
An Empirical Evaluation of GDPR Compliance
Violations in Android mHealth Apps

Ming Fan∗, Le Yu†, Sen Chen‡§, Hao Zhou†, Xiapu Luo†, Shuyue Li∗, Yang Liu§, Jun Liu∗, Ting Liu∗
∗School of Cyber Science and Engineering, MoE KLINNS, Xi’an Jiaotong University, China

†Department of Computing, The Hong Kong Polytechnic University, China
‡ College of Intelligence and Computing, Tianjin University, China

§School of Computer Science and Engineering, Nanyang Technological University, Singapore
mingfan@mail.xjtu.edu.cn; yulele08@gmail.com; ecnuchensen@gmail.com; cshaoz@comp.polyu.edu.hk;

luoxiapu@gmail.com; lishuyue1221@stu.xjtu.edu.cn; yangliu@ntu.edu.sg; liukeen@xjtu.edu.cn; tingliu@mail.xjtu.edu.cn

Abstract—The purpose of the General Data Protection Regu-
lation (GDPR) is to provide improved privacy protection. If an
app controls personal data from users, it needs to be compliant
with GDPR. However, GDPR lists general rules rather than
exact step-by-step guidelines about how to develop an app
that fulfills the requirements. Therefore, there may exist GDPR
compliance violations in existing apps, which would pose severe
privacy threats to app users. In this paper, we take mobile
health applications (mHealth apps) as a peephole to examine
the status quo of GDPR compliance in Android apps. We first
propose an automated system, named HPDROID, to bridge the
semantic gap between the general rules of GDPR and the app
implementations by identifying the data practices declared in the
app privacy policy and the data relevant behaviors in the app
code. Then, based on HPDROID, we detect three kinds of GDPR
compliance violations, including the incompleteness of privacy
policy, the inconsistency of data collections, and the insecurity of
data transmission. We perform an empirical evaluation of 796
mHealth apps. The results reveal that 189 (23.7%) of them do
not provide complete privacy policies. Moreover, 59 apps collect
sensitive data through different measures, but 46 (77.9%) of them
contain at least one inconsistent collection behavior. Even worse,
among the 59 apps, only 8 apps try to ensure the transmission
security of collected data. However, all of them contain at least
one encryption or SSL misuse. Our work exposes severe privacy
issues to raise awareness of privacy protection for app users and
developers.
Index Terms—GDPR, Privacy policy, Data flow, GUI

I. INTRODUCTION

The General Data Protection Regulation (GDPR) is an

important data and privacy law, enforced since May 2018. The

purpose of GDPR is to provide improved privacy protection

based on a set of standardized data protection laws. For mobile

apps, the GDPR applies to ones that collect and process

personal data of European Union (EU) citizens. It does not

matter if the app is operated from outside of the EU. The

GDPR will still apply. Therefore, the GDPR is of considerable

significance to mobile apps.

However, the regulation in GDPR itself does not contain

any exact step-by-step guidelines about how to develop an app

that fulfills all the requirements. It only gives us a list of the

general rules that we must keep in mind when creating apps.

Therefore, the semantic gap between the general rules and

the app implementations may result in compliance violations

between GDPR and apps, which would pose severe privacy

threats to app users. Once that happens, the developers would

face administrative fines of up to to 20 million EUR, or in

the case of an undertaking, up to 4% of the total worldwide

annual turnover of the preceding financial year, whichever is

higher [1].

In this paper, we take mHealth apps as a peephole to

investigate the status quo of GDPR compliance in the Android

apps, which would help developers identify and fix problems

before releasing apps, and increase the apps’ reliability when

users prefer to download or use them. The rationale is that

the mHealth apps, which are developed to perform health-

related activities to help users monitor and manage their state

of health, usually collect a broad range of more critical health-

related information (PHI) [2] compared with the apps of other

categories. Moreover, PHI is an important special category of

personal data protected by GDPR.

We carefully read the articles in GDPR and summarize the

following three necessary regulations based on three basic

requirements for data protection. (see details in Section II-A).

• Completeness of Privacy Policy. The app should provide
a complete privacy policy [3] to inform users about how their

data is collected and used before app installation.

• Consistency of Data Collection. The app should not access
more data than what its privacy policy declares.

• Security of Data Transmission. The data transmission of
an app should adopt reasonable measures to keep secure.

However, it is difficult to investigate compliance violations

with the three regulations due to three challenges.

First, for the detection of the incomplete privacy policy,

since the policies are written in natural language without a

uniform structure, it is difficult to understand the relations

between the semantics declared in the privacy policy and the

notices declared in GDPR. Most of the existing approaches

only focus on the analysis of privacy policy with the natural

language processing (NLP) techniques [4], [5], [6], [7] without

considering the GDPR. To address this challenge, we combine

the NLP techniques with the machine learning algorithms

to generate six notice classifiers to detect whether a privacy

policy is complete or not (see Section III-A for details).

253

2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/20/$31.00 ©2020 IEEE
DOI 10.1109/ISSRE5003.2020.00032

Second, for the analysis of the inconsistent data collection,

the PHI of mHealth apps is usually entered by users through

the graphical user interface (GUI), making the related studies

that only concentrate on the system-managed user data (e.g.,

device id, IMEI, and IP address) obtained by API calls

inapplicable [8], [9], [10], [11], [12], [13], [14]. To address this

challenge, we analyze the app GUI to recognize the PHI inputs

and record its semantics based on a predefined PHI keyword

database. Then, we leverage the static analysis technique to

track the data flow of PHI to identify whether the mHealth app

collects it by writing to files or sending out. Finally, we match

the collected PHI with the those declared in privacy policy to

identify whether there exists an inconsistent behavior of data

collection (see Section III-B for details).

Third, for the identification of the data transmission security,

it is challenging to map abstract cryptographic concepts

(i.e., standard security rules) to concrete program properties.

Existing approaches [15], [16], [17] can only check violations

of security rules regardless of what data is protected; thus,

they cannot be directly adopted by our work. Therefore, we

initially analyze the tracked data flow information and identify

which PHI is protected by cryptographic implementations.

Then we study whether the implementations are compliant

with standard security rules (see Section III-C for details).

We implement the above ideas in a new system called

HPDROID to detect the GDPR compliance violations in

mHealth apps. We conduct an empirical study on 796 real

mHealth apps to examine whether they are compliant the

regulations. The main contributions are as follows:

(i) To our best knowledge, this is the first systematic

investigation on automatically detecting the compliance

violations between the GDPR and mHealth apps.

(ii) We propose and develop HPDROID, an automated system

to effectively detect whether mHealth apps are compliant

with three privacy regulations summarized from GDPR.

(iii) We conduct an empirical evaluation with HPDROID

on 796 real mHealth apps. The experimental results

show that HPDROID can effectively detect the regulation

violations for mHealth apps, which has exposed severe

privacy issues to raise the awareness of privacy protection

for the mHealth app users and developers.

II. BACKGROUND AND PROBLEM DEFINITION

A. GDPR

The GDPR agreed upon by the European Parliament and

Council in April 2016, has replaced the Data Protection

Directive 95/46/ec in May 2018 as the primary law [18].

It consists of 11 chapters and 99 articles that regulate how

organizations collect, use, share, secure, and process their

personal data and privacy of EU citizens for transactions

that occur within EU member states. Organizations that fail

to achieve GDPR compliance before the deadline (i.e., May

2018) will be subject to stiff penalties and fines. Note that

even organizations outside the EU need to be compliant

if they offer services to EU citizens. Never before have

the needs of app users in this area been so forcefully and

comprehensively protected. The seriousness of the GDPR

should not be underestimated, which is why we have to take a

fresh look at the compliance problem between the GDPR and

Android apps. The analysis scope of this work focuses on three

regulations that are summarized from three corresponding

basic requirements in GDPR Article 5, i.e., transparency, data

minimization, and confidentiality.

