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Abstract. This paper is concerned with the numerical errors appeared in
the calculation of inverse medium scattering problems (IMSP). Optimization

based iterative methods are widely employed to solve IMSP, which are com-

putationally intensive due to a series of Helmholtz equations need to be solved
numerically. Hence, rough approximations of Helmholtz equations can signifi-

cantly speed up the iterative procedure. However, rough approximations will

lead to instability and inaccurate estimation. Inspired by mixture Gaussian
error construction used widely in the machine learning community, we model

numerical errors brought by rough forward solver as some complex mixture

Gaussian (CMG) random variables. Based on this assumption, a new nonlin-
ear optimization problem is derived by using infinite-dimensional Bayes’ in-

verse method. Then, we generalize the real valued expectation-maximization
(EM) algorithm to our complex valued case to learn parameters in the CMG

distribution. Next, we generalize the recursive linearization method (RLM)

to a new iterative method named as mixture Gaussian recursive linearization
method (MGRLM) which consists of two stages: 1) learn CMG; 2) solve IMSP.

Through the learning stage, numerical errors and some prior knowledge of the

true scatterer have been incorporated into the proposed optimization prob-
lem. Hence, both the convergence speed and the resolution of the obtained

result can be enhanced in the second stage. Finally, we provide two numerical

examples to illustrate the effectiveness of the proposed method.

1. Introduction

Scattering theory has played a central role in the field of mathematical physics,
which is concerned with the effect that an inhomogeneous medium has on an in-
cident particle or wave [16]. Usually, the total field is regarded as the sum of an
incident field and a scattered field. Then, the inverse scattering problems focus on
determining the nature of the inhomogeneity from knowledge of the scattered field
[9, 15], which have played important roles in diverse scientific areas such as radar
and sonar, geophysical exploration, medical imaging and nano-optics.

Deterministic computational methods for inverse scattering problems can be clas-
sified into two categories: nonlinear optimization based iterative methods [4, 33, 34]
and imaging based direct methods [11, 37]. Direct methods are called qualitative
methods which need no direct solvers and visualize the scatterer by highlighting
its boundary with designed imaging functions. Iterative methods are usually called
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quantitative methods, which aim at providing some functions to represent the s-
catterer. Because a sequence of direct and adjoint scattering problems need to be
solved, the quantitative methods are computationally intensive.

This paper is concerned with the nonlinear optimization based iterative methods,
especially focus on the recursive linearization method (RLM) for inverse medium
scattering problems (IMSP) reviewed in [4]. In order to obtain global minima
in optimization, RLM was proposed in [13, 14], which requires high computational
resources. Then, new and efficient RLMs have been proposed in a series of papers [2,
3, 4, 5, 6, 7], which used the differential equation formulation and highly reduced the
computational cost. However, a series of forward solver need to be solved and the
accuracy of the forward solver is critical for obtaining an acceptable computational
results, particularly for applications in seismic exploration [22] and medical imaging
[30]. A lot of efficient forward solvers based on finite difference method, finite
element methods and spectral methods have been proposed [38, 40]. Here, we will
not propose a new forward solver to reduce the computational cost, but attempt to
introduce the ideas originated from the machine learning community. Specifically
speaking, our idea comes from mixture Gaussian based error construction method
which is an active research direction in the field of machine learning [8, 32, 42,
43, 44]. By combining mixture Gaussian error learning process with RLM, we
expect to obtain high resolution results when rough approximate forward solvers
are employed.

To provide a clear illustration, let us provide the abstract formulation of IMSP
in the following. Denote X to be some separable Banach space, then the forward
problem usually modeled as follows

d = F(m) + ε, (1.1)

where d ∈ CNd (Nd ∈ N+) stands for the measured data, m ∈ X represents
the interested parameter and ε denotes noise. For inverse scattering problems, m
is just the scatterer, F represents the solution operator of a Helmholtz equation
combined with some measurement operator. The nonlinear optimization based
iterative methods just formulate inverse problem as follows

min
m∈X

{
1

2

∥∥d−F(m)
∥∥2

2
+R(m)

}
, (1.2)

whereR(·) stands for some regularization operator and ‖·‖2 represents the `2-norm.
In real world applications, we would like to use a fast forward solver (limited

accuracy) to obtain an estimation as accurately as possible. Hence, the noise is
usually not only brought by inaccurate measurements but also induced by a rough
forward solver and inaccurate physical assumptions [12, 30]. Following [29, 30], let
us denote Fa(·) to be the forward operator related to some rough forward solver,
then (1.1) can be rewritten as follows

d = Fa(m) + (F(m)−Fa(m)) + ε. (1.3)

Denoting ξ := (F(m)−Fa(m)), we find that

d = Fa(m) + ξ + ε. (1.4)

Following the mixture Gaussian based error learning, we adopt Bayes’ inference
method and the maximum a posteriori (MAP) estimate to deduce our nonlinear
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optimization problem. Hence, we model ξ as a random variable which obviously
has the following two important features

• ξ depend on the unknown function m;
• ξ may distribute according to a complicated probability measure.

For the first feature, we relax this tough problem to assume that ξ is independent
of m, but the probability distribution of ξ and the prior probability measure of m
are related with each other [31]. For the second feature, to the best of our knowl-
edge, only Gaussian assumption has been studied in the field of inverse problems
with partial differential equations [27, 30]. Inspired by the mixture Gaussian error
learning, we provide a more realistic assumption about the random variable ξ.

Before going further, let us introduce the density function of mixture Gaussian
distribution as follow

K∑
k=1

πkN (· | ζk,Σk), (1.5)

where N (· | ζk,Σk) stands for a Gaussian probability density function with mean

value ζk and covariance matrix Σk and for every k, πk ∈ (0, 1) satisfy
∑K
k=1 πk =

1. Employing the ideas originated from the mixture Gaussian error learning, we
model ξ as a random variable obeying a mixture Gaussian distribution which can
approximate any probability distribution in some sense [8]. Then, considering the
infinite-dimensional nature of our problem (usually finite-dimensional for machine
learning problems), we generalize Bayes’ inverse method developed in [17, 18, 26,
29, 39] to our case. Using general theory of the MAP estimate developed for white
Gaussian noise in [10, 19, 21], we prove the validity of the MAP estimate in our
case, which naturally leads to the following nonlinear optimization problem

min
m∈X

{
− ln

( K∑
k=1

πkN (d−Fa(m) | ζk,Σk + νI)
)

+R(m)

}
, (1.6)

where we assumed that the measurement noise ε is a Gaussian random variable
with mean zero and covariance matrix νI (ν ∈ R+ and I is an identity matrix).
Through introducing the responsibilities appeared in some learning algorithms, we
can use the main ideas shown in Section 2.5 of [4] to deduce the adjoint problem.

In the field of machine learning, there are usually a lot of sampling data and
the forward problems are not computationally intensive compared with the IMSP.
Hence, they use alternative iterative methods to find the optimal solution and
estimate the modeling error simultaneously [43]. However, considering the lack
of learning data and the high computational cost of our forward problems, we
cannot trivially generalize their alternative iterative methods to our case. Actually,
the proposed method named as mixture Gaussian recursive linearization method
(MGRLM) includes two stages: 1) learn mixture Gaussian distribution; 2) solve
IMSP.

The first stage is based on an essential assumption that is we have some learning
examples obtained from historical data or constructed by some prior knowledge.
Here, we would like to clarify three confusing points. Firstly, we assume that the
learning examples are generated from a probability measure which can reflect some
key features of the true scatterer. However, the probability measure may not cap-
ture the full features of the true scatterer, that means the true scatterer may not
be a sample from the probability measure. Secondly, this stage is highly depending
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on the real problems we faced, so this stage should be performed for different ap-
plication areas. But the learning stage only performs once for a certain application
area, hence, the learning stage will not consume computational resources when we
solve IMSP for a specific problem. Thirdly, since the learning data contains some
information about the true scatterer, some prior knowledge will also be incorporat-
ed into the mixture Gaussian distribution, which accelerates the convergence speed
in stage 2.

