2 man-months.

As a result, 63 out of 292 (23.2%) bug-related user reviews are
successfully reproduced by at least one participant in one configura-
tion, as shown in Table 1. We notice that the success rate is not very
high and some failures may be due to hardware specific issues or
other unknown reasons. Thus, we mainly focus on these 63 reviews
to summarize the challenges of user review reproduction:
Challenge 1: ExtractingUseful Information fromNoisyUser
Reviews. Intuitively, to reproduce the crash reported in a user re-
view, we need to extract the actions that users take and the states of
the app before it crashes. In the remainder of this paper, we define
the actions and the states as useful information for crash repro-
duction. However, as we have summarized in the Characteristic
1, bug-related user reviews have a lot of noises, which inevitably
makes the extraction of useful information challenging.
Challenge 2: Leveraging limited useful information to repro-
duce bugs. As discussed in Characteristic 2, in most cases, users
only describe the last action they take or the last state of an app
before a crash happens. In other words, the useful information
in user reviews that can be leveraged for crash reproduction is
limited. Considering the huge and unbounded GUI space of an
app, how to effectively leverage such limited useful information
for reproduction becomes challenging. Also, it is well-known that
there exists a lexical gap between natural language and software
artifacts [18, 27, 32, 34]. In this crash reproduction scenario, the
lexical gap also exists between user reviews and the artifacts of
an app, as users do not have a professional Android development
background. The lexical gap makes the task more challenging.

3 APPROACH
In this section, we present our approach, named RepRev, to re-
produce crashes from bug-related user reviews. RepRev takes a
bug-related user review as input, and outputs a test case script
that can reproduce the bug and its related stack trace. In the fol-
lowing, we first provide an overview of RepRev and elaborate on

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Shuyue Li, Jiaqi Guo, Ming Fan, Jian-Guang Lou, Qinghua Zheng, and Ting Liu

Bug-related
Reviews

Grammar Analysis

Token Frequency
Analysis

User Review Processing Guided Search

Test Cases

Stack TraceOne-step
Exploration

Component
Ranker

Informative
Words

Figure 2: Workflow of RepRev

how RepRev addresses the two challenges discussed in section 2.
Then, we illustrate the techniques and algorithms in detail.

3.1 Overview
The workflow of RepRev is shown in Fig. 2. Taken a bug-related
user review as input, RepRev operates in two phases to reproduce
a crash: user review processing and guided search.

In the user review processing phase, a two-pronged approach
is designed to address the first Challenge. 1) Grammar Analy-
sis. There are grammar patterns on how the bugs are described
(Characteristic 3). Therefore, we leverage the dependency parsing
technique to identify typical patterns. However, the state-of-the-art
dependency parsing technique is not robust to noisy inputs like
user reviews. To this end, we further design a novel normaliza-
tion method to clean the user review before adopting dependency
parsing techniques. Details are presented in section 3.2. 2) Token
Frequency Analysis. Solely relying on grammar pattern is not
enough, as we may miss some informative words due to the limita-
tion of dependency parsing techniques. Hence, we design a simple
yet effective token frequency analysis technique to identify more
informative words. The outputs of these two steps are merged as a
set of words, serving as guidance to reproduce the crash.

In the second phase, a guided search algorithm is proposed to
leverage the extracted information from a user review to reproduce
the bugs described in user review. The algorithm is built upon the
depth-first search strategy, which in essence mimics how users
interact with an app [8, 33]. At each step of the search, unlike
existing test input generation techniques that choose the next action
randomly or with the aim at pursuing a high code coverage [13,
25, 30], we choose the next action with the guidance of extracted
information from the user review. That is, the informative words
extracted from the last phase are used to rank GUI components, and
we first interact with those GUI components with higher rankings.
To rank GUI components with the extracted informative words,
we propose a method that uses the word2vec technique [26, 28] to
bridge the lexical gap between the user review and GUI components.
Additionally, as we have shown in Characteristic 2, bug-related user
reviews may only describe the last action or last state of an app
before a crash happens. Such limited useful information makes it
difficult to correctly rank GUI components in the very first stage
of the search. In these circumstances, we propose a novel one-step
exploration technique to enhance the information of each GUI
component before we decide the next action.

Algorithm 1: User Review Preprocess
Input :User Review r, Target App A,

All Reviews of Target App R
Output : Informative Words W

// Grammar Analysis

1 let n = normalize(r, A);
2 let patterns = parseDependencyTree(n);
3 letW1 = extract(patterns) ;

// Token Frequency Analysis

4 let f = analyzeFrequency(r, R);
5 letW2 = filterWithThreshold(f);
6 W =W1 ∪W2;
7 return W;

NNP PRPWRB VBP

Crash when I add photo camerafrom

VBPNN NN

acl:relcl
advmod

nsubj casedobj

nmod

Figure 3: Example of Dependency Tree.

To further improve the search efficiency, we design two opti-
mization strategies: 1) state abstraction which avoids searching
equivalent GUIs, and 2) loop breaking which avoids too many in-
valid searches in the same window. The search terminates when
the bug reported in the user review is reproduced or the time limit
is reached. If RepRev successfully reproduces a bug, it outputs the
test case to trigger the bug and the corresponding stack trace.