Transparency: the GDPR requires that all the information
you provide about your data processing needs to be easy to
access and easy to understand. Providing a privacy policy is
an effective and necessary way to improve transparency [19].

Thus, we analyze the data processing transparency by detect-

ing the completeness of privacy policy.

Data minimization: the GDPR requires that personal data
shall be adequate, relevant and limited to what is necessary in
relation to the purposes for which they are processed. Thus,
we analyze the consistency of data collection by detecting

whether the app has accessed more data than what its privacy

policy declares.

Confidentiality: the GDPR requires that personal data shall
be processed in a manner that ensures appropriate security
of the personal data. Thus, we check whether the data

transmission of an app is adopted reasonable measures.

Note that there are many requirements defined in GDPR,

and it is challenging to consider all the requirements. In this

work, we only check three fundamental regulations based on

the above three basic requirements for data protection. For

other regulations, we leave them as our future work.

B. Privacy Policy

Software that operates on personal data is often required

to be accompanied by a privacy policy, which is a legal
document and software artifact that describes consumer data

practices [20]. For Android platform, the privacy policy is

designed and uploaded to Google Play Store [21] by relevant

developers for declaring what user data will be collected, why

it will be collected, and how it will be used [3]. Fig. 1 presents

the privacy policy of an app called com.uevo.heartrate. The
privacy policy initially declares that the app will collect

personal data from the users when they voluntarily choose to

provide such data. Then, it describes that the app developers

may share personal data with certain third parties without

further notice to users. Finally, the developers provide their

contact information. Note that the policies are generally

ambiguous, resulting a challenge to directly understand the

semantic meanings [22], [23].

C. Research Questions

RQ 1: Do the mHealth apps provide complete privacy
policies?
To improve the transparency of data processing, the mHealth

app developers need to provide a privacy policy that at least:

• Indicates the precise categories of personal data that the
app will process (Data Collection);

254

Fig. 1: A privacy policy of app called com.uevo.heartrate

• Describes the purpose of data processing, and how the

data will be used and fitted in the products and services

(Data Usage);
• Informs the user of their right to access and correct
personal data, and to delete it (User Right);

• Informs the user that their use of the app is strictly
voluntary, but requires their consent to permit the

processing of personal data (User Consent);
• Informs that appropriate technical measures are adopted
to protect personal data (Data Security);

• Provides contact information where the user can ask data
protection related questions (Contact Information).

The first goal is to automatically detect whether a given

privacy policy contains the six minimal notice specifications.

We useNoticepp to denote the set of contained notice category
labels of a privacy policy pp. Complete privacy policy means
its Noticepp contains all the six labels, i.e., |Noticepp| =
6. For example, by carefully scrutinizing the privacy policy
illustrated in Fig. 1, we observe that it contains only three

notice specifications and its Noticepp = {Data Collection,
Data Usage, Contact Information}. Therefore, the app does
not provide a complete privacy policy. To achieve the goal,

the main limitation is that the privacy policies are not written

in a structured, commonly used, and machine-readable format,

resulting that we cannot directly obtain Noticepp.
RQ 2: Do the mHealth apps declare all the collected PHI
in their privacy policies?
Every mHealth app must be designed to only collect and

process PHI for its specific and legitimate purpose, which are

clearly defined in the privacy policy. Here we define the PHI

is collected by a mHealth app if it is input by users, and stored

with different channels such as sending out through network

or writing in local files. Collecting more PHI than what it

declares is an illegal behavior to the app users. Furthermore,

the data breach of such collected PHI could seriously affect

the app users’ profits and their confidence in the mHealth app.

The second goal is to automatically discover whether there

is any PHI collected by a mHealth app but not declared in the

privacy policy. To this end, we need to obtain two PHI sets.

One is the set of declared collected PHI (DCP) extracted from
the privacy policy. The other is the set of actually collected PHI

(ACP) discovered from the app code. Thus, one inconsistent

behavior is discovered if there is any item in ACP that is not
contained in DCP .
The DCP can be constructed by analyzing the PHI items

Fig. 2: GUI of app called com.sattva.sattvamanager

declared in the privacy policy with NLP techniques. However,

it is challenging to construct the ACP because the PHI

is generally input by users on app GUI [8], [9], [10].

For example, Fig. 2 presents the GUI of an app called

com.sattva.sattvamanager that requires the users to provide the
PHI such as symptoms, payment, and medicine. It is difficult

for machines to automatically recognize the content of what

user input due to the lack of fixed structures of the GUI.

RQ 3: Do the mHealth apps implement reasonable
measures to ensure the transmission security of their
collected PHI?
The GDPR requires the developers to provide appropriate

technical safeguards to ensure the transmission security of

collected PHI. Encryption is the most obvious determinant of

security in mHealth apps communications [24]. However, even

for the encrypted PHI, there might be encryption misuse that

is not compliant with standard security rules.

Here, we make a list of the most common encryption

misuses according to the existing studies [25], [26], [27],

[17], [28]: � Do not use electronic codebook (ECB) mode

for encryption [25]; ECB mode uses a weak encryption

algorithm that produces the same ciphertext from the same

plaintext blocks, which would allow attackers to gain the

sensitive data easily. � Do not use MD5 or SHA-1 algorithms
for encryption [26]; The modern attacks can compute large

numbers of hashes, or even exhaust the entire space of all

possible passwords using massively-parallel computing. � Do
not use a constant initialization vector (IV) [27] or constant

keys [17] for encryption; The constant IV or keys result

in a deterministic and stateless cipher, which would make

the information insecure. � Do not use the static seed for

SecureRandom() API call while generating random number

[28]; Using the static seed is predictable and can result in the

generation of random numbers with insufficient entropy.

Another common approach to protecting data during com-

munication on the Android platform is to use the Secure

Socket Layer (SSL) or Transport Layer Security (TLS)

protocols. For brevity, we refer to both protocols as SSL. The

inadequate use of SSL can be exploited to launch Man-in-the-

Middle attacks [29], [30].

Note that the above encryption misuses are not specified in

GDPR, but they are essential requirements that we need to

satisfy to ensure transmission security, which is an important

concept in GDPR.

The third goal is to identify whether there is unprotected

PHI, and misuse of the technical safeguards. The main

challenge is the mapping of abstract cryptographic concepts

255

GDPR
Compliance
Violations

Natural Language
Processing

Text Classifier
Generation

DCP

Data Collection
Data Usage

PHI Data
Tagging

GUI Analysis

Data-flow Analysis

Inconsistent Behavior

ACP

Incomplete Privacy Policy

Android App

Privacy Policy
Encryption Analysis

SSL Analysis

Insecure Data Transmission

Standard Security
Rules

(a) Detection Module of
Incomplete Privacy Policy

(b) Analysis Module of
Inconsistent Behavior

(c) Identification Module of
Insecure Data Transmission

Labeled
Policy

Fig. 3: Architecture of HPDROID.

introduced above to concrete program properties. Even exist-

ing approaches [15], [16], [17] have conducted related studies;

they cannot be directly adopted here since they only check

violations of security rules regardless of what data is protected.

III. METHODOLOGY

The overview architecture of HPDROID is illustrated in Fig.

3, which consists of three main modules.

