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Abstract. This paper focuses on a fractional Helmholtz equation describ-
ing wave propagation in the attenuating medium. According to physical

interpretations, the fractional Helmholtz equation can be divided into loss-
and dispersion-dominated fractional Helmholtz equations. In the first part
of this work, we establish the well-posedness of the loss-dominated fractional
Helmholtz equation (an integer- and fractional-order mixed elliptic equation)

for a general wavenumber and prove the Lipschitz continuity of the scatter-
ing field with respect to the scatterer. Meanwhile, we only prove the well-
posedness of the dispersion-dominated fractional Helmholtz equation (a high-
order fractional elliptic equation) for a sufficiently small wavenumber due to

its complexity. In the second part, we generalize infinite-dimensional Bayesian
inverse theory to allow a part of the noise depends on the target function
(the function that needs to be estimated). We also prove that the estimated
function tends to be the true function if both the model reduction error and

the white noise vanish. We eventually apply our theory to the loss-dominated
model with an absorbing boundary condition.

1. Introduction

Numerous physical models have been proposed [1, 13, 37] to describe the atten-
uation effect which is an important phenomenon for considering wave propagation
in some attenuating medium. When studying scattering problems with attenuating
medium, researchers usually focus on the following Helmholtz equation:

∆u+ k2n(x)u = 0, (1.1)

where u denotes the wavefield, k denotes the wavenumber, and n denotes the re-
fractive index with an imaginary component [14]. In other words, the analysis of
scattering problems with absorbing medium can be incorporated into the classical
studies on Helmholtz equations [2, 4]. However, the attenuation effect actually
incorporates two effects, namely, amplitude loss and velocity dispersion. The afore-
mentioned model (1.1) mixes these two effects together. Hence, the attenuation
effect can hardly be compensated when we handle some inverse problems, such as
reverse-time migration [47].

We consider the space fractional wave equations proposed in [50] that can sepa-
rate the two effects incorporated in the attenuation effect. Before revealing the form
of this new fractional model, we introduce the time fractional wave equation. Based
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on Caputo’s fractional derivative [41], the isotropic stress-strain (σ-ϵ) relation can
be deduced in the following form [10]:

σ =
M0

t−2γ
0

∂2γϵ

∂t2γ
,

where M0 is the bulk modulus and t0 is a reference time. The following wave
equation with Caputo’s fractional derivative can then be established:

∂2−2γ(x)

∂t2−2γ(x)
u = c(x)2ω−2γ(x)∆u, (1.2)

where c2(x) = c20(x) cos
2(πγ(x)/2) and c0 is the sound velocity. Denote Q(x) to be

the quality factor that is commonly used to characterize seismic attenuation. In
this case, the fractional-order γ(x) relates to the quality factor as follows:

γ(x) =
1

π
arctan

(
1

Q(x)

)
. (1.3)

Restricted to the seismic frequency band, the quality factor Q(x) is approximate-
ly constant in the frequency domain, while the time fractional wave equation (1.2)
describes the constant Q attenuation precisely [47]. Carcione et al. [11, 12] success-
fully solve the time fractional wave equation (1.2) by using the Grunwald-Letnikow
and central-difference approximations for time discretization. However, since the
fractional-order in time brought memory effect along the time evolution, producing
an accurate solution requires a large amount of computer memory and computa-
tional time, thereby limiting the application of the time fractional wave equation
in seismic explorations.

Based on the time fractional wave equation (1.2), after performing some intricate
calculations in the angular and space frequency domains, Zhu, Carcione, and Harris
[49, 50] proposed the following space fractional model:

1

c(x)2
∂2

∂t2
u = ∆u+

(
− η(x)(−∆)γ(x)+1u−∆

)
u− τ(x)

∂

∂t
(−∆)γ(x)+1/2u, (1.4)

with coefficients are varying in space as follows:

η(x) = c0(x)
2γ(x)ω

−2γ(x)
0 cos(πγ(x)), τ(x) = c0(x)

2γ(x)ω
−2γ(x)
0 sin(πγ(x)). (1.5)

We provide some explanations for the notations used in (1.4) and (1.5). Let ω0

be a reference frequency (ω0 = 1/t0), c0(x) be the phase velocity, and c(x) be the
space acoustic velocity. The fractional power γ(x) relates to the quality factor Q(x)
according to formula (1.3) and, obviously, takes values between 0 and 1/2. Equation
(1.4) exhibits no memory effect in time, thereby circumventing the computational
difficulties brought by the time-fractional operator.