3.2 User Review Processing
In this phase, RepRev takes a user review as input, and extracts
informative words from the user review. The process algorithm is
outlined in Algorithm 1. There are two steps in this phase: Grammar
Analysis (line 1-3) and Token Frequency Analysis (line 4-5).

3.2.1 Grammar Analysis. As we have discussed in Section 2, user
reviews are rather noisy (Characteristic 1), which inevitably hurts
the performance of any dependency parsing technique. In order to
overcome this, we normalize the input user review (line 1), before
adopting a dependency parsing technique. Specifically, given an
input app, we first extract a complete list of its pre-defined GUI
components text from the UI configuration file of the app, i.e.,

Automated Bug Reproduction from User Reviews for Android Applications ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

res/values/public.xml. Note that when the source code of the app is
not available, the UI configuration file can also be obtained with
Android reverse engineering tools, e.g., apktool [3]. Then, for each
GUI component, we check whether it is mentioned in the user
review. If so, we replace the words in the user review with a single
word “button”. It is important to note that such a replacement
would not change the grammatical structure of the user review.
Instead, it facilitates the dependency parsing techniques to identify
grammar patterns in the user review accurately. In addition, we
also try to identify user’s actions, such as click, tap and scroll. We
manually establish a corpus of commonly used action words by
examining hundreds of user reviews. During normalization, we also
enumerate each action keyword in the corpus and check whether
it is mentioned in the user review. If so, we replace it with its
standard form in the corpus. In this way, both the actions and GUI
components are normalized to facilitate further analysis. Take a
user review saying "crash when access /r/all" as an example, where
"/r/all" is the name of a pre-defined component on the app. After
normalization, it is transformed into "crash when click button".
Obviously, it is much easier for a dependency parser to parse the
normalized version than the original one.

After the normalization of the user review, we identify specific
grammar patterns in it with a state-of-the-art dependency parsing
technique, and extract informative words from the patterns (line 2-
3). Firstly, we parse the user review into a dependency tree. The
dependency tree depicts the grammatical structure of a sentence
and defines the relation between each pair of words. Fig. 3 shows a
dependency tree of a user review, where a directed edge between
two words indicates that the source word depends on the target
word with a specific relation. We extract the two grammar patterns
that we discuss in Characteristic 3: verb-object structure and pas-
sive nominal subject structure. In addition to these two patterns, we
also observe that some informative words are represented by the
modifier relation. Considering the example in Fig. 3, while “add"
and “photo" can be extracted by verb-object structure, another infor-
mative word “camera" needs to be extracted by its modifier relation
with the word “add". To obtain informative words altogether, we
also extract these modifiers relations in our approach. Finally, we
collect all the words that are involved in the extracted patterns.

While this method works for most user reviews, there are still
some cases where informative words are missed. For example, in
Case 3 in Fig 1, the word “synching” cannot be extracted by this
method. To overcome this limitation, we further design the follow-
ing token frequency analysis step.

3.2.2 Token Frequency Analysis. Intuitively, words that frequently
occur in an app’s user reviews but rarely occur in the other apps
are likely to be valuable. We design a statistical method to identify
informative words in the bug-related user review based on this
intuition, which is inspired by the term frequency inverse-document
frequency (TF-IDF) technique [29, 32]. Specifically, we consider all
user reviews of an app as a document (including non-bug-related
user reviews). Given the data we collect in Section 2, we establish
a collection of documents. Taking a bug-related user review as
input, we assign each word in the review a score with the following

Algorithm 2: Guided Search with One-step Exploration
1 Procedure GuidedSearch(S ,W)

// S: a GUI; W: informative words

2 let C = ExtractComponents(S);
3 let Scores = CalculateScore(C ,W);
4 C = Rank (C , Scores);
5 if Scores are all zeros then
6 C = OneStepExploration (C , S);
7 Scores = CalculateScore(C ,W);
8 C = Rank (C , Scores);
9 foreach GUI component c ∈ C do

10 let act = GenerateAction (c);
11 let newS = Execute (act);
12 if A crashes then
13 return stack trace;
14 if newS is seen before then
15 continue;
16 GuidedSearch(newS , W);
17 RestoreGUI(S);
18 return none;

19 Procedure OneStepExploration(C , S)
20 foreach GUI component c ∈ C do
21 let act = GenerateAction (c);
22 let newS = Execute(act);
23 if newS = S then
24 continue;
25 c = UpdateRepresentation(c , newS);
26 NtopC = getNewRanking (S , NS);
27 RestoreGUI(S);
28 return C;

equation:

Score(w) =
f reqdoc (w)

f reqcorpus (w)
, (1)

where f reqdoc and f reqcorpus denote the frequency of wordw in
the document (all the user reviews of an app) and in the corpus (a
collection of documents), respectively. For those words that solely
appear in an app’s user reviews, we assign their scores as 1. Finally,
those words that have scores larger than a threshold are considered
informative. Considering the Case 3 in Fig 1, the word “synching”
refers to a synchronization function of the app, and it is frequently
mentioned in the user reviews of this app. As a result, this word
has the highest score in the review and consequently, it is regarded
as an informative word.