A. Detecting Incomplete Privacy Policy

Natural Language Processing. Given a privacy policy

crawled from the websites in HTML format, we use

JSOUP [31], a Java HTML parser, to extract the content

from the HTML file, and remove all non-ASCII symbols.

Then we split the extracted content into a set of sentences

using STANFORD TYPED DEPENDENCY PARSER [32]. After

that, each sentence is formalized using the bag-of-words

model [33] with the word stemming and removing of stop

words. Finally, a sentence st is represented as a feature

vector, where each dimension corresponds to the occurrence

of a separate word, and the number of dimensions denotes

the total number of unique words extracted from privacy

policy corpus. If a word occurs in the sentence, its value in

the vector is 1; otherwise, the value is 0.

Machine Learning Classification. After the prepossessing
of the privacy policy, we leverage the machine learning

algorithms to predict what notices do the extracted sentences

belong to. We use the term Noticest to denote the set of
notice labels for sentence st. To generate the classifiers used
for notice prediction, we first need to construct a ground truth

dataset manually. In detail, we initially select 100 privacy

policies of mHealth apps that are crawled from the Google

Play Store and extract all corresponding sentences. Then,

two co-authors go through these sentences and understand

the semantics of each sentence, and manually construct their

corresponding Noticest. Note that, for each sentence, if the
constructed Noticest by the two co-authors are not same, then
a third co-author will check the result by having a discussion

with them to guarantee the labeling correctness. In this way,

we are able to obtain a ground truth dataset of sentences that

are attached with notice labels. The description of the dataset

is listed in Table I. Each notice category contains at least

100 sentences, and there are 1,284 labeled sentences in total.

Note that the construction of labeled ground truth with manual

TABLE I: Descriptions of the constructed ground truth

Notice Category #Sentences Notice Category #Sentences

Data Collection 385 User Consent 121
Data Usage 334 Data Security 176
User Right 164 Contact Information 104

intervention is once for all when training the classifiers. For the

other modules, we do not need additional manual intervention.

Next, we construct a classifier for each notice prediction

based on the dataset. For example, to construct the classifier

used for Data Collection notice prediction, the 385 sentences
that contain the Data Collection label are regarded as the
positive instances. In addition, equal size of negative instances

are randomly selected from other labeled sentences. After that,

with the state-of-the-art machine learning algorithms such as

Random Forest [34], the classifier used to predict the Data
Collection notice can be generated.
Incomplete Policy Detection. After the generation of six
classifiers, the feature vector of a new sentence will be put

into the six classifiers in sequence. If the prediction result of

a notice classifier is 1, then its corresponding notice label will

be put into the Noticest of the given sentence. Finally, the
Noticepp is obtained by merging all the generated Noticest
to detect whether the privacy policy is complete.

B. Analyzing Inconsistent Behavior

Before the construction of DCP and ACP , it is essential
to construct a set of PHI. To this end, we carefully read

the GDPR recital 54 [35] and the National Health Data

Dictionary provided by the Australian Institute of Health and

Welfare [36], and then add the concrete PHI items into a set.

We use PS = {psi|1 ≤ i ≤ m} to denote the full set of PHI,
where psi denotes the unique name of a PHI item in PS, and
m denotes the number of PHI items; m = 227 in this work.

1) DCP Construction: To construct DCP , we focus on
the sentences with notice labels of Data Collection and Data
Usage since we observe that all the data related operations
are declared in them. We first leverage the STANFORD TYPED

DEPENDENCY PARSER [32] to extract all the noun phrases.

However, it is not effective to directly map the noun phrases

with the items in the PS due to the diversity of natural

language. For example, the PHI called “doctor name" might

be written as “name of doctor” in the privacy policy.

Phrase Similarity Calculation. To measure the similarities
between the semantics of PHI with the noun phrases ex-

tracted from the privacy policy, we rely on the tool called

256

class
id
text
bound

class
id
text
bound

class
id
text
bound

Fig. 4: Two examples of user input widgets and their associated metadata.
WORD2VEC [37] to transform the PHI items and the noun

phrases into a calculable form. As a result, the similarities can

be obtained based on the cosine similarity. If the similarity is

higher than the threshold ε, which is set as 0.85, then psi is
added into the DCP . Note that the parameter 0.85 is preset
based on our experience analysis on a set of similar phrases.

2) ACP Construction: The construction of ACP relies on

two kinds of techniques: the GUI analysis technique, which

is used to identify the user input PHI; the data-flow analysis

technique, which is used to filter out the non-collected PHI.

GUI Analysis. To analyze the user input PHI from the GUI

of Android app, we need to render all the GUI layouts

and identify the semantics of the user inputs. Note that our

technique is extended based on UiRef [38]. First, an APK file

is disassembled using APKTOOL [39]. A file called public.xml
is generated to store all the resource identifiers of layout

widgets. Subsequently, a customized activity is injected into

the APK, and the manifest file of the app is rewritten to

register the injected activity as an entry point. After that, the

APK is reassembled and installed on a live device. When

the injected activity is launched, the layouts of the app are

rendered iteratively by invoking the setContentView() API call.
However, the dynamically generated text (e.g., label text set

by the setText() API call) cannot be extracted in this way
using UiRef [38]. To solve the problem, we also launch the

activities declared in the AndroidManifest.xml file to render
the corresponding layouts. Once a current layout is loaded, its

view hierarchy is dumped by UIAUTOMATOR [40]. Then, the

associated metadata of UI widgets are extracted from the view

hierarchy, and each widget is represented as a four tuples form

〈class, id, text, bound〉, where
• class denotes the widget type such as EditText.
• id denotes the widget id stored in the public.xml file.
• text denotes the plain text presented in the widget.
• bound denotes the coordinate of the displayed widget.
Next, we need to understand the semantics of the inputs.

In general, there are two methods for developers to present

the semantics of the inputs to help users understand what they

are required to provide. The first method is presenting the

semantics based on the hint text of the user input widget.

The second method is leveraging a label widget to present the

semantics. We call the two methods as the hint-based method

and the label-based method.

Two examples are illustrated in Fig. 4. The first example

presents an EditText that uses the hint text “Add symptoms
here” belongs to the hint-based method. The second example

presents an EditText that shows semantics with a combined
TextView belongs to the label-based method.
For the hint-based method, we analyze the text value of the

user input widget. The string value of the text is preprocessed

Algorithm 1: Mapping of Labels and Input Widgets
Input: LB: the set of labels displayed in an UI; UIW : the set of

user input widgets displayed in an UI.
Output: M : the set of output label and input widget mapping pairs.

1 foreach input in UIW do
2 LeftSet← ConstructLeftLabelSet(input, LB)
3 if LeftSet.size()>0 then
4 mapLabel← argminlabel∈LB dis(label, input)
5 M .put(input, mapLabel)
6 LB.remove(mapLabel) and UIW .remove(input)

7 else
8 UpSet← ConstructUpLabelSet(input, Label)
9 if UpSet.size()>0 then
10 mapLabel← argminlabel∈LB dis(label, input)
11 M .put(input, mapLabel)
12 LB.remove(mapLabel) and UIW .remove(input)

13 return M

by the NLP technique. Then it is split into a set of words.

With such words, we construct a set of unigram phrases and a

set of bigram phrases. After that, each phrase in the two sets

is matched with the PHI items in PS based on the introduced
phrase similarity calculation method. If ps ∈ PS is matched
with a phrase, ps is regarded as one user input PHI. If no ps is
matched, the given widget might use the label-based method.