The second stage consists of a modified RLM deduced from optimization problem
(1.6). With the parameters {πk, ζk,Σk} learned in the first stage for a certain ap-
plication area, both the convergence speed and the resolution of the computational
results can be enhanced.

In the end, we briefly review the main contributions as follows:

• Inspired by the studies on error learning, we firstly introduce mixture
Gaussian based error learning to enhance the performance of RLM for IM-
SP.
• We derive nonlinear-optimization problem (1.6) rigorously from infinite di-

mensional Bayes’ inverse method.
• Relying on the relations between real valued Gaussian distribution and

complex valued Gaussian distribution, we rigorously deduce the mean and
covariance estimation formulas in EM algorithm for complex valued vari-
ables. From nonlinear-optimization problem (1.6), we derive a modified
RLM.

The outline of this paper is as follows. In Section 2, new nonlinear optimization
problems are obtained by using infinite-dimensional Bayes’ inverse method. During
the deduction, well-posedness of the posterior measure and MAP estimate with
mixture Gaussian noise are established. Then, the general theory is applied to the
inverse medium scattering problem under some appropriate conditions. In Section
3, we firstly generalize the real valued expectation-maximization (EM) algorithm
to the complex Gaussian case. Secondly, we provide the adjoint equation and
derive the Fréchet derivative of the objective functional. In Section 4, two typical
numerical examples are given, which illustrate the effectiveness of the proposed
method.

2. Model derivation

In this section, we deduce the optimization problem (1.6) from infinite-dimensional
Bayes’ inverse method, which provides a foundation for constructing the learning
algorithm and the modified RLM. The presentation has been divided into two sub-
sections. Firstly, we provide a general theory based on the infinite-dimensional
Bayes’ framework [17, 18, 39, 19]. Then, the general theory has been applied to
IMSP under appropriate conditions.

Before diving into the main contents, let us provide a brief notation list which
will be used in all of the following parts of this paper.

Notations:

• For an integer N , denote CN as N -dimensional complex vector space; R+

and N+ represent positive real numbers and positive integers respectively;
• For a Banach space X, ‖ · ‖X stands for the norm defined on X and,

particularly, ‖ · ‖2 represents the `2-norm of `2 space.
• For a matrix Σ, denote its determinant as det(Σ);
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• Denote B(m,R) as a ball with center m and radius R. Particularly, denote
BR := B(0, R) when the ball is centered at the origin;
• Denote X and Y to be some Banach spaces; For an operator F : X → Y ,

denote F ′(x0) as the Fréchet derivative of F at x0 ∈ X.
• Denote Re(ξ), Imag(ξ), ξT , ξH and ξ̄ as the real part, imaginary part,

transpose, conjugate transpose and complex conjugate of ξ ∈ CN respec-
tively;
• The notation η ∼ p(η) stands for a random variable η obeys the probability

distribution with density function p(·).

2.1. General theory. LetNc(η | ζ,Σ) represents the density function ofNd-dimen-
sional complex valued Gaussian probability distribution [23] defined as follows

Nc(η | ζ,Σ) :=
1

(π)Nd det(Σ)
exp

(
−
∥∥∥η − ζ∥∥∥2

Σ

)
, (2.1)

where ζ is a Nd-dimensional complex valued vector, Σ is a positive definite Hermit-
ian matrix and ‖ · ‖2Σ is defined as follow∥∥η − ζ∥∥2

Σ
:=
(
η − ζ

)H
Σ−1

(
η − ζ

)
, (2.2)

with the superscript H stands for conjugate transpose. Denote η := ξ + ε, then
formula (1.4) can be written as follows

d = Fa(m) + η, (2.3)

where

d ∈ CNd , η ∼
K∑
k=1

πkNc(η | ζk,Σk + νI), (2.4)

with Nd, K denote some positive integers and ν ∈ R+.
Before going further, let us provide the following basic assumptions about the

approximate forward operator Fa.
Assumption 1.

(1) for some ε > 0 there is M = M(ε) ∈ R, C ∈ R such that, for all m ∈ X,

‖Fa(m)‖2 ≤ C exp(ε‖m‖2X +M).

(2) for every r > 0 there is L = L(r) > 0 such that, for all m ∈ X with
‖m‖X < r, we have

‖F ′a(m)‖op ≤ L,

where ‖ · ‖op denotes the operator norm.

At this stage, we need to provide some basic notations of the Bayesian inverse
method when m in some infinite-dimensional space. Following the work [17, 39],
let µ0 stands for the prior probability measure defined on a separable Banach space
X and denote µd to be the posterior probability measure. Then the Bayes’ formula
may be written as follows

dµd

dµ0
(m) =

1

Z(d)
exp

(
Φ(m; d)

)
, (2.5)

Z(d) =

∫
X

exp
(

Φ(m; d)
)
µ0(dm), (2.6)
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where dµd

dµ0
(·) represents the Radon-Nikodym derivative and

Φ(m; d) := ln

{
K∑
k=1

πk
1

πNd det(Σk + νI)
exp

(
−
∥∥∥d−Fa(m)− ζk

∥∥∥2

Σk+νI

)}
.

In the following, we provide a theorem that gives a rigorous formulation of (2.5)
and (2.6).

Theorem 2.1. Let Assumption 1 hold for some ε, r, L and M . Assume that X
is some separable Banach space, µ0(X) = 1 and that µ0(X ∩ B) > 0 for some
bounded set B in X. In addition, we assume

∫
X

exp(2ε‖m‖2X)µ0(dm) <∞. Then,

for every d ∈ CNd , Z(d) given by (2.6) is positive and the probability measure µd

given by (2.5) is well-defined. In addition, there is C = C(r) > 0 such that, for all
d1, d2 ∈ B(0, r)

dHell(µ
d1 , µd2) ≤ C‖d1 − d2‖2,

where dHell(·, ·) denotes the Hellinger distance defined for two probability measures.

The proof of this theorem is postponed to Appendix.

Remark 2.2. The assumptions of the prior probability measure are rather general,
which include Gaussian probability measure and TV-Gaussian probability measure
[41] for certain space X.

In the last part of this subsection, we prove the validity of the MAP estimate
which links Bayes’ inverse method and regularization method. Firstly, let us assume
that the prior probability measure µ0 is a Gaussian probability measure and define
the following functional

J(m) =

 − Φ(m; d) +
1

2
‖m‖2E if m ∈ E, and

+∞, else.
(2.7)

Here (E, ‖ · ‖E) denotes the Cameron-Martin space associated to µ0. In infinite
dimensions, we adopt small ball approach constructed in [19]. For m ∈ E, let
B(m, δ) ∈ X be the open ball centred at m ∈ X with radius δ in X. Then, we
can prove the following theorem which encapsulates the idea that probability is
maximized where J(·) is minimized.

Theorem 2.3. Let Assumption 1 hold and assume that µ0(X) = 1. Then the
function J(·) defined by (2.7) satisfies, for any m1,m2 ∈ E,

lim
δ→0

µd(B(m1, δ))

µd(B(m2, δ))
= exp

(
J(m2)− J(m1)

)
.