The outputs of the Grammar Analysis and Token Frequency
Analysis are merged, serving as guidance in the next phase.

3.3 Guided Search
In the guided search phase, given the extracted informative words as
input, we propose a guided search algorithm to effectively explore

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Shuyue Li, Jiaqi Guo, Ming Fan, Jian-Guang Lou, Qinghua Zheng, and Ting Liu

the GUI space of the app to reproduce a crash. The algorithm is
outlined in Algorithm 2.

3.3.1 Depth-First Search. The guided search algorithm is built on
the depth-first strategy, which aims to explore an app’s functionali-
ties thoroughly. The depth-first search starts from the initial page
of an app. At each step of the search, we extract the GUI compo-
nents on current GUI. Then, the components will be recursively
explored in a depth-first manner through interacting with a compo-
nent which makes transition to a new GUI. The process ends when
we cannot reach any new GUI. To this end, the search can system-
atically explore the app functionalities. Interested readers can refer
to [8] for more details about the depth-first search strategy.

3.3.2 Rank GUI Components by User Review. The original depth-
first search only randomly selects a GUI component to explore
at each step of the search, which is not efficient. In our scenario,
user reviews can be leveraged to guide the search and improve the
search efficiency, because they provide useful information for crash
reproduction. We propose to rank GUI components based on the
extracted informative words from a user review and explore those
GUI components with higher rankings first.

To rank GUI components, we calculate a score for each of them
with respect to the informative words. Typically, a GUI component
has 3 attributes: Text, Description and Resource Id. We represent a
GUI component as a set of words. Since the Text attribute is shown
on the screen, the users usually mention a GUI component with its
Text attribute. If the Text attribute of it is not empty, all words in
Text are added into the word set to present this GUI component;
else all words in both Description and Resource Id are added. Then,
the score of a GUI component is calculated by summing over its
similarity scores to each informative word:

Score(c) =
∑
wi ∈w

Similarity(wi , c), (2)

where c denotes the word set of a GUI component,w denotes the
set of informative words of a user review, and Similarity(wi , c)
measures the similarity between an informative word and the GUI
component. To bridge the lexical gap between user reviews and
GUI components, we leverage the word2vec techniques to measure
the similarity between an informative word and a GUI component.
In addition, we observe that the word sets of GUI components are
usually short in length and different GUI components share many
words. Thus, the more frequently a word appears in different com-
ponents, the less capable it is of distinguishing a GUI component
from others. Based on this observation, we measure the similarity
between an informative word and a GUI component as follows:

Similarity(wi , c) = max
w j ∈c

(
cos(wi,wj))

f reqapp (w j)
), (3)

wherew j denotes the j-th word in the GUI component, wi and wj
denote the word embeddings of wordwi andw j , f reqapp denotes
the frequency of w j appearing in all the GUI components of the
app. Moreover, we set a threshold (0.6) for Similarity and set it as
0 when it is lower than the threshold.

3.3.3 One-Step Exploration. As we have discussed in Section 2,
bug-related user reviews usually only describe the last action or the
last state before a crash happens. Such limited information makes

Figure 4: A user review of Ankidroid and partial steps (the
second one and the third one) to reproduce the crash.

it difficult to rank GUI components accurately in the very early
stage of the search. Take a bug-related user review from an app
Ankidroid [2] as an example, there are partial steps to reproduce
the crash reported here, which we present in Fig. 4. In the left GUI
in Fig. 4, the scores of GUI components calculated with equation 2
are all zeros, as none of them are similar to the information from
user review (“add a photo from camera"). In these circumstances,
instead of randomly interacting with GUI components, we design
a novel one-step exploration technique to enhance the information
of each GUI component in the current GUI and decide on the next
action based on the enhanced information.

Specifically, at each step of the search, when the scores of GUI
components C are all zeros, RepRev interacts with each of them in
an arbitrary order. If an interaction of a GUI component c leads to
a previously unseen GUI, we augment the representation of c with
the representations of all the GUI components Cnew in the new
GUI. Then, we re-calculate the score of the GUI component c based
on its updated representation. If an interaction does not lead to a
previously unseen GUI, we keep the score of the GUI component
unchanged. Having interacted with all the GUI components C ,
we re-rank them based on their updated scores. Considering the
example in Fig. 4, the GUI component outlined in red on the left, is
ranked to the first one through the one-step exploration.

3.3.4 Optimizations. The GUI space of an Android app is known
to be huge and unbounded. To improve the search efficiency, we
further propose two optimization techniques, presented as follows.
GUI Abstraction. We propose the GUI abstraction technique to
merge similar GUIs, aiming to reduce the number of different GUIs.
First, following the practice in [30], RepRev omits minor changes
in GUI [30], including content change of TextViews/EditTexts and
UI property changes (e.g., the checked property of RatioButtons
and CheckBoxs). Second, RepRev conducts abstraction on dynamic
list views, one of the most common components in Android appli-
cations. A dynamic list view is a set of items containing texts or
images, and users are allowed to add items or delete items on the
fly. Heuristically, users interact with the items within a dynamic list
view in the same way. Hence, list views are abstracted to containing
only one item within them whenever they are not empty.