For the label-based method, the main challenge is to map the

labels with their combined user input widgets. In our work,

we propose algorithm 1 to map the labels with user input

widgets. Algorithm 1 requires two inputs, LB and UIW .
For each input widget in the UIW , it is checked whether
there are any labels in LB that are closely placed on its left

or above by using the function ConstructLeftLabelSet() and

ConstructUpLabelSet(). The positional relations between the

widgets are calculated based on their extracted bound values.
Finally, for each pair in the output M , the text value of the
label will be matched with the PHI items in the same way as

solving the hint-based way to identify the user input PHI.

Data-flow Analysis. Note that the user input PHI cannot
be directly added into the ACP since the app might not

store them. Thus, in our approach, the data-flow analysis

technique is used to recognize the point of getting specified

data and to further check the destination of fetched data.

We conduct the data flow analysis based on static analysis

tools such as FLOWDROID [41] and VULHUNTER [42],

which are implemented based on the Soot framework [43].

Notably, to enhance the static analysis accuracy, ICCTA [44]

is employed to identify the source and the target of intents,

and EDGEMINER [45] is utilized to determine the implicit

callbacks (e.g., from setOnClickListener() to onClick()). The
data-flow analysis includes three main parts, listing as below:

• Data Sources. The data sources are the points that we
obtain the PHI which will be tracked. We focus on the

user input PHI and the API call findViewById() is selected
as the data source.

• Data Propagation. To track the data propagation in the
app code, we leverage the taint propagation techniques

[41]. In detail, the data sources are initially assigned with

257

a unique taint tag. Then, the taint tag will be propagated

based on the direct data flow propagations according to

the intermediate representation extracted by Soot.

• Data Sinks. The data sinks are the data use points of
the tainted variables. There are six different kinds of data

storage methods, including writing data into a log (e.g.,

Log.d()) or a file (e.g., FileoutputStream.write()), or send-
ing data out through network (e.g., HttpClient.execute()))
or short messages (e.g., SmsManager.sendTextMessage()),
or inserting the data into a database (e.g., SQLite-
Database.update()) or the content provider (e.g., Con-
tentResolver.insert()).

Note that, we also need to link the data flows with their

corresponding widget objects. We resolve the argument value

of the findViewById() API call, and the argument value

demonts the id of the specific wedget object.
In summary, if an app collects one PHI and stores the data

with the above six methods, the PHI is added into ACP .
Finally, one inconsistent behavior is discovered if there exists

an item in ACP that is not contained in DCP .

C. Identifying Insecure Data Transmission

1) Encryption Analysis: For the identification of the use of
system-provided encryption algorithms, we observe that the

symmetric encryption (e.g., AES algorithm) and asymmetric

encryption (e.g., RSA algorithm) schemes are generally

accessible to an app through the Cipher object by using
the doFinal() API call. In addition, the one-way encryption
schemes (e.g., MD5 and SHA-1 algorithms) are generally

accessible to an app through the MessageDigest object by
using the digest() API call. Therefore, we use such encryption
API calls as data sinks and apply data-flow analysis techniques

to detect whether there exists complete data flow from the data

sources (i.e., findViewById()) to any encryption API calls. If
no complete data flow is found, we regard that such PHI is

not protected with system-provided encryption algorithms.

Although there are security pieces of advice in the official

documents and an extensive body of security-related research

about exploits and vulnerabilities, using encryption algorithm

correctly is still not easy for inexperienced or distracted

developers [46]. We assess the four security rules (introduced

in Section II-C) on the mHealth apps by checking their

corresponding program properties.

To evaluate the rule �, we resolve the Cipher.getInstance()
API call to find what transformation string is specified by

the developers to be used as arguments of the API call. If

the string “ASE” is used as the argument, the encryption

mode is automatically chosen as ECB mode. To improve

security, another encryption mode with padding such as

“AES/CBC/PKCS5Padding” should be used.

To evaluate the rule �, we initially check whether the
digest() API call is used as the data sink. If so, we then resolve
the MessageDigest.getInstance() API call to find whether its
argument is specified with string “MD5” or “SHA-1”.

To evaluate the rule �, we compute the backward slices for
the arguments of IvParameterSpec() and SecreKeySpec() API

calls, and then determine whether the used arguments consist

of constant values. If the slices only depend on constant values,

the IV or the keys are constant too.

To evaluate the rule �, we construct a backward slice from
each call site to the SecureRandom() API to check whether
the developers specify the seed value.
2) SSL Analysis: SSL is another common approach to

protect data during transmission on the Android platform, in

which the java.net, android.net and org.apache.http packages
can be used to create sockets or HTTP(S) connection.

However, as introduced in [47], a large number of apps

implement SSL with inadequate validation such as containing

code that allows all hostnames or accepts all certificates.

Insecure SSL transmission is dangerous since they would

generally carry critical sensitive data such as the collected

PHI. To detect the usage of SSL analysis in mHealth apps,

we focus on the PHI that is sent out through the network with

sink API calls in the three network-related packages. Then

we identify the SSL misuse by using a static analysis tool

called MALLODROID [16], which can automatically check

SSL security risks in apps.

IV. EVALUATION

A. Data Collection

To evaluate HPDROID we initially crawl 1,200 popular real

mHealth apps from Medical and Health categories on the
Google Play [21] according to their download counts. Then we
remove the apps that do not contain a privacy policy written

in English language. Finally, there are 796 mHealth apps

remained. After that, to answer RQ 1, we use the constructed
ground truth dataset (i.e., 1,284 labeled sentences in total)

introduced in Section III-A to generate notice classifiers, and

then use the classifiers to detect whether the unlabeled policies

are complete or not. To answer RQ 2, we focus on the apps
that require users to input PHI on the GUI. After the removing

of the apps that are only used to introduce health-related

knowledge based on the GUI analysis step, 253 remaining

mHealth apps (31.78% of 796 apps) are analyzed in the

analysis module of inconsistent behavior. To answer RQ 3,
the 59 apps that collect PHI are put in the identification

module of insecure data transmission to check whether they

have implemented reasonable PHI data protection measures.

In addition to the mHealth apps, we also need to construct

the set of sink API calls. Based on the API list provided by

SUSI [48], we manually remove the API calls that do not

belong to our six defined data storage methods. In the end, 78

sink API calls are used.

The apps and their privacy policies, as well as the generated

data flow information, can be found on our website1.

B. RQ 1: Do the mHealth apps provide complete privacy
policies?

1) Performance on Labeled Dataset: A ground truth dataset
that consists of 1,284 labeled sentences is used to construct

1https://drive.google.com/drive/folders/18qaSTuHcm_
2LLBsMM70Y9VwZrfvi686t?usp=sharing

258

TABLE II: Classification results for the notice categories in labeled dataset.

Notice
Category Classifier TPR FPR Precision Recall F-1

Data
Collection

RF 0.937 0.132 0.877 0.937 0.906
NB 0.882 0.153 0.852 0.882 0.867
DT 0.789 0.192 0.804 0.789 0.797

Data
Usage

RF 0.884 0.154 0.852 0.884 0.867
NB 0.865 0.164 0.841 0.865 0.853
DT 0.830 0.214 0.795 0.830 0.812

User
Right

RF 0.950 0.157 0.858 0.950 0.901
NB 0.862 0.113 0.884 0.862 0.873
DT 0.836 0.176 0.826 0.836 0.831

User
Consent

RF 0.878 0.104 0.902 0.878 0.890
NB 0.887 0.130 0.872 0.887 0.879
DT 0.922 0.035 0.964 0.922 0.942

Data
Security

RF 0.914 0.018 0.980 0.914 0.946
NB 0.908 0.043 0.955 0.908 0.931
DT 0.896 0.055 0.842 0.896 0.918

Contact
Information

RF 0.980 0.020 0.980 0.980 0.980
NB 0.980 0.010 0.990 0.980 0.985
DT 0.990 0.010 0.990 0.990 0.990

Fig. 5: Completeness detection results for 796 unlabeled privacy policies: (a)
the number of privacy policies that cover different notice categories; (b) the
number of privacy policies that lack of different notice categories.

six notice classifiers. To select the proper classifier with

best detection performance, we apply three widely-used

classification algorithms [10] (i.e., Decision Tree (DT) [49],

Random Forest (RF) [34] and Naive Bayes (NB) [50]) on each

notice category with 10-fold cross-validation. Table II lists the

results. Using F-1 value to measure the classifier performance,

Random Forest performs best in four notice categories while

Decision Tree performs best in the remaining two notice

categories. Consequently, the Decision Tree classifier is used

to detect the User Consent and Contact Information categories,
while the Random Forest classifier is used to detect the others.