The second and third terms on the right hand side of model (1.4) primarily
represent the dispersion-effect and amplitude loss-effect, respectively. Therefore,
by using this model, the dispersion-effect and loss-effect can be separated to some
extent. Obviously, the dispersion-dominated equation [50] takes the following form:

1

c2
∂2

∂t2
u = −η(−∆)γ+1u, (1.6)

and the amplitude loss-dominated equation [50] can be written as follows:

1

c2
∂2

∂t2
u = ∆u− τ

∂

∂t
(−∆)γ+1/2u. (1.7)
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The space fractional model (1.4) has two advantages. First, this model can be
solved quickly by spectral methods [48] or other numerical methods compared with
the time fractional model (1.2). Second, the space fractional model separates the
dispersion-effect and amplitude loss-effect from each other, thereby allowing re-
searchers to compensate these two effects separately when handling some inverse
problems [47].

Now, let us consider the time-harmonic solution of equation (1.4). As usual,
assuming that the solution takes the form e−iωtu(x), we derive an equation that
can be called the fractional Helmholtz equation as follows:

−η(−∆)γ+1u+ iωτ(−∆)γ+1/2u+ k2(1 + q(x))u = 0, (1.8)

where ω denotes the angular frequency, k represents the wavenumber, and q(·)
is a function that is assumed to be larger than −1. Equation (1.8) can also be
separated into the loss- and dispersion-dominated models. Specifically, the loss-
dominated fractional Helmholtz equation can be derived from equation (1.7) as
follows:

∆u+ iωτ(−∆)γ+1/2u+ k2(1 + q(x))u = 0. (1.9)

And the dispersion-dominated fractional Helmholtz equation can be derived from
equation (1.6) as follows:

(−∆)γ+1u− k2(1 + q)u = 0. (1.10)

Given that the background velocity can sometimes be obtained by interpolation-
s of well data and anomalous detection is one of the key problems in geophysical
explorations [43, 47], we can assume that the scatterer is compactly supported
and that the strong absorbing medium is located in some parts of the scatterer.
These hypotheses are formally formulated in Assumption 1 of Section 3. The well-
posedness with a general wavenumber k > 0 has been constructed for equation
(1.9). For equation (1.10), the problem seems to be difficult. Specifically, we can
only constuct a unique solution for a sufficiently small wavenumber. The interior
regularity of elliptic equations and the Gauss-Green theorem for fractional Lapla-
cian are used to construct appropriate weak formulations of these two fractional
Helmholtz equations. The properties of fractional Laplacian is used along with an
iterative procedure to obtain our results, which are different to the case of classical
Helmholtz equation (1.1).

Although, the forward models studied in this paper are clear, we attempt in
the second part of our work to construct a Bayesian inverse theory for inverse
scattering problems related to the fractional Helmholtz equation. Before going
further, let us recall some basic developments in Bayesian inverse theory, which
follows two philosophies. One philosophy involves discretizing the forward problem
and using the Bayesian methodology to solve a finite-dimensional problem (“dis-
crete first, inverse second”[DFIS]). Kaipio and Somersalo [29] provide an excellent
introduction for the DFIS method, especially the large inverse problems arising
in differential equations. The other philosophy involves constructing Bayesian in-
verse theory in infinite-dimensional space, in which discretization of the continuous
problem is postponed to the final step (“inverse first, discrete second”[IFDS]). The
IFDS method could be dating back to 1970, Franklin [22] formulate PDE’s inverse
problems in terms of Bayes’ formula on some Hilbert space. Recently, Lasanen
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[33, 34, 35, 36] develop a fully nonlinear theory. Cotter et al. [15, 18, 44] estab-
lish a mathematical framework for a range of inverse problems for functions, given
noisy observations. They also reveal the relationship between regularization tech-
niques and the Bayesian framework. Recently, Trillos and Sanz-Alonso [45] firstly
provide a mathematical foundation to the Bayesian learning of the order-and other
inputs-of fractional elliptic equations.

In this study, we employ the IFDS method to construct the Bayesian theory
for the inverse scattering problem. Let X,Y be separable Hilbert space, equipped
with the Borel σ-algebra, and let G : X → Y be a measurable mapping. Then, the
inverse problem can be sought of as finding x from y, where

y = G(x) + η, (1.11)

and η ∈ Y denotes noise. An important assumption in the literature [15, 18, 44]
is that the noise η is independent of x. However, in previous studies on inverse
scattering problems, some model reduction errors may be brought into the forward
problem (e.g., absorbing boundary condition [4]). By denoting the model reduction
error as ϵ, equation (1.11) can be reformulated as follows:

y = Ga(x) + ϵ+ η (1.12)

with Ga : X → Y is a measurable mapping. The error ϵ usually depends on x; thus,
we need to generalize infinite-dimensional Bayesian inverse theory to incorporate
this situation.