Automated Bug Reproduction from User Reviews for Android Applications ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

Loop Breaking in samewindow. Typically, an Android app com-
prises lots ofActivities . During execution, each activity is assigned
awindow in which the activity draws its GUI, and different GUIs
can be drawn in the same window . A typical example is music
player applications. Usually, when playing a song and jumping to
the next, the view hierarchy of the GUI screen will update, but the
window object stays the same (if thewindow stack is not refreshed
at the moment). Since the dynamic exploration identifies each new
screen by its view hierarchy, it will create an infinite loop on the
samewindow (i.e., the same scenario), and dramatically reduce the
search efficiency. In our experience, staying in the samewindow for
five actions is long enough in normal usage on apps. Hence, when
the search loops in the same window over five times, we iteratively
interact with components on the screen (and back button) until
jumping out of the window. Specifically, we differentiatewindows
according to their addresses inwindow stack which can be obtained
with a command adb dumpsys top activity.

Additionally, we demote a component that leads to a side menu.
Side menus, officially named navigation drawers [14], are used for
quick navigation between top-level functionalities. To avoid too
many transitions between different functionalities, we delay the
interaction with side menus.

4 EVALUATION
We implement RepRev as a publicly available tool [4]. In the user
review processing phase, the Stanford CoreNLP framework [24] is
used to parse user reviews into dependency trees. The threshold
in the token frequency analysis is set to 0.3. In the guided search
phase, the python wrapper of Android uiautomator2 [5] is applied
to inject click, scroll and input events into apps. Word embedding is
implemented in Python with Gensim library [1] and is pre-trained
on the Google News dataset [12]. The dimension of word embedding
is set to 100. The ADB command is used to dump the stack traces
(adb logcat) and to monitor the state of emulators. We conduct
evaluations on Android emulators running on Ubuntu 14.04. To
evaluate the effectiveness of RepRev, we explore the following
research questions:
RQ1. Can RepRev reproduce crashes from user reviews?
RQ2. How efficient is RepRev for crash reproduction?
RQ3. How effective are the techniques we proposed in RepRev?

4.1 RQ1: Review Reproduction
To answer the RQ1, we evaluate RepRev on user reviews from
Dataset II. Given a user review in the benchmark, RepRev runs
on 20 configurations (aforementioned in Section 2.3) of the app
until the crash is reproduced, or the time limit is reached. Then,
we manually examine the stack trace and the action sequences
of a crash to validate whether it is the one reported in the user
review. In practice, we first set up the app, e.g., user authentication,
before running RepRev. The time limit is set as two hours for each
configuration.

As shown in Table 2, RepRev successfully reproduces 44 crashes
posted in the user reviews out of the total 63 ones(about 70%). It
is noticed that RepRev reproduces all 16 reviews that could be
reproduced with no more than 2 actions, 24 out of 38 reviews (63%)
that with 3 or 4 actions, and 4 out of 9 reviews (44%) that need more

Table 2: Experiment Result. “#Word” is the number of words
in user review. “#Actions” indicates the number of actions
to reproduce the bug. “Time_Man” and “Time_Rev” are the
time to reproduce the review by human or RepRev. “<1”
means App is crashed without any action, and “Failed”
means RepRev fails to reproduce the review.

App #Words #Actions Time_Man(s) Time_Rev(s)
Amaze 33 3 100.0 174.5
Amaze 12 3 106.7 192.3
Ankidroid 45 4 186.7 275.2
Ankidroid 17 5 316.7 56.1
Ankidroid 39 4 160.0 90.4
Ankidroid 11 4 376.7 1103.4
Ankidroid 9 4 220.0 992.3
Ankidroid 5 1 170.0 8.7
Ankidroid 21 4 126.7 54.42
Ankidroid 12 4 136.7 68.5
Ankidroid 8 4 126.7 35.5
Ankidroid 7 4 120.0 44.4
Ankidroid 29 2 200.0 1205.4
Ankidroid 20 2 160.0 135.2
Ankidroid 21 4 90.0 8.7
Ankidroid 14 4 266.3 Failed
Ankidroid 8 3 195.3 Failed
Ankidroid 15 6 260.7 Failed
Ankidroid 10 4 253.3 88.4
Ankidroid 10 4 110.0 64.2
Ankidroid 13 2 116.7 58.87
Cgeo 67 2 186.7 350.4
Gnucash 6 0 <1 <1
Gnucash 6 0 <1 <1
Gnucash 5 0 <1 <1
Gnucash 20 6 263.0 Failed
Gnucash 12 3 250.3 Failed
K9 12 3 330.3 Failed
K9 19 3 255.0 Failed
K9 13 3 230.3 Failed
Kiwix 45 3 310.0 1430.2
Kiwix 15 3 166.7 1113.2
Kiwix 20 5 166.7 1223.1
Kiwix 147 5 286.7 1102.3
Kiwix 6 3 120.0 32.3
Kiwix 15 3 296.7 1124.5
Kiwix 213 2 483.3 979.4
Kiwix 60 2 266.7 668.4
Kiwix 58 0 <1 <1
Lightning 67 3 580.7 Failed
Lightning 18 3 610.0 Failed
Lightning 15 3 670.3 Failed
Materialistic 12 4 310.0 Failed
Materialistic 12 4 322.3 Failed
Materialistic 54 4 240.3 Failed
Mysplash 16 3 90.0 625.3
Mysplash 7 3 110.0 612.2
Mysplash 14 3 120.0 620.4
Mysplash 5 3 113.3 632.2
Mysplash 7 3 156.7 714.8
Mysplash 14 3 183.3 Failed
Mysplash 12 4 188.3 Failed
Phonograph 54 4 96.7 320.8
Phonograph 21 5 226.7 120.2
Phonograph 24 0 <1 <1
Phonograph 27 5 312.3 Failed
Phonograph 9 5 412.0 Failed
Phonograph 5 5 355.3 Failed
Redreader 23 1 43.3 15.2
Redreader 10 1 48.3 13.4
Redreader 17 1 60.0 59.7
Redreader 24 1 50.0 14.2
Shuttle 13 3 133.3 77.2
Aver. 27.7 3.4 221.5 423.2