2) Detection Results on Unlabeled Dataset: We apply the
constructed classifiers on the 796 unlabeled privacy policies

to detect whether they are complete. As illustrated in Fig.

5 (a), 607 (76.3%) privacy policies cover all the notice

categories and the other 189 (23.7%) privacy policies are

incomplete, of which 34 policies cover no more than three

notice categories. Notably, there are two privacy policies (i.e.,

com.bytewaremobile.oasi and com.app.tctnews) that do not
cover any notice category, indicating that they do not provide

any useful information for app users. We manually inspect

the privacy policy links provided by the two apps, and find

that they redirect to other websites that do not contain any

privacy policy related content. Fig. 5(b) presents the number

of privacy policies that lack different notice categories. For

example, 58 privacy policies that do not cover Data Usage
notice. More interesting, we find that 48 of the 58 policies

have the Data Collection notice, indicating that such privacy
policies collect personal information but do not illustrate

Privacy Policy
This app may collect user data for the purposes of gameplay as well as
providing targeted advertising. The handling of all user data complies
with the guidelines outlined at https://play.google.com/about/privacy-
security. If there are any questions, please contact us through the
developer contact link on the Google Play store.

Fig. 6: An example of the incomplete privacy policy of app com.bodyyouwant
what purpose the information is used for, which violates the

transparency requirement of GDPR. In addition, 125 (15.7%)

privacy notices do not cover the Contact Information notice
category, which indicates the users could not contact with the

app developers if they have any problems about the app usages.

The main reason might be that the developers have provided

emails on the app downloading page; thus, they think it is not

necessary to provide again in the privacy policy.
3) False Positives and False Negatives: We further investi-

gate the false positives and false negatives of the constructed

classifiers. To this end, we randomly select 100 sentences from

the unlabeled dataset. Then we carefully read the sentences

and check whether their attached labels are correct. We find

that 7 sentences are incorrectly classified due to the features

with high information gain (e.g., “we”, “please”, and “collect”)

occur in more than two categories. For example, the sentence

“By using our website, you agree that we can place cookies on
your computer/device.” is attached to labels User Consent and
User Right. The label User Right is incorrectly attached since
the sentence contains the keywords “you” and “can” similar

to the structures of training sentences in User Right category.
Moreover, four sentences are found as false negatives

because their verbs do not occur in our labeled training dataset.

For example, the verb “forward” in the sentence “The data
have never been and will not be forwarded to third parties.”
is not found in the training dataset. To reduce this threat,

replacing the uncommon verbs with the common ones through

sentence semantic analysis is a promising way.
4) Case Study of the Incomplete Privacy Policy: As shown

in Fig. 6, the privacy policy of app com.bodyyouwant is
attached with three labels, i.e., Data Collection, Data Usage,
and Contact Information. It does not declare that it will
ask for the users’ consent before collecting user information,

indicating that the collection process is non-transparent to the

users. Furthermore, there is no user right described in the

policy, indicating that the user does not know what they can

do with the collected data. Such incomplete privacy policy is

not clear to the app users and violates the GDPR. However,

HPDROID is significant to guide app developers to provide

complete policy and help app users quickly understand the

semantics of important notices in the expatiatory policy.

Answer to RQ1: For the 796 mHealth apps, 189

(23.7%) of them do not provide complete privacy policies.

The incomplete privacy policy violates the GDPR and

poses privacy issues for app users in the real world.

It is imperative for app developers to complete existing

incomplete privacy policies.

C. RQ 2: Do the mHealth apps declare all the collected PHI
in their privacy policies?

To answer this research question, we only focus on the 253

mHealth apps that require users to input PHI.

259

TABLE III: Distribution of the collected PHI for 59 mHealth apps that actually collect PHI. The numbers of the non-declared PHI are listed in the brackets

PHI Log File Network SMS Database Content Total PHI Log File Network SMS Database Content Total

name 23 7 7 0 3 1 41(17) symptom 1 0 0 0 0 0 1(1)
email 17 1 9 0 0 0 27(7) amount 1 0 0 0 0 0 1(0)

password 13 4 4 0 0 0 21(16) patient 0 1 0 0 0 0 1(1)
phone 6 1 5 1 0 0 13(6) pregnancy 0 0 0 0 0 1 1(1)
weight 9 1 0 0 0 0 10(7) gender 1 0 0 0 0 0 1(0)
location 1 3 1 0 3 1 9(5) reason 1 0 0 0 0 0 1(1)
height 3 1 0 0 1 0 5(4) activity 1 0 0 0 0 0 1(1)
duration 1 1 2 0 1 0 5(5) glucose 0 1 0 0 0 0 1(1)
description 1 1 0 0 2 1 5(5) fat 1 0 0 0 0 0 1(1)
note 1 0 0 0 3 0 4(4) account 0 0 0 0 0 1 1(1)
date 2 0 2 0 0 0 4(4) doctor 1 0 0 0 0 0 1(0)
age 2 0 0 0 0 0 2(1) registration 0 0 1 0 0 0 1(1)

medication 2 0 0 0 0 0 2(1) Sum 88 22 31 1 13 5 160(92)

1) Result of Inconsistent PHI Collection: After the data-
flow analysis, 59 of the 253 apps collect the user input PHI

by storing them with six different channels. To investigate the

reasons for the other 194 apps that require the PHI input but

have no PHI collection, we randomly select 20 apps from

the 194 apps and manually analyze the app code. We find

that there are two main reasons. First, most of the input PHI

is only used to perform calculations such as health state,

and the mHealth apps will not store the PHI with the six

channels. Second, PHI collections might be missing due to

the limitations of the existing data-flow analysis techniques.

For example, the Android annotation technique [51] makes

HPDROID fail to link the findViewById() with the widget
objects. We will discuss this limitation in Section V.

We use the terms Log, File, Network, SMS, Database and
Content to denote each data storage method, respectively. The
frequency distribution of the collected PHI is listed in Table

III. There are 160 PHI collection behaviors for the 59 apps, in

which name, email, and password are the most common ones.

Among the six data storage methods, Log is the most common
method since 55% of the collected PHI is written into logs,

SMS is the least-used method because there is only one phone
number collection behavior via sending messages.

After the construction of DCP by tagging the declared PHI
in the Data Collection and Data Usage sentences, we match
them with the collected PHI in ACP . The results show that

46 apps have collected more PHI than what they declared

in their privacy policies. The numbers of the non-declared

PHI are listed in the brackets of the Total column in Table
III. For example, 21 apps collect the password of the users,

but 16 of them do not declare the password collection in

their privacy policies. In total, 92 inconsistent behaviors are

discovered for the 46 apps. We observe that the app developers

prefer to declare the common data, such as name, email,

password, and phone number. However, for the uncommon but

important data, such as duration, description, and date, they

do not declare such data collection behaviors in the privacy

policy. The inconsistent data collections violate the GDPR and

mislead the app users. Therefore, we want to alert the app

developers to provide consistent privacy policy by conducting

the inconsistent behavior analysis.