The proof of this theorem is postponed to Appendix.
Now, if we assume µ0 is a TV-Gaussian probability measure, then we can define

the following functional

J(m) =

 − Φ(m; d) + λ‖m‖TV +
1

2
‖m‖2E if m ∈ E, and

+∞, else.
(2.8)

Using similar methods as for the Gaussian case and the above functional (2.8), we
can prove a similar theorem to illustrate that the MAP estimate is also the minimal
solution of minm∈X J(m).
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2.2. Applications to IMSP. Before applying the general theory to IMSP, let us
provide some basic settings of the inverse scattering problem considered in this
paper. In the following, we usually assume that the total field u satisfies

∆u+ κ2(1 +m)u = 0 in R2, (2.9)

where κ > 0 is the wavenumber, and m(·) is a real function known as the scatterer
representing the inhomogeneous medium. As in [4], we assume that the scatterer
is compactly supported and the support contained in the ball BR = {r ∈ R2 :
‖r‖2 < R} with boundary ∂BR = {r ∈ R2 : ‖r‖2 = R}, and satisfies −1 <
mmin ≤ m ≤ mmax < ∞, where mmin and mmax are two constants. Denote
d = (cos θ, sin θ) ∈ {r ∈ R2 : ‖r‖2 = 1} as the incident direction with θ ∈ (0, 2π) is
the incident angle, we assume that the scatterer is illuminated by a plane incident
field

uinc(r) = eiκr·d. (2.10)

Apparently, the incident field satisfies

∆uinc + κ2uinc = 0 in R2. (2.11)

Combining the incident field uinc and the scattered field us, we obtain the total
field u as follow

u = uinc + us. (2.12)

It follows from (2.9), (2.11) and (2.12) that the scattered field satisfies

∆us + κ2(1 +m)us = −κ2muinc in R2 (2.13)

with the following Sommerfeld radiation condition

lim
‖r‖2→∞

r1/2
(
∂ru

s − iκus
)

= 0, (2.14)

where r = ‖r‖2. In the following, we suppose that the scatterer m(·) appeared in
(2.9) has compact support and supp(m) ⊂ Ω ⊂ BR where Ω is a square region.

Because the scatterer m(·) is assumed to have compact support, the problem
(2.13) and (2.14) defined on R2 can be reformulated to the following problem defined
on bounded domain [4]{

∆us + κ2(1 +m)us = −κ2muinc in BR,

∂nu
s = T us on ∂BR,

(2.15)

where T is the Dirichlet-to-Neumann (DtN) operator defined exactly as (2.8) in [4].
For problem (2.15), we define the map S(m,κ)uinc by us = S(m,κ)uinc. From

[1, 16], we easily know that the following estimate holds for equations (2.15)

‖us‖H2(Ω) ≤ C‖m‖L∞(Ω)‖uinc‖L2(B(0,R)). (2.16)

Considering Sobolev embedding theorem, we can define the following measurement
operator

M(S(m,κ)uinc)(x) =
(
us(x1), . . . , us(xNd)

)T
, (2.17)

where xi ∈ ∂Ω, i = 1, 2, . . . , Nd, are the points where the wave field us is measured.
In practice, we employ a uniaxial PML technique to transform the problem

defined on the whole domain to a problem defined on a bounded rectangular domain
[1], as seen in Figure 1. Let D be the rectangle which contain Ω = [x1, x2]× [y1, y2]
with supp(m) ⊂ Ω and let d1 and d2 be the thickness of the PML layers along x
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Figure 1. Geometry of the scattering problem with a uniaxial
PML layer.

and y, respectively. Let s1(x) = 1 + iσ1(x) and s2(y) = 1 + iσ2(y) be the model
medium property and usually we can simply take

σ1(x) =


σ0

(
x− x2

d1

)p
for x2 < x < x2 + d1

0 for x1 ≤ x ≤ x2

σ0

(
x1 − x
d1

)p
for x1 − d1 < x < x1,

and

σ2(y) =


σ0

(
y − y2

d2

)p
for y2 < y < y2 + d2

0 for y1 ≤ y ≤ y2

σ0

(
y1 − y
d2

)p
for y1 − d2 < y < y1,

where the constant σ0 > 1 and the integer p ≥ 2. Denote

s = diag(s2(x)/s1(x), s1(x)/s2(y)),

then the truncated PML problem can be defined as follow{
∇ · (s∇us) + s1s2κ

2(1 +m)us = −κ2muinc in D,

us = 0 on ∂D.
(2.18)

Similar to the physical problem (2.15), we introduce the map Sa(m,κ) defined by
usa = Sa(m,κ)uinc where usa stands for the solution of the truncated PML problem
(2.18). Through similar methods for equations (2.15), we can prove that usa is a
continuous function and satisfies

‖usa‖L∞(D) ≤ C‖m‖L∞(D)‖uinc‖L2(D). (2.19)

Now, we can define the measurement operator similar to (2.17) as follow

M(Sa(m,κ)uinc)(x) =
(
usa(x1), . . . , usa(xNd)

)T
, (2.20)

where xi ∈ ∂D, i = 1, 2, . . . , Nd.
In order to introduce appropriate Gaussian probability measures, we present the

following assumptions proposed in [20].
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Assumption 2. Denote A to be an operator, densely defined on the Hilbert
space H = L2(D;Rd), satisfies the following properties:

(1) A is positive-definite, self-adjoint and invertible;
(2) the eigenfunctions {ϕj}j∈N of A, form an orthonormal basis for H;

(3) the eigenvalues satisfy αj � j2/d, for all j ∈ N;
(4) there is C > 0 such that

sup
j∈N

(
‖ϕj‖L∞ +

1

j1/d
Lip(ϕj)

)
≤ C,

where Lip(ϕj) represents the Lipschitz constant of the function ϕj .

At this moment, we can show well-posedness for inverse medium scattering prob-
lem with some Gaussian prior probability measures. For a constant s > 1, we
consider the prior probability measure to be a Gaussian measure µ0 := N (m̄, A−s)
where m̄ is the mean value and the operator A satisfies Assumption 2. In addition,
we take X = Ct with t < s − 1. Then we know that µ0(X) = 1 by Theorem 12
shown in [20].

For the scattering problem, we can take Fa(m) =M(Sa(m,κ)uinc) and let the
noise η obeys a mixture Gaussian distribution with density function

K∑
k=1

πkNc(η | ζk,Σk + νI).

Then, the measured data d ∈ CNd are

d = Fa(m) + η. (2.21)

Theorem 2.4. For the two dimensional problem (2.18)(problem (2.15)), if we
assume space X, m ∼ µ0 and η are specified as previous two paragraphs in this
subsection. Then, the Bayesian inverse problems of recovering input m ∈ X of
problem (2.18)(problem (2.15)) from data d given as in (2.21) is well formulated:
the posterior µd is well defined in X and it is absolutely continuous with respect to
µ0, the Radon-Nikodym derivative is given by (2.5) and (2.6). Moreover, there is
C = C(r) such that, for all d1, d2 ∈ CNd with ‖d1‖, ‖d2‖2 ≤ r,

dHell(µ
d1 , µd2) ≤ C‖d1 − d2‖2. (2.22)

Proof. Relying on the general theory, we easily know that Theorem 2.4 holds when
Assumption 1 is satisfied. According to the estimates (2.19) and (2.20), we find
that

‖Fa(m)‖2 ≤ C‖m‖L∞(D), (2.23)

which indicates that statement (1) of Assumption 1 holds. In order to verify state-
ment (2) of Assumption 1, we denote usa+δu = Fa(m+δm). By simple calculations,
we deduce that δu satisfies{

∇ · (s∇δu) + s1s2κ
2(1 +m)δu = −κ2δm(uinc + s1s2u

s
a) in D,

δu = 0 on ∂D.
(2.24)

Now, denote F ′a(m) to be the Fréchet derivative of Fa(m), we find that

F ′a(m)δm =M(δu), (2.25)
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where δu is the solution of equations (2.24). Using similar estimates as for deriving
(2.19) to equation (2.24), we obtain

‖δu‖L∞(D) ≤ C‖δm‖L∞(D)(‖uinc‖L2(D) + ‖usa‖L2(D)). (2.26)

Taking estimate (2.19) into the above inequality (2.26), we obtain

‖F ′a(m)δm‖2 ≤ ‖δu‖L∞(D) ≤ C(1 + ‖m‖L∞(Ω))‖δm‖L∞(D), (2.27)

where C depends on κ, D, s1 and s2. Estimate (2.27) ensures that statement (2)
of Assumption 1 holds, and the proof is completed by employing Theorem 2.1. �

Remark 2.5. From the proof of Theorem 2.4, we can see that Theorem 2.3 holds
true for inverse medium scattering problem considered in this subsection. Hence,
we can compute the MAP estimate by minimizing functional defined in (2.7) with
the forward operator defined in (2.21).