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Shuyue Li, Jiaqi Guo, Ming Fan, Jian-Guang Lou, Qinghua Zheng, and Ting Liu

than 4 actions. To understand the source of failures, we further
analyze all the failure cases and summarize their causes:
Comprehension of natural language in user review. There are
8 cases where our approach missed correct event sequences because
of its limitation on natural language comprehension. For example,
a review says "...crash when seeing the transaction detail if you
have more then 4 level of sub account"1. It seems easy for human to
perceive the description "more than 4 level", but RepRev is unable
to generate the correct actions. Our approach fails on these highly
abstract descriptions resulting from its lack of understanding of
natural language. Another example is a review from a web browser
application saying that "This app is useless wait crashes every time
I load a heavy website...". To reproduce the crash, human tried many
"heavy" websites, e.g., the website with many images. However,
generating this kind of input is non-trivial for our approach without
some domain knowledge. Actually, this case is out of the scope of
our work in this paper.
Unsupported Operations. There are two cases where it requires
some actions outside the app to reproduce the crash. Specifically,
in these two cases, it is required to choose local files from the file
browser in Android system but our approach does not support these
system actions. There are three cases caused by the limitation of the
depth-first search. The depth-first search only explores a function-
ality of an app once. However, if a bug can only be reproduced with
repetitive actions, the depth-first search can never reproduce it. For
example, a user review says that “My app gets crashed when trying
to record audio”. To reproduce the crash, two conditions need to
be satisfied: (1) tab the Play button right after Record button, (2)
repeat the “record-and-play" action twice. This example requires
using the “record-and-replay” functionality twice.
Other causes.Non-deterministic bugs (3 cases). The non-deterministic
bugs are common in Android applications and cause some failures
of RepRev. We inspect the exploration process of these cases and
find that RepRev generates correct event sequences, but the crash
does not happen in our experiment for unknown environmental
reasons, e.g., network state, hardware, etc. Additionally, we run
these cases another two times but still fail to reproduce the crash.

Time interval (3 cases). There are two cases where the precise
time interval is critical for bug reproduction. For example, a user
review says that “Recently app crashes after download is finished”.
According to our manual reproduction experience, users need to
wait on the same GUI until the download has finished in order
to trigger the crash. In our approach, we set fixed time interval
between actions so we fail to capture the precise timing to take
the next action. Actually, the information about the time interval
between actions is hardly mentioned in user reviews. This problem
can be mitigated by defining some heuristic rules to predict time
intervals; for example, if we recognize a download scenario, RepRev
needs to wait until the download finishes.

4.2 RQ2: Efficiency
To evaluate the efficiency of RepRev in reproducing crashes, we
select 44 successfully reproduced reviews by RepRev. To establish
the baseline, we also record the time that human participants spend
on reproducing each crash.

1The user misspelled. "then" should be "than".

0 200 400 600 800 1000 1200 1400
Time (seconds)

RepRev

MS

MF

Figure 5: Reproduction time of manual process (MF : fail-
ure cases of RepRev, MS: successful cases of RepRev) and
RepRev.

Table 3: The ablation study results. “#Reproduced” indicates
the number of successfully reproduced reviews. “Averaged
Time” indicates the averaged time to reproduce a review.

Approach #Reproduced Averaged Time(s)
RepRev 44 432.2
RepRev1 39 547.7
RepRev2 41 469.4

As shown in Table 2, RepRev is able to reproduce a crash in 423.2
seconds on average, while the averaged manual reproduction time
is 169.4 seconds. Such results are expected since RepRev needs to
explore a larger number of actions during reproduction. Hopefully,
RepRev reproduces one-touch crash (22.2 seconds on average) faster
than human developers (74.3 seconds) since it identifies the bug-
related componentmore quickly (one-touch crash refers to the crash
triggered by only one action). By the way, we find that humans
also spend more time on the crashes that RepRev fails to reproduce.
As shown in Fig. 5, manual reproduction time on failure cases of
RepRev is larger than that on the successful cases of RepRev. It
means that these cases are complex and need deep understanding
of user reviews.