2) False Positives and False Negatives: We further inves-
tigate the false positives and false negatives for inconsistent

behavior analysis. For the false positive analysis, we initially

What we collect
We may collect the following information:

name and job title
contact information including email address
demographic information such as postcode, preferences and interests
other information relevant to customer surveys and/or offers

Source API:
findViewById(2131558706)

Sink API:
java.io.Write: void write(String)

<public type=“id” name=“etPass”
id=“0x7f0d0132”>

Fig. 7: An inconsistent behavior of app com.app.app889ee1ec94b3

read all privacy policies of the 46 mHealth apps that

contain inconsistent behaviors. Then we check whether each

inconsistent behavior is correct. The results show that among

the 46 apps, no false positive is found. For the false negative

analysis, since there is no ground truth for inconsistent

behavior discovering, we manually analyze the 13 mHealth

apps with no inconsistent behaviors to determine whether our

approach results in false negatives. The results show that all

the collected PHI has been declared in their privacy policies.

Therefore, there is no false negative.

3) Case Study of the Inconsistent Behavior: Furthermore,
we conduct a case study of inconsistent behavior, which

is illustrated in Fig. 7. The app provides the functionality

of changing the password for app users. By analyzing the

attributes of EditText widget, we obtain its hint value “Enter
password” and id “0x7f0d0132”. Note that the hexadeci-

mal number “0x7f0d0132” is equal to the decimal number

“2131558706”. After that, based on the data-flow analysis,

the input password is written in a file through the sink

API java.io.Write: write(). The writing of input password to
file poses great threats to app users. Even worse, the app

developers do not declare that they collect password in their

provided privacy policy, which violates the data minimization

requirement of GDPR. Note that although they declare that

other information relevant to the users is collected, this kind

of vague description is also not transparent to app users and

it should be specified clearly.

Answer to RQ2: Among the analyzed 253 apps, 59 apps
collect PHI via different methods. However, 46 (77.9%) of

them contain at least one inconsistent collection behavior.

The app developers should not use vague descriptions about

data collection, which might cause the inconsistent data

collection behavior that poses great threats to the app users

and seriously violates the GDPR.

260

D. RQ 3: Do the mHealth apps implement reasonable
measures to ensure the transmission security of collected PHI?
To identify whether the collected PHI for the 59 apps is

protected with reasonable measures such as data encryption or

SSL, we analyze the correctness of encryption usage for the

49 apps that collect information via five methods (i.e., Log,
File, SMS, Database, and Content), and check the correctness
of SSL usage for the other 10 apps that collect information

through Network.
1) Result of Encryption and SSL Analysis: After the

detection of encryption function, we observe that only 2 apps

(i.e., com.ysp.l30band and kalcare.dsc) have adopted system-
provided encryption API calls to protect collected data. For

exmaple, com.ysp.l30band encrypts the input password and
email with MessageDigest.digest() API call. By tracking the
argument of the MessageDigest.getInstance() API call we
observe that both the password and the email are encrypted

with MD5 algorithm, which breaks the security rule “Do

not use MD5 or SHA-1 algorithms for encryption.” For the

incorrectness encryption usage of app kalcare.dsc, we leave it
as a case study later.
Then, by applying MALLODROID [16] on the 10 apps

storing collected PHI through networks, we observe that

4 apps do not use SSL. For the other 6 apps that adopt

SSL, each of them contains at least one SSL misuse such

as trusting all certificates or allowing all hostnames. For

example, the app called com.pumapumatrac makes a blank
implementation of the TrustManager interface so that it will
trust all the server certificates (regardless of who signed it,

what is the CN etc.). Furthermore, it even requires the use

of SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER.
As a result, hostname verification should take place when

establishing an SSL connection is disabled.
2) False Positives and False Negatives: We also investigate

the false positives and false negatives for insecure data

transmission identification. Since our results demonstrate that

the data transmission of all the 59 mHealth apps is insecure,

there is no false negative. To evaluate whether there exist

any false positives, we manually check all the data flow

information of the collected PHI for the apps that do not use

encryption function or SSL. We observe that all the PHI is

stored in plaintext. Furthermore, we manually check the 6 apps

that use SSL and do not find any false positives.
3) Case Study of the Insecure Data Transmission: Finally,

we take the encryption detail of app kalcare.dsc as a case
study. kalcare.dsc encrypts four kinds of PHI, including

name, phone, email, and password. The collected name

and phone are encrypted with MessageDigest.digest() API
call and the collected email and password are encrypted

with Cipher.doFinal() API call. By tracking the argument of
MessageDigest.digest() we observe that SHA-256 algorithm
is used. For the use of Cipher.doFinal() API call, we further
check its compliance with the security rules. The code snippets

of encrypting email and password with the doFinal() API call
are presented in Fig. 8. The argument of Cipher.getInstance()
is “DESede/CBC/PKCS5Padding,” which indicates that the

public class CipherUtil{
private static byte[] sharekey;
private static byte[] sharedvector;
static{

CipherUtil.sharedkey=new byte[]{1,2,3,5,…};
CipherUtil.sharedvector=new byte[]{1,2,3,5,…};

}
public static String encrypt(String arg6){

……
Cipher v0=Cipher.getInstance(“DeSede/CBC/PKCS5Padding”);
v0.init(1, new SecretKeySpec(CipherUtil.sharedkey, “DESede”),

new IvParameterSpec(CipherUtil.sharedvector));
v2=String.copyValueOf(Base64Coder.encode(v0.doFinal

(arg6.getBytes(“UTF-8”))));
}
return v2;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Fig. 8: Code snippets of encrypting data with the doFinal() API call in app
kalcare.dsc.

adopted encryption algorithm is DESede and the encryption

scheme is CBC mode. Thus, this app obeys the rule “Do not

use ECB mode for encryption” but does not follow the rule

“Do not use a constant IV or constant keys for encryption” as

both the arguments of SecretKeySpec() and IvParameterSpec()
are static constants listed in line 5 and line 6, which would

cause data more subject to attacks.

Answer to RQ3: For the 59 mHealth apps that collect
user input PHI, only 8 of them try to ensure the PHI

transmission security with reasonable measures, i.e., 2

apps protect data with encryption algorithms and 6 apps

adopt SSL protocol. However, all of the 8 apps contain

at least one kind of encryption or SSL misuse. The

security of the collected PHI data has not been heeded

enough, which would cause serious data breaches.

V. DISCUSSIONS AND THREATS TO VALIDITY

A. Lessons Learned from Results

Providing transparent and accessible privacy policy about

the personal data is the essential requirement for organizations

that fall under the scope of GDPR. However, according to our

evaluation result, 189 (23.7%) do not provide complete privacy

policies. The main reason is that GDPR introduces several

new privacy requirements compared with old regulations. For

example, one new requirement is that apps must acquire the

user’s active and informed consent before any personal data

is collected (i.e., User Consent notice in this work). However,
up to now, many apps would assume that a user’s decision

to proceed with app registration and use is equivalent to

having the user’s consent to collect data. Lacking any notice

introduced in our work would not meet the transparency

requirement of GDPR. By using our tool, app developers can

discover the missing notices and complement them. For app

users, they can quickly understand the semantics for the most

important data processing related content, so well as their

rights when using the app.