Remark 2.6. If we assume µ0 is a TV-Gaussian probability measure, similar results
can be obtained. The posterior probability measure is well-defined and the MAP
estimate can be obtained by solving minm∈X J(m) with J defined in (2.8). Since
there are no new ingredients, we omit the details.

3. Algorithm construction

In Section 2, we illustrate the theoretical foundations for nonlinear optimization
problems with functionals (2.7) and (2.8). Here, we give a detailed description of
the two stage algorithm stated in the introduction.

3.1. Learn parameters of complex mixture Gaussian distribution. How to
estimate the parameters is one of the key steps for modeling noises by some complex
mixture Gaussian distributions. This key step consists of two fundamental elements:
learning examples and learning algorithms.

For the learning examples, they are the approximate errors e := F(m)−Fa(m)
that is the difference of measured values for slow explicit forward solver and fast
approximate forward solver. In order to obtain this error, we need to know the
unknown function m which is impossible. However, in practical problems, we usu-
ally know some prior knowledge of the unknown function m. Relying on the prior
knowledge, we can construct some probability measures to generate functions which
we believe to maintain some important properties as the real unknown function m.
For this, we refer to a recent paper [24]. Since this procedure depends on specif-
ic application fields, we only provide details in Section 4 for concrete numerical
examples.

For the learning algorithms, expectation-maximization (EM) algorithm is often
employed in the machine learning community [8]. Here, we need to notice that the
variables are complex valued and the complex Gaussian distribution are used in
our case. This leads some differences to the classical real variable situation.

In order to provide a clear explanation, let us recall some basic relationships
between complex Gaussian distributions and real Gaussian distributions which are
proved in [23]. Denote e = (e1, . . . , eNd)T is aNd-tuple of complex Gaussian random
variables. Let τk := Re(ek) and ςk := Imag(ek) as the real and imaginary parts of
ek with k = 1, . . . , Nd, then define

τ = (τ1, ς1, . . . , τNd , ςNd) (3.1)
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is 2Nd-tuple of random variables. From the basic theories of complex Gaussian
distributions, we know that τ is 2Nd-variate Gaussian distributed. Denote the
covariance matrix of e by Σ and the covariance matrix of τ by Σ̃. As usual, we
assume Σ is a positive definite Hermitian matrix, then Σ̃ is a positive definite
symmetric matrix by Theorem 2.2 and Theorem 2.3 in [23]. In addition, we have
the following lemma which is proved in [23].

Lemma 3.1. For complex Gaussian distributions, we have that the matrix Σ is
isomorphic to the matrix 2Σ̃, eHΣe = τT Σ̃τ and det(Σ)2 = det(Σ̃).

Let Ns ∈ N+ stand for the number of learning examples. Let en = (en1 , . . . , e
n
Nd

)T

with n = 1, . . . , Ns represent Ns learning examples. Then, for some fixed K ∈
N+, we need to solve the following optimization problem to obtain estimations of
parameters

min
{πk,ζk,Σk}Kk=1

JG({πk, ζk,Σk}Kk=1), (3.2)

where

JG({πk, ζk,Σk}Kk=1) :=

Ns∑
n=1

ln

{
K∑
k=1

πkNc(en | ζk,Σk)

}
. (3.3)

From the real valued case, we can easily infer the complex valued algorithm.
However, we can not find a rigorous proof for the mean and covariance estima-
tion formulas in the existing literatures. In the following, we provide a rigorous
calculation.

Estimation of means: Setting the derivatives of JG({πk, ζk,Σk}Kk=1) with re-
spect to ζk of the complex Gaussian components to zero and using Lemma 3.1, we
obtain

0 = −
Ns∑
n=1

πkNc(en | ζk,Σk)∑K
j=1 πjNc(ej | ζj ,Σj)

Σ̃−1
k (τn − ζ̃k), (3.4)

where τn is defined as in (3.1) with e replaced by en, ζ̃k also defined as in (3.1) with

e replaced by ζk and Σ̃k is the covariance matrix corresponding to Σk. Hence, by
some simple simplification, we find that

ζk =
1

Ñk

Ns∑
n=1

γnken, (3.5)

where

Ñk =

Ns∑
n=1

γnk, γnk =
πkNc(en | ζk,Σk)∑K
j=1 πjNc(ej | ζj ,Σj)

. (3.6)

In the above formula, Ñk usually interpret as the effective number of points assigned
to cluster k and γnk usually is a variable depend on latent variables [8].

Estimation of covariances: For the covariances, we need to use latent vari-
ables to provide the following complete-data log likelihood function as formula
(9.40) shown in [8]

Ns∑
n=1

K∑
k=1

γnk

{
lnπk + lnNc(en | ζk,Σk)

}
. (3.7)
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In the following lemma, we give the maximum likelihood estimation of the covari-
ances, which is crucial for constructing the corresponding EM algorithm.

Lemma 3.2. Let {en}Nsn=1, {πk, ζk,Σk}Kk=1 and {γnk}Ns,Kn,k=1 be specified as in (3.2),

(3.3) and (3.6). Then the maximization problem

max
{Σk}Kk=1

{
Ns∑
n=1

K∑
k=1

γnk

(
lnπk + lnNc(en | ζk,Σk)

)}
, (3.8)

possesses a solution with the following form

Σk :=
1

Ñk

Ns∑
n=1

γnk(en − ζk)(en − ζk)H , for k = 1, . . . ,K. (3.9)

Proof. Denote

L =

Ns∑
n=1

K∑
k=1

γnk

(
lnπk + lnNc(en | ζk,Σk)

)
. (3.10)

Let

Bk :=
1

Ñk

Ns∑
n=1

γnk(en − ζk)(en − ζk)H (3.11)

and notice that

Ns∑
n=1

K∑
k=1

γnk(en − ζk)HΣ−1
k (en − ζk) =

Ns∑
n=1

K∑
k=1

γnktr
(

Σ−1
k (en − ζk)(en − ζk)H

)
=

K∑
k=1

tr
(

Σ−1
k

Ns∑
n=1

γnk(en − ζk)(en − ζk)H
)

=

K∑
k=1

Ñktr
(

Σ−1
k Bk

)
,

where Ñk defined as in (3.6). Then, using the explicit form of density function, we
obtain

L = −
K∑
k=1

Ñk ln det(Σk)−
K∑
k=1

Ñktr(Σ−1
k Bk)−Nd lnπ +

K∑
k=1

Ñk lnπk. (3.12)
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Define p(ξ,Σ) := 1
πNddet(Σ)

exp
(
−ξHΣ−1ξ

)
, then we have

J =

K∑
k=1

Ñk

∫
ξ

p(ξ,Σ−1
k ) ln

(
p(ξ,B−1

k )/p(ξ,Σ−1
k )
)
dξ

=

∫
ξ

{(
ln det(Bk)− ξHBkξ

)
p(ξ,Σ−1

k )

−
(
ln det(Σk)− ξHΣkξ

)
p(ξ,Σ−1

k )

}
dξ

=

K∑
k=1

Ñk ln det(Bk) +

K∑
k=1

Ñktr(I)

−
K∑
k=1

Ñktr(Σ−1
k Bk)−

K∑
k=1

Ñk ln det(Σk),

(3.13)

where Corollary 4.1 in [23] has been used for the last equality. Comparing the final
result of (3.12) with (3.13), we observe that any series Hermitian positive definite
matrixes {Σk}Kk=1 that maximize L maximize J and conversely. Now, lnu ≤ u− 1
with equality holding if and only if u = 1. Thus

J =

K∑
k=1

Ñk

∫
ξ

p(ξ,Σ−1
k ) ln

(
p(ξ,B−1

k )/p(ξ,Σ−1
k )
)
dξ

≤
K∑
k=1

Ñk

∫
ξ

p(ξ,Σ−1
k )
(
p(ξ,B−1

k )/p(ξ,Σ−1
k )− 1

)
dξ = 0.