Although RepRev takes more time than human in average, it
is still useful to developers. First, RepRev is fully automated and
can relieve developers from the painstaking and tedious process
of bug reproduction, especially when the correct configuration of
the app is unknown. Secondly, RepRev can be integrated with a
watchdog in app stores (e.g., Google Play, App Store). Whenever a
bug-related review is posted, the watchdog can detect it and launch
RepRev to generate a test case for reproducing the reported bug.
Then, the user reviews along with the test case can be delivered to
developers.

4.3 RQ3: Effectiveness
We conduct an ablation study on RepRev to evaluate the effec-
tiveness of two techniques: one-step exploration and user review
processing. When the one-step exploration is ablated, we randomly
interacts with a GUI component when the scores are all zeros. We
denote this variant of RepRev as RepRev1. When the user review
processing is ablated, RepRev simply tokenizes a user review, and
all the resultant words serve as guidance words in the next guided
search phase. We denote this variant as RepRev2.

Automated Bug Reproduction from User Reviews for Android Applications ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

RepRev1 and RepRev2 are evaluated on our benchmark of user
reviews. As shown in Table 3,RepRev1 only reproduces 39 crashes.
The cause for the five additional failures compared with RepRev
(44) is that RepRev1 takes more time in exploring the functionalities
that are irrelevant to the crash when the scores are all zeros, and
thus cannot reproduce the crash before the time limit is reached.
Moreover, the average time for reproduction increases by 42.65%
compared with that of RepRev. This result demonstrates the effec-
tiveness of the one-step exploration technique in enhancing the
representations of GUI components and guiding the exploration.

In terms of RepRev2, it only reproduces 41 crashes and the aver-
age reproduction time increases by 30.0% compared with RepRev.
One additional failure is caused by incorrect tokenization of user
review. Specifically, a user reports that a crash is caused by “using
OSM: Cyclemap”, where “OSM: Cyclemap” is the name of a GUI
component in the app. With a conventional tokenizer, the phrase is
tokenized as threewords, namely “OSM”, “:”, and “Cyclemap”, which
can mislead RepRev2 to other components with similar names (e.g.,
“Cyclemap”, “Cyclemap allowed”, “of cyclemap”). Thus, RepRev2
spends much time in exploring the irrelevant components and fail
to reproduce the crash within time limit. With the user review pro-
cessing technique, the keyword "OSM:Cyclemap" is retained (since
we identify the name of components before any further processing)
and guides the exploration effectively. In another two failures, the
reviews contain lots of words (147 and 213 words, respectively)
and most of the words describe bug-irrelevant contents. For exam-
ple, a user mentions four irrelevant functionalities (i.e., “language",
“settings", “category" and “the online tab") in one review, which
misguides RepRev2. The result indicates that the user review pro-
cessing technique can improve the effectiveness of our approach.

5 DISCUSSION
Limitations & Future Work. While RepRev is effective in repro-
ducing bugs reported in user reviews, it is still tied to certain limi-
tations. First, RepRev currently only supports three basic types of
interactions: click, swipe and text input. However, there exists some
bugs where sophisticated GUI interactions like drag, system events
interactions like incoming messages, and interactions with system
applications are required. Given the general design of RepRev, we
believe that it can be extended to support these interactions. Sec-
ond, RepRev does not have an in-depth understanding of the given
user review and the app under test. It would cause several failures
that were discussed in Section 4.1. To mitigate this problem, the
advanced techniques for Natural Language Processing based on
deep learning can be leveraged to extract the useful information
more accurately. In addition, recently proposed approaches to au-
tomatically recognize app’s usage scenarios can also be adopted to
improve the understanding of the app under test [20]. We leave the
exploration of these techniques to improve RepRev as our future
work. Third, RepRev currently focuses on reproducing crash bugs.
In order to reproduce those non-crash bugs, we are suffering from
the missing test oracles problem. One promising solution could be
incorporating with developers to specify test oracles for bug-related
reviews and running RepRev to reproduce the bug.
Threats to Validity. The primary internal threat arises from the
empirical study in Section 2. It requires participants to summarize

the characteristics of bug-related user reviews and challenges in
automated bug reproduction. To mitigate this threat, we first ask
each participant to work independently. Then, we open a discussion
with the participants to reach a consensus on the characteristics
and the challenges. After that, we re-label the bug-related user
reviews based on the decisions made during discussion. When it
comes to external threats which concern about the generalization of
evaluation results, we only evaluate RepRev on 63 bug-related user
reviews. This limitation is an artifact of complexity in constructing
the benchmark, as we have to manually reproduce bugs from user
reviews. To mitigate this threat, we sample popular open source
Android apps. Most of them are downloaded over one million times.
To this end, RepRev should generalize to the other Android apps.
In terms of the construct validity, to make the evaluation and study
replicable, we make RepRev’s source code, Dataset I, Dataset II and
all the experimental results publicly available [4].