Data minimization is another essential requirement of

GDPR. Data processing should only use as much data as is

required to successfully accomplish a given task. However, in

our work, we find that 46 apps contain at least one inconsistent

data collection behavior. We manually check the policies and

find there are two reasons: First, 59 inconsistent behaviors

occurred in 26 apps are caused by the vague description

such as “other information”; Second, the other 33 inconsistent

behaviors occurred in the other 20 apps are mainly caused

261

by the app developers’ intentional ignorance (e.g., they think

such data is not important, or they want to collect such data

without informing app users). To mitigate the occurrence of

inconsistent data collection behaviors, by leveraging our tool,

the app developers can first list all their collected data. Then

they can specify such collected data in their privacy policy

clearly. For app users, they can have a clear understanding of

which personal data are collected by app developers and how

they are processed in the app.

Confidentiality is the only principle that deals explicitly with

security in GDPR. Meanwhile, it is the most concerned one

by users since there are more and more data breach events in

recent years. Based on our evaluation results, although most

apps declare that they would implement reasonable measures

to keep the data secure, only 8 apps try to adopt security

measures, and all of them contain at least one kind of misuse.

The evaluation results indicate that the app users’ data might

be leaked in high probability, which is amazing to us.

B. Threats to Validity

Data-flow Analysis. Even we use the popular static analysis
tools, including FLOWDROID, ICCTA, and EDGEMINER, to

tract the data flow, there still exist false negatives, which

might cause the missing of PHI collection. The existing of

false negatives further unveils that the status quo of GDPR

compliance violations in Android apps is worse than what we

demonstrate. Combining with dynamic analysis [52], [53] is a

promising way to solve this problem.

Self-implemented Encryption Detection. For the encryption
analysis, our approach would fail if the self-implemented

encryption function is applied since we only rely on the study

of system-provided encryption algorithms. A promising way

to address this limitation is to compare the data entropy before

and after the invocation of possible encryption function while

the app is running [54]. If the data entropy is much higher after

the function invocation, then the data might be encrypted in

the corresponding function.

Ground Truth Dataset: We use a triple module redundancy
approach when preparing ground truth dataset. However, if

three authors fail to achieve a consistency, we would not add

the sample into our dataset. The lacking of such sentences

in training set would affect the classifier performance when

dealing the similar sentences.

VI. RELATED WORK

Privacy Policy Analysis. Several studies focus on the privacy
policy analysis in recent years [55], [56], [57], [10]. Slavin

et al. [9] proposed a semi-automated framework for detecting
the violations based on a privacy-policy-phrase ontology and a

collection of mappings from API calls to policy phrases. Yu et
al. [8] proposed PPCHECKER that focuses on system-managed
data and identify three kinds of problems in the privacy policy.

The most related work is proposed by Wang et al. [58], who
automatically detect privacy leaks of user-entered data for a

given Android app and determines whether such leakage may

violate the app’s privacy policy claims. There are three main

differences between our work and the above studies: 1) We

combine the analysis of mHealth apps with the GDPR while

[9], [10], [8], [58] do not consider. 2) We focus on the PHI

input by the users on GUI rather than the system-managed

data analyzed by [9], [10], [8]. 3) We further investigate the

transmission security of collected data while [58] does not.

GUI Analysis. A few studies are focusing on the analysis

of GUI [59], [60], [38], [61], [62], [63], [64]. The most

related works are UIPICKER [62], SUPOR [61], UIREF [38]

and GUILEAK [58], the goals of which are identifying the

sensitive user input information on the GUI. UIPICKER [62]

and GUILEAK [58] use sibling relationships in layouts to find

the associated labels and input widgets. However, in practice,

sibling relationships do not accurately gauge proximity. Both

SUPOR [61] and UIREF [38] select the optimal label by

calculating the distances between the labels and the input

widgets based on the positions displayed on the screen.

GDPR Compliance Checking. Several recent works focus on
the GDPR compliance checking [65], [66], [67], [68], [69].

However, their methodologies are quite different from ours.

Torre et. al [65] proposed a model-based GDPR compliance
analysis solution using unified modeling language (UML) and

object constraint language (OCL). Torre et. al [66] provided
an automated support for checking whether the content of a

given privacy policy is complete according to the provisions

stipulated by GDPR. Due to a different research goal, our

paper focuses on a specific subset of GDPR privacy policy

requirements, and so we consider 6 out of the 55 categories

that are presented in [66]. Palmirani and Governatori [67]

presented a proof-of-concept applied to the GDPR domain,

with the aim to detect infringements of privacy compulsory

norms or to prevent possible violations using BPMN and Re-

gorous engine. These existing approaches conduct compliance

checking from the perspective of modeling. We go beyond

the above approaches by transforming the GDPR requirements

into specific regulations and combine with program analysis

techniques so that we can conduct a fine-grained empirical

evaluation on real mHealth apps.

VII. CONCLUSION

We develop a system called HPDROID based on existing

techniques and conduct the first systematic investigation on

automatically detecting the compliance violations between the

GDPR and mHealth apps. The experimental results on 796 real

mHealth apps reveal that most of the apps are not compliant

with the GDPR, which would raise the awareness of the

privacy protection for the mHealth app users and developers.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program of

China (2016YFB1000903), National Natural Science Founda-

tion of China (61902306, 61632015, 61772408, U1766215,

61721002, 61532015, 61833015), Ministry of Education

Innovation Research Team (IRT_17R86), China Postdoctoral

Science Foundation (2019TQ0251), and the Key Research

Program of State Grid Shaanxi Electric Power Company.

262

REFERENCES

[1] “Fines and penalties,” https://www.gdpreu.org/compliance/
fines-and-penalties/, 2019.

[2] “National health data dictionary: version 16.2,” https://www.aihw.gov.au/
reports/australias-health/national-health-data-dictionary-version-16-2/
contents/table-of-contents, 2015.

[3] “Privacy policy guidance,” https://developers.google.com/actions/
policies/privacy-policy-guide, 2017.

[4] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated ex-
traction of security policies from natural-language software documents,”
in Proc. FSE, 2012, p. 12.

[5] E. Costante, J. den Hartog, and M. Petković, “What websites know about
you,” in Proc. DPM, 2013, pp. 146–159.

[6] C. A. Brodie, C.-M. Karat, and J. Karat, “An empirical study of
natural language parsing of privacy policy rules using the sparcle policy
workbench,” in Proc. SOUPS, 2006, pp. 8–19.

[7] M. Fan, X. Luo, J. Liu, C. Nong, Q. Zheng, and T. Liu, “Ctdroid:
leveraging a corpus of technical blogs for android malware analysis,”
IEEE Transactions on Reliability, vol. 69, no. 1, pp. 124–138, 2020.

[8] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy policies
of android apps?” Proc. DSN, 2016, pp. 538–549.

[9] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu, “Toward a framework for detecting privacy
policy violations in android application code.” Proc. ICSE, 2016, pp.
25–36.

[10] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson,
N. Sadeh, S. M. Bellovin, and J. Reidenberg, “Automated analysis of
privacy requirements for mobile apps.” Proc. NDSS, 2017.

[11] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “Dapasa: detecting
android piggybacked apps through sensitive subgraph analysis,” IEEE
TIFS, vol. 12, no. 8, pp. 1772–1785, 2017.

[12] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang, Q. Zheng,
and T. Liu, “Frequent subgraph based familial classification of android
malware,” in Proc. ISSRE, 2016, pp. 24–35.

[13] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, “Android
malware familial classification and representative sample selection via
frequent subgraph analysis,” IEEE TIFS, vol. 13, no. 8, pp. 1890–1905,
2018.