(3.14)

If and only if p(ξ,Σk) = p(ξ,Bk) with k = 1, . . . ,K, equality in (3.14) holds true.
Hence, Σk = Bk (k = 1, . . . ,K) solves problem (3.8). �

With these preparations, we can easily construct EM algorithm following the
line of reasoning shown in Chapter 9 of [8]. For brevity, the details are omitted and
we provide the EM algorithm in Algorithm 1.

Remark 3.3. In Algorithm 1, if the parameters satisfy Nd < Ns, we can usually
obtain nonsingular matrixes {Σk}Kk=1. However, it is time consuming to generate a
lot of learning examples Ns and, in the mean time, the number of measuring points
Nd is large for some real world applications [35, 36]. Hence, we may meet the
situation Nd > Ns which makes {Σk}Kk=1 to be a series of singular matrixes. The
determinants of Σk with k = 1, . . . ,K will be zero, which is a troublesome problem
for calculating the normalization constant appeared in Gaussian probability density
function. In order to solve this problem, we adopt a simple strategy that is replace
the estimation of Σk in Step 3 by the following formula

Σnew
k =

1

Ñk

Ns∑
n=1

γnk(en − ζnew
k )(en − ζnew

k )H + δI, (3.15)

where δ is a small positive number named as the regularization parameter.
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Algorithm 1 Complex EM algorithm

Step 1: For a series of samples en ∈ CNd (n = 1, . . . , Ns), initialize the means
ζk, covariances Σk and mixing coefficients πk, and evaluate the initial value of
the ln likelihood.
Step 2 (E step): Evaluate the responsibilities using the current parameter
values

γnk =
πkNc(en | ζk,Σk)∑K
j=1 πjNc(en | ζj ,Σj).

Step 3 (M step): Re-estimate the parameters using the current responsibilities

Ñk =

Ns∑
n=1

γnk, πnew
k =

Ñk
Ns

, ζnew
k =

1

Ñk

Ns∑
n=1

γnken,

Σnew
k =

1

Ñk

Ns∑
n=1

γnk(en − ζnew
k )(en − ζnew

k )H

Step 4: Evaluate the ln likelihood

Ns∑
n=1

ln

{
K∑
k=1

πkNc(en | ζk,Σk)

}
and check for convergence of either the parameters or the ln likelihood. If the
convergence criterion is not satisfied return to Step 2.

3.2. Adjoint state approach with error compensation. By Algorithm 1, we
obtain the estimated mixing coefficients, mean values and covariance matrixes.
From the statements shown in Section 2, it is obvious that we need to solve opti-
mization problems as follows

min
m∈L∞(Ω)

{
− Φ(m; d) +R(m)

}
, (3.16)

where

−Φ(m; d)=− ln

{
K∑
k=1

πk
1

πNd det(Σk + νI)
exp

(
− 1

2

∥∥∥d−Fa(m)− ζk
∥∥∥2

Σk+νI

)}
,

R(m) =
1

2
‖As/2m‖2L2(Ω) or R(m) = λ‖m‖TV +

1

2
‖As/2m‖2L2(Ω).

Different form of functional R comes from different assumptions of the prior prob-
ability measures: Gaussian probability measure or TV-Gaussian probability mea-
sure. For the multi-frequency approach of inverse medium scattering problem, the
forward operator in each optimization problem is related to κ. So we rewrite Fa(m)
and Φ(m; d) as Fa(m,κ) and Φ(m,κ; d), which emphasize the dependence of κ. We
have a series of wavenumbers 0 < κ1 < κ2 < · · ·κNw <∞, and we actually need to
solve a series optimization problems

min
m∈L∞(Ω)

{
− Φ(m,κi; d) +R(m)

}
(3.17)
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with i from 1 to Nw and the solution of the previous optimization problem is the
initial data for the later optimization problem.

Denote F (m) = −Φ(m,κi; d). To minimize the cost functional by a gradient
method, it is required to compute Fréchet derivative of functionals F and R. For
functional R used in (3.16), we can obtain the Fréchet derivatives as follows

R′(m) = Asm, or R′(m) = Asm+ 2λ∇ ·

(
∇m√
|∇m|2 + δ

)
, (3.18)

where we used the following modified version of R

R(m) = λ

∫
Ω

√
|∇m|2 + δ +

1

2
‖As/2m‖2L2(Ω) (3.19)

for the TV-Gaussian prior case and δ is a small smoothing parameter avoiding zero
denominator in (3.18).

Next, we consider the functional F with Fa is the forward operator related to
problem (2.18). A simple calculation yields the derivative of F at q;

F ′(m)δm = Re
(
M(δu),

K∑
k=1

γk(Σk + νI)−1(d−Fa(m,κi)− ζk)
)
, (3.20)

where δu satisfy{
∇ · (s∇δu) + s1s2κ

2
i (1 +m)δu = −κ2δm(uinc + s1s2u

s
a) in D,

δu = 0 on ∂D,
(3.21)

and

γk =
πkNc(d−Fa(m) | ζk,Σk + νI)∑K
j=1 πjNc(d−Fa(m) | ζj ,Σj + νI).

To compute the Fréchet derivative, we introduce the adjoint system:
∇ · (s̄∇v) + s̄1s̄2κ

2
i (1 +m)v = −κ2

i

Nd∑
j=1

δ(x− xj)ρj in D,

v = 0 on D,

(3.22)

where ρj (j = 1, . . . , Nd) denote the jth component of
∑K
k=1 γk(Σk + νI)−1(d −

Fa(m,κi)− ζk) ∈ CNd . Multiplying equation (3.21) with the complex conjugate of
v on both sides and integrating over D yields∫

D

∇ · (s∇δu)v̄ + s1s2κ
2
i (1 +m)δuv̄ = −

∫
D

κ2δm(uinc + s1s2u
s
a)v̄.

By integration by parts formula, we obtain∫
D

δu
(
∇ · (s∇v̄) + s1s2κ

2
i (1 +m)v̄

)
= −κ2

i

∫
D

δm(uinc + s1s2u
s
a)v̄.

Taking complex conjugate of equation (3.22) and plugging into the above equation
yields

−κ2
i

∫
D

δu

Nd∑
j=1

δ(x− xj)ρ̄j = −κ2
i

∫
D

δm(uinc + s1s2u
s
a)v̄,
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which implies(
M(δu),

K∑
k=1

γkΣ−1
k (d−Fa(m,κi)− ζk)

)
=

∫
D

δm(uinc + s1s2u
s
a)v̄. (3.23)

Considering both (3.20) and (3.23), we find that

F ′(m)δm = Re

∫
D

δm(uinc + s1s2u
s
a)v̄,

which gives the Fréchet derivative as follow

F ′(m) = Re
(
(ūinc + s̄1s̄2ū

s
a)v
)
. (3.24)

With these preparations, it is enough to construct mixture Gaussian recursive
linearization method (MGRLM) which is shown in Algorithm 2. Notice that for
the recursive linearization method (RLM) shown in [4], only one iteration of the
gradient descent method for each fixed wavenumber can provide an acceptable
recovered function. So we only take one iteration for each fixed wavenumber.

Algorithm 2 mixture Gaussian recursive linearization method (MGRLM)

Input: Initialize parameters: σ0, d1, d2, p, {ζk}Kk=1, {Σk}Kk=1, {πk}Kk=1, q,
wavenumbers (κ1, . . . , κNw) and incident angles (d1, . . . ,dNm).
Iteration: for i = 1, 2, . . . , Nw

for j = 1, 2, . . . , Nm
solve one forward problem (2.18) with κ = κi and d = dj ;
solve one adjoint problem (3.22) with κ = κi and d = dj ;
compute the Fréchet derivative by formulas (3.18) and (3.24);
update the scatterer function;

end for
end for

Output: Final estimation of q.