6 RELATEDWORK
Mining User Reviews on App Stores. Many approaches have
been proposed to mine and categorize user reviews in app stores
to help developers know better about user requests or complaints
in time [9, 10, 21]. Typically, they link bug-related user reviews
to relevant code snippets [34] and stack traces [15]. For example,
Ehsan et al.introduce the concept key topic of user review which
are the topics that influence the app ratings most [10]. Yu et al.
proposed ReviewSolver to locate problematic code of functional
errors with user reviews [34]. Some works also leverage user re-
views to prioritize static warnings [32], or link the crash-related
information reported in both user feedback and stack traces[15].
While these work focuses on involving user review into app evolu-
tion process, none of them directly generate test cases from user
review to automatically reproduce the crash reported by users. And
it fundamentally differs RepRev from these prior works.
Automated Test Case Generation on Android. The dynamic
search process in our approach shares some similarity with auto-
mated test case generation tools on Android. These tools aim for
high coverage and the ability to detect bugs. They can be grouped
into three categories based on their strategy to generate events:
random exploration, model-based exploration and search-based
exploration. Random test case generation tools [13, 22, 25], as its
name shows, generate GUI actions randomly. They can generate
events frequently, including invalid events, to test the robustness
of the app. Model-based test case generation tools [6, 8, 17, 19, 30]
explore the behavior of an app with the guidance of a GUI model,
e.g., finite state machine, to generate only valid actions. Search-
based test case generation tools [7, 23, 31] aim to synthesize some
cases that can be hardly covered by two methods above, e.g, specific
input, with specific techniques such as symbolic execution.

Recently, researchers have proposed automated approaches to
reproduce crashes from bug reports [11, 35]. These approaches
heavily rely on the concrete reproduction steps described in bug
reports to reproduce bugs. However, as we have shown in Section 2,
reproduction steps are usually missed in user review posted by non-
technical end users. To overcome this problem, we propose various
techniques, e.g., token frequency analysis and one-step exploration
to effectively reproduce crashes reported in user reviews.

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Shuyue Li, Jiaqi Guo, Ming Fan, Jian-Guang Lou, Qinghua Zheng, and Ting Liu

7 CONCLUSION
In this paper, we propose RepRev, an automated bug reproduction
method, to help Android app developers reproduce the bugs de-
scribed in user reviews. We conduct a large-scale empirical study
on user reviews posted on Google Play. By reading and reproducing
more than 3,000 bug-related user reviews, three characteristics and
two challenges in bug reproduction are summarized. With these
insights on user reviews, RepRev leverages various natural lan-
guage processing techniques to extract useful information from
user review, which is then used to guide the exploration on tar-
get app to reproduce the bug. The prototype system of RepRev is
implemented, which successfully reproduces 44 out of 63 human-
reproduced reviews. And, its time cost is comparable with manual
bug reproduction process. It indicates that RepRev could be useful
for developers to reproduce bug-related user reviews.

REFERENCES
[1] 2018. gensim. https://radimrehurek.com/gensim/models/word2vec.html.
[2] 2019. Ankidroid. https://play.google.com/store/apps/details?id=com.ichi2.anki.
[3] 2019. apktool. https://ibotpeaches.github.io/Apktool/.
[4] 2019. RepRev. https://drive.google.com/open?id=116JTG1jqzZB3JUXI9GJCrMMj-

ZKy2wwE.
[5] 2019. uiautomator2. https://github.com/openatx/uiautomator2.
[6] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated testing
of Android applications. In Proceedings of the 27th International Conference on
Automated Software Engineering. ACM, 258–261. https://doi.org/10.1145/2351676.
2351717

[7] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. ACM,
1–11. https://doi.org/10.1145/2393596.2393666

[8] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and
Applications. ACM, 641–660. https://doi.org/10.1145/2509136.2509549

[9] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang. 2014.
AR-Miner: Mining Informative Reviews for Developers from Mobile App Market-
place. In Proceedings of the 36th International Conference on Software Engineering.
ACM, 767–778. https://doi.org/10.1145/2568225.2568263

[10] Noei Ehsan, Zhang Feng, and Ying Zou. 2019. Too Many User-Reviews, What
Should App Developers Look at First? IEEE Transactions on Software Engineering
(2019), 1–1. https://doi.org/10.1109/TSE.2019.2893171

[11] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically translating bug reports into test cases for mobile apps. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 141–152. https://doi.org/10.1145/3213846.3213869

[12] Google. 2018. googlenews. https://code.google.com/archive/p/word2vec/.
[13] Google. 2019. androidmonkey. https://developer.android.com/studio/test/monkey.

html.
[14] Google. 2019. navigationdrawer. https://material.io/components/navigation-

drawer/.
[15] Giovanni Grano, Adelina Ciurumelea, Sebastiano Panichella, Fabio Palomba, and