[14] M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, and T. Liu,
“Graph embedding based familial analysis of android malware using
unsupervised learning,” in Proc. ICSE, 2016, pp. 771–782.

[15] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications.” Proc. CCS,
2013, pp. 73–84.

[16] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in) security.” Proc. CCS, 2012, pp. 50–61.

[17] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A
stitch in time: Supporting android developers in writing secure code.”
Proc. CCS, 2017, pp. 1065–1077.

[18] “General data protection regulation (gdpr),” https://gdpr-info.eu/, 2019.

[19] “We help with the legal requirements, so you can focus on the business,”
https://www.iubenda.com/en/, 2019.

[20] J. Bhatia, T. D. Breaux, and F. Schaub, “Mining privacy goals
from privacy policies using hybridized task recomposition,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 25, no. 3, p. 22, 2016.

[21] “Google play,” https://play.google.com/store/apps, 2019.

[22] J. Bhatia, T. D. Breaux, J. R. Reidenberg, and T. B. Norton, “A theory of
vagueness and privacy risk perception,” in Proc. RE, 2016, pp. 26–35.

[23] M. C. Evans, J. Bhatia, S. Wadkar, and T. D. Breaux, “An evaluation
of constituency-based hyponymy extraction from privacy policies,” in
Proc. RE, 2017, pp. 312–321.

[24] “Cwe-311: Missing encryption of sensitive data,” https://cwe.mitre.org/
data/definitions/311.html, 2019.

[25] “Vulnerability details : Cve-2002-1697,” http://www.cvedetails.com/cve/
CVE-2002-1697/, 2002.

[26] “Cwe-916: Use of password hash with insufficient computational effort,”
https://cwe.mitre.org/data/definitions/916.html, 2019.

[27] “Cwe-329: Not using a random iv with cbc mode,” https://cwe.mitre.
org/data/definitions/329.html, 2019.

[28] “Msc63-j. ensure that securerandom is properly seeded,”
https://wiki.sei.cmu.edu/confluence/display/java/MSC63-J.+Ensure+
that+SecureRandom+is+properly+seeded, 2019.

[29] F. Jackson and A. Barth, “Protecting high-security web sites from
network attacks.” Proc. WWW, 2008, pp. 525–534.

[30] Y. Song, C. Yang, and G. Gu, “Who is peeping at your passwords at
starbucks? to catch an evil twin access point.” Proc. DSN, 2010, pp.
323–332.

[31] “jsoup: Java html parser,” https://jsoup.org/, 2019.

[32] “The stanford parser: A statistical parser,” https://nlp.stanford.edu/
software/lex-parser.shtml, 2019.

[33] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model:
a statistical framework,” International Journal of Machine Learning and
Cybernetics, vol. 1, no. 1-4, 2010.

[34] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[35] “Recital 54 gdpr,” https://www.convert.com/eu-gdpr/recital-54-gdpr/,
2018.

[36] “National health data dictionary,” https://www.
aihw.gov.au/reports/health-care-quality-performance/
national-health-data-dictionary-version-16-2/contents/
table-of-contents, 2019.

[37] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Proc. NIPS, 2013, pp. 3111–3119.

[38] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie, “Uiref:
analysis of sensitive user inputs in android applications.” Proc. WiSec,
2017, pp. 23–34.

[39] “Apktool: A tool for reverse engineering android apk files,” https:
//ibotpeaches.github.io/Apktool/, 2019.

[40] “Ui automator,” https://developer.android.com/training/testing/
ui-automator, 2019.

[41] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps.” Proc. PLDI, 2014, pp. 259–269.

[42] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: toward discovering
vulnerabilities in android applications,” IEEE Micro, vol. 35, no. 1, pp.
44–53, 2015.

[43] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot-a java bytecode optimization framework.” Proc. CASCON, 1999,
pp. 214–224.

[44] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps.” Proc. ICSE, 2015, pp.
280–291.

[45] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control flow
transitions through the android framework.” Proc. NDSS, 2015.

[46] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu et al., “Cryptoguard: High precision detection of
cryptographic vulnerabilities in massive-sized java projects,” arXiv
preprint arXiv:1806.06881, 2018.

[47] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine learning, vol. 6, no. 1, pp. 37–66, 1991.

[48] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for
classifying and categorizing android sources and sinks.” Proc. NDSS,
2014.

[49] J. R. Quinlan, “C4.5: programs for machine learning,”Machine learning,
vol. 16, no. 3, pp. 235–240, 1994.

[50] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers.” Proc. UAI, 1995, pp. 338–345.

[51] “Android annotations,” https://github.com/androidannotations/
androidannotations/wiki, 2016.

[52] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards
on-device non-invasive mobile malware analysis for art.” Proc.
SECURITY, 2017, pp. 289–306.

[53] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
Automatic reconstruction of android malware behaviors.” Proc. NDSS,
2015.

[54] D. Wood, N. Apthorpe, and N. Feamster, “Cleartext data transmissions
in consumer iot medical devices.” Proc. IoTS&P, 2017, pp. 7–12.

263

[55] H. Harkous, K. Fawaz, R. Lebret, F. Schaub, K. G. Shin, and K. Aberer,
“Polisis: Automated analysis and presentation of privacy policies using
deep learning,” in Proc. USENIX SEC, 2018, pp. 531–548.

[56] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and T. Xie, “Policylint: investigating internal privacy policy
contradictions on google play,” in Proc. USENIX SEC, 2019, pp. 585–
602.

[57] Ö. Kafali, J. Jones, M. Petruso, L. Williams, and M. P. Singh, “How
good is a security policy against real breaches?: a hipaa case study,” in
Proc. ICSE, 2017, pp. 530–540.

[58] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,
“Guileak: tracing privacy policy claims on user input data for android
applications,” in Proc. ICSE, 2018, pp. 37–47.

[59] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proc. ICSE, 2014, pp. 1036–1046.

[60] C. Mulliner, W. Robertson, and E. Kirda, “Hidden gems: automated
discovery of access control vulnerabilities in graphical user interfaces,”
in Proc. S&P, 2014, pp. 149–162.

[61] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang, “Supor:
Precise and scalable sensitive user input detection for android apps.”
Proc. SECURITY, 2015, pp. 977–992.

[62] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker:
User-input privacy identification in mobile applications.” Proc.
SECURITY, 2015, pp. 993–1008.

[63] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev, “Static
window transition graphs for android (t).” Proc. ASE, 2015, pp. 658–
668.

[64] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps.” Proc. OOPSLA, 2013, pp. 641–
660.

[65] D. Torre, G. Soltana, M. Sabetzadeh, L. C. Briand, Y. Auffinger, and
P. Goes, “Using models to enable compliance checking against the gdpr:
an experience report.” Proc. MODELS, 2019, pp. 1–11.

[66] D. Torre, S. Abualhaija, M. Sabetzadeh, L. Briand, K. Baetens, P. Goes,
and S. Forastier, “An ai-assisted approach for checking the completeness
of privacy policies against gdpr,” in Proc. RE, 2020.

[67] M. Palmirani and G. Governatori, “Modelling legal knowledge for gdpr
compliance checking.” in Proc. JURIX, 2018, pp. 101–110.

[68] V. Ayala-Rivera and L. Pasquale, “The grace period has ended: An
approach to operationalize gdpr requirements.” Proc. RE, 2018, pp.
136–146.

[69] J. Tom, E. Sing, and R. Matulevičius, “Conceptual representation of the
gdpr: model and application directions.” Proc. BIR, 2018, pp. 18–28.

264