4. Numerical examples

In this section, we provide two numerical examples in two dimensions to illustrate
the effectiveness of the proposed method. In the following, we assume that Ω =
{(x, y) ∈ R2 : −1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1} with Ω ⊂ D where D is the PML
domain with d1 = d2 = 0.15, p = 2.5 and σ0 = 1.5. For the forward solver, finite
element method (FEM) with first-order elements has been employed. In order to
avoid the inverse crime, the scattering data are generated by using adaptive finite
element mesh method, whilst uniform triangular mesh has been employed for the
learning process and inversion. For the following two examples, we choose Nm =
20 and dj (j = 1, . . . , Nm) are equally distributed around ∂D. Equally spaced
wavenumbers are used, starting from the lowest wavenumber κmin = π and ending
at the highest wavenumber κmax = 10π. Denote by ∆κ = (κmax − κmin)/9 = π
the step size of the wavenumber; then the ten equally spaced wavenumbers are
κj = j∆κ, j = 1, . . . , 10. We set 400 receivers that equally spaced along the
boundary of Ω as shown in Figure 1. For the initial guess of the unknown function
m, there are numerous strategies, i.e., methods based on the Born approximation
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[4, 9]. Since the main point here is not on the initial guess, we just set the initial
m to be a function always equal to zero for simplicity.

In order to show the stability of the proposed method, some relative random
noise is added to the data, i.e.,

us|∂Ω := (1 + σ̃randn)us|∂D . (4.1)

Here, randn gives standard normal distributed random numbers and σ̃ is a noise
level parameter taken to be 0.02 in our numerical experiments. Define the relative
error by

Relative Error =
‖m− m̃‖L2(Ω)

‖m‖L2(Ω)
, (4.2)

where m̃ is the reconstructed scatterer and m is the true scatterer.
For the reader’s convenience, we would like to summarize the notations and

variables employed in this section.

• Ω : The square domain [−1, 1]2 with supp(q) ⊂ [−1, 1]2;
• D : The PML domain containing [−1, 1]2 with parameters d1 = d2 = 0.15,
p = 2.5 and σ = 1.5;
• dj (j = 1, 2, · · · , Nm) : Incident directions equally distributed around ∂D

with Nm = 20;
• κj = j∆κ (j = 1, . . . , 10): Equally spaced wavenumbers with ∆κ = π;
• lw: Wavelength related to wavenumber through lw = 2π/κ;
• m: The function of the true scatterer;
• me: The random function employed to generate learning examples;
• U [b1, b2]: A uniform distribution with minimum value b1 and maximum

value b2;
• K: The component numbers used in mixture Gaussian probability distri-

bution.

Before giving the two examples, we should provide some additional explanations.
The main point of this paper is to provide a new method incorporated learning
process into IMSP. For using the proposed method to some specific application
areas, a lot of work should be done for collecting historical data or constructing
learning examples by some prior knowledge. The proposed method is not restricted
to the case of the following two simple examples. Once enough learning examples
are available for some specific applications, the proposed method could also be
worked for more complicated situations.

During the iterative process, errors are accumulated from a lot of aspects [22],
e.g., the FEM approximation, the evaluation of the Fréchet derivative and the eval-
uation of a large number of point sources appeared in the adjoint equation. These
reasons make it difficult to decide the minimum element numbers for FEM should
be used for a specific problem. Noticing that, FEM (using second-order elements)
with 20000 and 28800 equal triangular elements have been used for Example 1 and
Example 2 in [1], respectively. For simplicity, we use similar scatterer models as
in [1] and only FEM with first-order elements, which is enough to show the effec-
tiveness of the proposed method. Actually, the proposed method is not relevant
to the specific method (e.g., finite element, finite difference) used for solving the
forward problem, and just relevant to a rough approximation and an accurate ap-
proximation for the forward problem. Based on these considerations, FEM (using
first-order elements) with 16204 equal triangular elements will be used to obtain
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Sa(m)uinc and FEM (using first-order elements) with 183198 elements will be used
to obtain accurate solutions which we recognized as S(m)uinc for both of our two
examples.

Example 1: For the first example, let

m1(x, y) = 0.3(1− x)2e−x
2−(y+1)2 − (0.2x− x3 − y5)e−x

2−y2 − 0.03e−(x+1)2−y2

and reconstruct a scatterer defined by

m(x, y) = m1(3x, 3y)

inside the unit square {(x, y) ∈ R2 : −1 < x < 1 and − 1 < y < 1}.

Figure 2. True scatterer and five typical learning examples

Now, we assume that some prior knowledge of this function m have been known.
According to the prior knowledge, we generate 200 learning examples according to
the following function

me(x, y) :=

3∑
k=1

(1− x2)a
1
k(1− y2)a

2
ka3
k exp

(
− a4

k(x− a5
k)2 − a6

k(y − a7
k)2

)
, (4.3)

where

a1
k, a

2
k ∼ U [1, 3], a3

k ∼ U [−1, 1],

a4
k, a

6
k ∼ U [8, 10], a5

k, a
7
k ∼ U [−0.8, 0.8].

In order to provide an intuitional sense, we show the true scatterer and several
learning examples in Figure 2.

Remark 4.1. Although learning examples reflect some key features of the true scat-
terer, we should notice that the true scatterer cannot be generated from function
(4.3). Hence, the true probability density of m is not assumed to be known.

It is instructive to show the residuals of the measurements when rough and
accurate FEM approximations are used respectively. In Figure 3, we show the
residuals when wavenumber equals to 2π, 5π and 7π, respectively. Differences
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for rough and accurate FEM approximations are obviously increasing when the
wavenumber becomes large. Hence, compensating these errors should be useful to
provide a high resolution reconstruction.
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Figure 3. Real part of measuring residuals for rough and accurate
FEM approximation with different wavenumbers. Top: residual
when κ = 2π; Middle: residual when κ = 5π; Bottom: residual
when κ = 7π.

Learning algorithm with K = 4 proposed in Subsection 3.1 has been used to
learn the statistical properties of differences ein := F(mn, κi) − Fa(mn, κi) with
κi = i · π (i = 1, . . . 10) and mn (n = 1, . . . 200) stand for the learning examples.
Concerning the regularizing term, we take A = 0.01∆, s = 1.5 and λ = 0, which
can be computed by Fourier transform.

Remark 4.2. Here, we take λ = 0 which means that only a Tikhonov type regu-
larization has been used for our numerical examples. For employing an elastic net
type regularization (corresponding to the aforementioned TV-Gaussian probabili-
ty measure), we need to choose λ > 0, which may keep the sharp boundaries of
the scatterer and, in the mean time, avoid the staircasing effect [41]. To gain full
power of this type of regularization, choosing a proper λ is crucial. Actually, how
to choose an effective regularization term is a sophisticated problem and has been
discussed in a lot of papers, e.g., [25, 28, 45]. However, it is not the main point of
our paper. Hence, we will not discuss regularization terms in detail and only em-
ploying a simple Tikhonov type regularization which, based on our understanding,
is enough to illustrate the effectiveness of our method.