Harald C Gall. 2018. Exploring the integration of user feedback in automated
testing of android applications. In Proceedings of the 25th International Conference
on Software Analysis, Evolution and Reengineering. IEEE Press, 72–83. https:
//doi.org/10.1109/SANER.2018.8330198

[16] Giovanni Grano, Andrea Di Sorbo, Francesco Mercaldo, Corrado A Visaggio, Ger-
ardo Canfora, and Sebastiano Panichella. 2017. Android apps and user feedback:
a dataset for software evolution and quality improvement. In Proceedings of the
2nd ACM SIGSOFT International Workshop on App Market Analytics. ACM, 8–11.
https://doi.org/10.1145/3121264.3121266

[17] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In Proceedings of the 41st
International Conference on Software Engineering. IEEE Press, 269–280. https:
//doi.org/10.1109/ICSE.2019.00042

[18] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering. ACM,
933–944. https://doi.org/10.1145/3180155.3180167

[19] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 204âĂŞ217. https://doi.org/10.1145/
2594368.2594390

[20] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: Using Machine Learning
to Synthesize Robust, Reusable UI Tests. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 269–282. https://doi.org/10.1145/
3236024.3236055

[21] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan.
2014. What do mobile app users complain about? IEEE Software 32, 3 (2014),
70–77. https://doi.org/10.1109/MS.2014.50

[22] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering. ACM, 224–234. https://doi.org/10.1145/
2491411.2491450

[23] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 599–609.
https://doi.org/10.1145/2635868.2635896

[24] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. 2014. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations. ACL, 55–60. https://doi.org/10.3115/v1/P14-
5010

[25] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for Android applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis. ACM, 94–105. https://doi.org/10.1145/
2931037.2931054

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems. Curran Associates Inc., 3111–3119. https://doi.org/10.5555/2999792.
2999959

[27] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Har-
ald Gall, Filomena Ferrucci, and Andrea De Lucia. 2017. Recommending and
localizing change requests for mobile apps based on user reviews. In Proceedings
of the 39th International Conference on Software Engineering. IEEE Press, 106–117.
https://doi.org/10.1109/ICSE.2017.18

[28] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing. ACL, 1532–1543. https:
//doi.org/10.3115/v1/D14-1162

[29] Juan Enrique Ramos. 2003. Using TF-IDF to determine word relevance in doc-
ument queries. In Proceedings of the 1st Instructional Conference on Machine
Learning. Piscataway, NJ, 133–142.

[30] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI
testing of Android apps. In Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering. ACM, 245–256. https://doi.org/10.1145/3106237.3106298

[31] Heila van der Merwe, Brink van der Merwe, and Willem Visser. 2014. Execution
and property specifications for jpf-android. ACM SIGSOFT Software Engineering
Notes 39, 1 (2014), 1–5. https://doi.org/10.1145/2557833.2560576

[32] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2017. OASIS: prioritizing static
analysis warnings for Android apps based on app user reviews. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 672–682.
https://doi.org/10.1145/3106237.3106294

[33] Wei Yang, Mukul R Prasad, and Tao Xie. 2013. A grey-box approach for auto-
mated GUI-model generation of mobile applications. In Proceedings of the 16th
International Conference on Fundamental Approaches to Software Engineering.
Springer-Verlag, 250âĂŞ265. https://doi.org/10.1007/978-3-642-37057-1_19

[34] Le Yu, Jiachi Chen, Hao Zhou, Xiapu Luo, and Kang Liu. 2018. Localizing Function
Errors in Mobile Apps with User Reviews. In Proceedings of the 48th International
Conference on Dependable Systems and Networks. IEEE Press, 418–429. https:
//doi.org/10.1109/DSN.2018.00051

[35] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and
William GJ Halfond. 2019. Recdroid: automatically reproducing android applica-
tion crashes from bug reports. In Proceedings of the 41st International Conference
on Software Engineering. IEEE Press, 128–139. https://doi.org/10.1109/ICSE.2019.
00030

https://radimrehurek.com/gensim/models/word2vec.html
https://play.google.com/store/apps/details?id=com.ichi2.anki
https://ibotpeaches.github.io/Apktool/
https://drive.google.com/open?id=116JTG1jqzZB3JUXI9GJCrMMj-ZKy2wwE
https://drive.google.com/open?id=116JTG1jqzZB3JUXI9GJCrMMj-ZKy2wwE
https://github.com/openatx/uiautomator2
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2568225.2568263
https://doi.org/10.1109/TSE.2019.2893171
https://doi.org/10.1145/3213846.3213869
https://code.google.com/archive/p/word2vec/
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://material.io/components/navigation-drawer/
https://material.io/components/navigation-drawer/
https://doi.org/10.1109/SANER.2018.8330198
https://doi.org/10.1109/SANER.2018.8330198
https://doi.org/10.1145/3121264.3121266
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1109/MS.2014.50
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.1109/ICSE.2017.18
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/2557833.2560576
https://doi.org/10.1145/3106237.3106294
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1109/DSN.2018.00051
https://doi.org/10.1109/DSN.2018.00051
https://doi.org/10.1109/ICSE.2019.00030
https://doi.org/10.1109/ICSE.2019.00030