Relative errors of RLM with rough forward solver, RLM with accurate forward
solver and MGRLM (K = 4) with rough forward solver are shown in Figure 4,
which illustrate the effectiveness of the proposed method. In addition, we also
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Figure 4. Relative errors with different parameters: green dashed
line are relative errors obtained by using the RLM with 16204
elements; cyan dashed line with circles are relative errors obtained
by using the RLM with 183198 elements; cyan dash-dotted line
are relative errors obtained by using MGRLM (K = 1) with 16204
elements; blue solid line are relative errors obtained by using the
MGRLM (K = 4) with 16204 elements.

show the relative errors of the recovered functions for MGRLM with K = 1 and
rough forward solver in Figure 4. From Figure 4, we can see the following important
facts:

• When the wavenumber approaches 8π, RLM with rough forward solver
cannot provide a better result and the errors are accumulated to make the
recovered scatterer deviates from the true scatterer.
• Compared with MGRLM with K = 1, MGRLM with K = 4 is stable and

can provide a better reconstruction. Obviously, MGRLM with K = 1 may
increase the accumulation of errors when the wavenumber is larger than
4π, which may be explained by Figure 3. When the wavenumber becomes
large, the measurement errors are increased and cannot be compensated
efficiently by using Gaussian assumption.
• Compared with discontinuous scatterer, we usually can obtain a high reso-

lution reconstruction easier for smooth scatterer, which explains the reso-
lution enhancement is limited for this example. However, the computation-
al costs for Algorithm 2 increase little compared with the classical RLM.
Hence, it is paid off to use MGRLM once the learning process has been
done for some specific application areas.



MODEL ERROR LEARNING METHOD FOR IMSP 21

Table 1. Relative errors for RLM and MGRLM with different
mesh size and wavelength.

Relative errors lw = 0.67 lw = 0.33 lw = 0.29 lw = 0.25

RLM, Mesh size = 0.0361 51.86% 9.78% 7.10% 7.80%

RLM, Mesh size = 0.0107 42.37% 4.45% 1.99% 0.87%

MGRLM, Mesh size = 0.0361 1.43% 1.04% 1.92% 2.92%

Usually, the mesh size and wavelength are used to compare the performance of
different methods. Since the mesh we employed is nearly a uniform triangular mesh,
the mesh size can be estimated from the size of the domain and the total element
number. Notice that the domain employed here is a square with side length of 2.3.
For the rough mesh with 16204 elements and fine mesh with 183198 elements, the
mesh size is approximately 0.0361 and 0.0107, respectively. Employing the formula
lw = 2π/κ with lw represents the wavelength, we can calculate the corresponding
wavelength. In order to give a more clear illustration, we show the relative errors
and corresponding mesh size and wavelength in Table 1. From Table 1, we can
also see the three facts mentioned above. As the wavelength decreases, MGRLM
can compensate the numerical errors and make use of some prior information to
enhance the inversion. When the wavelength becomes too small, the forward solver
with mesh size 0.0361 departs from the accurate forward solver too much. Then
both of the RLM and MGRLM become unstable.

At last, we show results obtained by RLM and MGRLM with different param-
eters in Figure 5. The true scatterer, the results obtained by RLM with rough
forward solver (κ = 8π) and RLM with accurate forward solver (κ = 10π) are
shown on the top left, in the top middle and on the top right, respectively. On the
bottom left, in the bottom middle and on the bottom right, there are the results ob-
tained for κ = 4π by MGRLM with rough forward solver, RLM with rough forward
solver and RLM with accurate forward solver, respectively. From these results, we
can visually see that the result obtained by MGRLM is comparable with the result
obtained by RLM using accurate forward solver.

Example 2: For the second example, let us firstly define the following two
squares

Ω1 :={(x, y) ∈ R2 : −0.1 ≤ x ≤ 0.1 and − 0.1 ≤ y ≤ 0.1},
Ω2 :={(x, y) ∈ R2 : −0.3 ≤ x ≤ 0.3 and − 0.3 ≤ y ≤ 0.3}.

Then the function of the scatterer can be defined as follow

m(x, y) :=


0.7 for (x, y) ∈ Ω2\Ω1,

− 0.1 for (x, y) ∈ Ω1,

0 for (x, y) ∈ [−1, 1]2\Ω2.

(4.4)

As in Example 1, we need to construct some learning examples. Here, we assume
that the support of the scatterer is a square in [−1, 1]2 with unknown position and
size. The function values of the scatterer is also unknown. Specifically speaking,
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Figure 5. Recovered functions with different parameters. (a) true
function; (b) minimum relative error estimate for the RLM with
16204 elements and the wavenumber computed to 8π; (c) minimum
relative error estimate for the RLM with 183198 elements and the
wavenumber computed to 10π; (d) minimum relative error esti-
mate for the MGRLM with 16204 elements and the wavenumber
computed to 4π; (e) recovered function for the RLM with 16204 ele-
ments and the wavenumber computed to 4π; (f) recovered function
for the RLM with 183198 elements and the wavenumber computed
to 4π.

the learning examples are generated according to the following function

me(x, y) :=

{
mv for (x, y) ∈ [−L1 + x1, x1 + L1]× [−L2 + x2, x2 + L2],

0 other areas in [−1, 1]2,

where x1 ∼ U [−0.5, 0.5], x2 ∼ U [−0.5, 0.5], L1 ∼ U [0, 0.9 − |x1|], L2 ∼ U [0, 0.9 −
|x2|] and mv ∼ Ud[−1, 0, 1]×0.5+U [−0.3, 0.3] with Ud[−1, 0, 1] represents a uniform
distribution that only take three values −1, 0, 1. As in Example 1, we generate 200
learning examples. To give the reader an intuitive idea, we show the true scatterer
and five typical learning examples in Figure 6.

Remark 4.3. As in Example 1, learning examples reflect some key features of the
true scatterer, but the true scatterer contains a small square which is not appeared
in any of the 200 learning examples. Hence, the true probability density of m is
not assumed to be known.

As in Example 1, we show the residuals when wavenumber equals to 2π, 5π and
7π respectively in Figure 7. Differences for rough and accurate FEM approximations
are obviously increasing when the wavenumber becomes large. Relative errors of
RLM with rough forward solver, RLM with accurate forward solver, MGRLM (K =
4) with rough forward solver and MGRLM (K = 1) with rough forward solver are
shown in Figure 8, which illustrate the effectiveness of the proposed method. From
Figure 8, we can see the following important facts:
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Figure 6. True scatterer and five typical learning examples
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Figure 7. Real part of measuring residuals for coarse and accu-
rate FEM approximation with different wavenumber. Top: resid-
ual when κ = 2π; Middle: residual when κ = 5π; Bottom: residual
when κ = 7π.

• When wavenumber approaches 5π, MGRLM with K = 1 cannot provide
a stable recovery, which indicates that the Gaussian assumption is not
suitable for high wavenumber case.
• Similar as in Example 1, when the wavenumber approximates 9π, RLM

with rough forward solver cannot provide a better result and the errors
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Figure 8. Relative errors with different parameters: green dashed
line are relative errors obtained by using the RLM with 16204
elements; cyan dashed line with circles are relative errors obtained
by using the RLM with 183198 elements; cyan dash-dotted line
are relative errors obtained by using MGRLM (K = 1) with 16204
elements; blue solid line are relative errors obtained by using the
MGRLM (K = 4) with 16204 elements.

Table 2. Relative errors for RLM and MGRLM with different
mesh size and wavelength.

Relative errors lw = 0.67 lw = 0.33 lw = 0.25 lw = 0.22

RLM, Mesh size = 0.0361 75.82% 44.40% 36.49% 37.22%

RLM, Mesh size = 0.0107 66.27% 28.53% 16.89% 12.76%

MGRLM, Mesh size = 0.0361 23.93% 13.02% 12.06% 12.67%

are accumulated to make the recovered function deviates from the true
scatterer.
• When the wavenumber is smaller than 9π, MGRLM with rough forward

solver provides recovered functions even better than the results obtained
by RLM with accurate forward solver. Our understanding of this is that
the learning process not only provides a compensation for the numerical
errors but also incorporate some prior information since the learning exam-
ples reflect some key features of the true scatterer. The prior information
incorporated into the mixture Gaussian distribution makes the MGRLM
converges even faster than RLM with accurate forward solver.

Here, as in Example 1, we show the relative errors and corresponding mesh size
and wavelength in Table 2. From Table 2, we can also see the three facts mentioned
above. Similar to Example 1, compared with the classical RLM, MGRLM can
provide better estimations. Both of the RLM and MGRLM become unstable when
the forward solver with mesh size 0.0361 departs from the accurate forward solver
too much.



MODEL ERROR LEARNING METHOD FOR IMSP 25

(a)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(c)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(d)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(e)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(f)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

Figure 9. Recovered functions with different parameters. (a) true
function; (b) minimum relative error estimate for the RLM with
16204 elements and the wavenumber computed to 8π); (c) mini-
mum relative error estimate for the RLM with 183198 elements and
the wavenumber computed to 10π; (d) minimum relative error es-
timate for the MGRLM with 16204 elements and the wavenumber
computed to 8π; (e) recovered function for the RLM with 16204 ele-
ments and the wavenumber computed to 8π; (f) recovered function
for the RLM with 183198 elements and the wavenumber computed
to 8π.

Finally, we provide the image of true scatterer on the top left of Figure 9. On
the top middle, the best result obtained by RLM with rough forward solver is
given. From this image, we can see that it is failed to recover the small square
embedded in the large square. The best result obtained by RLM with accurate
froward solver is shown on the top right. It is much better than the function
obtained by the algorithm with rough forward solver. At the bottom of Figure 9,
we show the best result obtained by MGRLM with rough forward solver on the
left and show the results obtained by RLM (compute to the same wavenumber
as MGRLM) with rough and accurate forward solver in the middle and on the
righthand side respectively. The recovered function obtained by MGRLM is not as
well as the recovered function obtained by RLM with more than eleven times of
elements and higher wavenumber. However, beyond our expectation, it is already
capture the small square embedded in the large square, which is not incorporated
in our 200 learning examples. If we think the large square to be some human organ
and the small square to be a small cancer tissue, the recovered scatterer obtained
by MGRLM is good enough to detect the cancer tissue.

In summary, the proposed MGRLM converges much faster than the classical
RLM and it can provide a much better result at the same discrete level compared
with RLM.
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5. Conclusions

In this paper, we assume that the modeling errors brought by rough discretiza-
tion to be a mixture Gaussian random variable. Based on this assumption, we
derive a new nonlinear optimization problem by employing the infinite-dimensional
Bayes’ inverse method and the theories of MAP estimates. Specifically speaking,
for the inverse medium scattering problem, well-posedness in the statistical sense
has been proved and the related MAP estimate has been obtained. In order to ac-
quire estimates of parameters in the mixture Gaussian distribution, we generalize
the EM algorithm with real variables to the case with complex variables, which in-
corporate the learning process into the classical inverse medium scattering problem.
Finally, the adjoint problem has been deduced and the RLM has been generalized
to MGRLM based on the previous illustrations. Two numerical examples are given,
which demonstrate the effectiveness of the proposed method.

This work is just a beginning, and there are a lot of problems need to be solved.
For example, we did not give a principle for choosing parameter K appeared in the
mixture Gaussian distribution. In addition, in order to learn the model errors more
accurately, we can attempt to design new algorithms to adjust the parameters in
the mixture Gaussian distribution efficiently during the inverse iterative procedure.

6. Appendix

Here we gather the proofs of various conclusions stated in this paper. Including
these proofs in the main text would break the flow of main ideas.

Proof of Theorem 2.1

Proof. In order to prove this theorem, we need to verify three conditions stated in
Assumptions 1 and Theorem 16 in Section 4.1 of [20]. Since

K∑
k=1

πk
1

πNd det(Σk + νI)
exp

(
−
∥∥∥d−Fa(m)− ζk

∥∥∥2

Σk+νI

)
≤ 1,

we know that

Φ(m; d) ≤ 0. (6.1)

In the following, we denote

fk(d,m) :=
(
d−Fa(m)− ζk

)H (
Σk + νI

)−1 (
d−Fa(m)− ζk

)
.

Then, we have

∇dfk(d,m) = (d−Fa(m)− ζk)H(Σk + νI)−1 + (d−Fa(m)− ζk)H(Σk + νI)−1

= 2Re
(

(d−Fa(m)− ζk)H(Σk + νI)−1
)
.

Through some simple calculations, we find that

∇dΦ(m; d) = −
K∑
k=1

2gkRe
(

(d−Fa(m)− ζk)H(Σk + νI)−1
)
, (6.2)

where

gk :=
πkNc(d−Fa(m) | ζk,Σk + νI)∑K
j=1 πjNc(d−Fa(m) | ζj ,Σj + νI)

. (6.3)



MODEL ERROR LEARNING METHOD FOR IMSP 27

From the expression (6.2) and (1) of Assumption 1, we can deduce that

‖∇dΦ(m; d)‖2 ≤ C
(
1 + ‖d‖2 + exp(ε‖m‖2X)

)
. (6.4)

where the constant C depends on K, {Σk}Kk=1 and {ζk}Kk=1. Considering (6.4), we
obtain

|Φ(m; d1)− Φ(m; d2)| ≤ C
(
1 + r + exp(ε‖m‖2X)

)
‖d1 − d2‖2. (6.5)

By our assumptions, the following relation obviously holds

C2
(
1 + r + exp(ε‖m‖2X)

)2 ∈ L1
µ0

(X;R), (6.6)

where L1
µ0

(X;R) is the space of functions f : X → R with norm

‖f‖L1
µ0

(X;R) =

∫
X

|f(x)|µ0(dx).

At this stage, estimates (6.1), (6.5) and (6.6) verify Assumptions 1 and conditions
of Theorem 16 in Section 4.1 of [20]. Employing theories constructed in [20], we
complete the proof. �

Proof of Theorem 2.3

Proof. In order to prove this theorem, let us verify the following two conditions
concerned with Φ(m; d),

(1) For every r > 0 there exists M = M(r) > 0 such that, for all m ∈ X with
‖m‖X < r we have Φ(m; d) ≥ −M .

(2) For every r > 0 there exists N = N(r) > 0 such that, for all m1,m2 ∈ X
with ‖m1‖X , ‖m2‖X < r we have |Φ(m1; d)− Φ(m2; d)| ≤ N‖m1 −m2‖X .

For the first condition, by employing Jensen’s inequality, we have

Φ(m; d) = ln
( K∑
k=1

πkNc
(
d−Fa(m) | ζk,Σk + νI

))
≥

K∑
k=1

πk ln

(
1

πNd |Σk + νI|
exp

(
−
∥∥d−Fa(m)− ζk

∥∥2

Σk+νI

))

≥
K∑
k=1

πk

(
−
∥∥d−Fa(m)− ζk

∥∥2

Σk+νI
−Nd ln(π)− ln(|Σk + νI|)

)
≥ −C

(
1 + ‖d‖22 + exp(εr2)

)
,

where C is a positive constant depending on K, {πk}Kk=1, {Σk}Kk=1, {ζk}Kk=1 and
Nd. Now, the first condition holds true by choosing M = C

(
1 + ‖d‖22 + exp(εr2)

)
.

In order to verify the second condition, we denote

fk(d,m) :=
(
d−Fa(m)− ζk

)H (
Σk + νI

)−1 (
d−Fa(m)− ζk

)
,

then focus on the derivative of fk with respect to m. Through some calculations,
we find that

∇mfk(d,m) = −2Re
(

(d−Fa(m)− ζk)H(Σk + νI)−1F ′a(m)
)
. (6.7)
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Hence, we have

∇mΦ(m; d) = −
K∑
k=1

2gkRe
(

(d−Fa(m)− ζk)H(Σk + νI)−1F ′a(m)
)
, (6.8)

where gk defined as in (6.3). Using Assumption 1 and formula (6.8), we find that

|Φ(m1; d)− Φ(m2; d)| ≤ CL(1 + ‖d‖2 + exp(ε r2))‖m1 −m2‖X . (6.9)

Let N = CL(1 + ‖d‖2 + exp(ε r2)), obviously the second condition holds true.
Combining these two conditions with (6.1), we can complete the proof by using
Theorem 19 in [20]. �
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