Following the principles of DFIS, a Bayesian approximation error approach is de-
veloped [29, 31, 30] to handle the model approximate errors that are produced by
some finite-dimensional approximations. Given that this method can yield accept-
able inversion results with only a rough approximate forward solver, the aforemen-
tioned Bayesian approximation error approach seems to be a promising method for
solving inverse scattering problems. A novel iterative updating algorithm of model
error has been recently designed by Calvetti et al. [9], which provides new ideas
for learning model errors. However, there seems no special infinite-dimensional
Bayesian inverse theory for the model reduction error induced by the hypotheses of
constructing the mathematical models (e.g., the error induced by some absorbing
boundary conditions).

Based on the aforementioned considerations and the requirements for analyzing
inverse scattering problems, we modify the theory presented in [15, 18, 19, 44] to
allow a part of the noise to depend on the state variable x. Afterward, we prove
that the estimated function tends to be the true function when both the model
reduction error ϵ and the white noise η vanish under a simple setting. Finally, we
apply the theory to an inverse scattering problem related to equation (1.9). In
summary, the contributions of our work are as follows:

• The well-posedness is obtained for a scattering problem related to the loss-
dominated fractional Helmholtz equation. Based on the well-posedness
result, the Lipschitz continuity of the forward map is obtained, which is
useful for analyzing inverse scattering problems.

• Fractional Gauss-Green formula for the regional fractional Laplace operator
[23, 46] has been used to formulate appropriate weak forms for the loss- and
dispersion-dominated models. Combined with a unique continuation result
for the Laplace operator, the fractional Gauss-Green formula has also been
used to prove the uniqueness for the loss-dominated equation with a general
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wavenumber. The dispersion-dominated model has been reformulated to an
integer- and fractional-order mixed elliptic system, and an iterative method
has been employed, which are different to the case of classical Helmholtz
equations.

• A generalized infinite-dimensional Bayesian inverse method, which can be
called infinite-dimensional Bayesian model error method, is developed. In
addition, the relationship of this model with some regularization methods
is discussed. If both the model reduction error and the white noise vanish,
it is proved that the estimated function tends to be the true function.

The contents of this paper are organized as follows. In Section 2, notations are
introduced and some basic knowledge on the fractional Laplace operator is present-
ed. In Section 3, we prove well-posedness for the scattering field equation related to
the loss-dominated equation firstly. Then, we prove well-posedness for a scattering
field equation related to the dispersion-dominated equation with a sufficiently small
wavenumber. In Section 4, we derive well-posedenss of the posterior measure when
some model reduction errors are considered. Then, we prove that the estimated
solution tends to be the true function if both the model error and the white noise
vanish. At the end of this section, the general theory is applied to an inverse s-
cattering problem related to the loss-dominated fractional Helmholtz equation. In
Section 5, we provide a short summary and propose some further questions.

2. Preliminaries

2.1. Notations. In this section, we provide an explanation of the notations used
throughout this paper.

• Let n ∈ N be an integer, and let Rn denotes n-dimensional Euclidean space;
as usual, R means R1.

• Let Γ(·) be the usual Gamma function. For an introduction to the Gamma
function, the reader may refer to [41].

• For s ∈ R, p ∈ [1,∞) and a bounded domain D ⊂ Rn, let W s,p(D) denotes
the Sobolev space, which roughly means that the s order weak derivative
of a function belongs to the space Lp(D). For brevity, we usually denote
W s,p(D) as Hs(D).

• Let D ⊂ Rn be a bounded domain, C(D) be continuous functions, and
Cu(D) be the uniformly bounded continuous functions.

• Let C be a general constant which may be different from line to line.
• Let H be a Hilbert space, L+(H) be the set of all symmetric and positive
operators, and L+

1 (H) be the operators of trace class and belong to L+(H).
• Let H be a Hilbert space. For an operator C ∈ L+

1 (H), let N (a, C) be a
Gaussian measure on H with mean a ∈ H and covariance operator C.

• Let η and ϵ be two random variables, with η ⊥ ϵ indicating that these two
random variables are independent.

2.2. Fractional Laplace operator. In this part, we provide an elementary intro-
duction to the fractional Laplace operator that is used throughout this paper. Let
0 < α < 1, and set

L1(Rn) :=

{
u : Rn → R measurable,

∫
Rn

|u(x)|
(1 + |x|)n+2α

dx <∞
}
.
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For u ∈ L1(Rn), x ∈ Rn, and ϵ > 0, we write

(−∆)αϵ u(x) = Cn,α

∫
{y∈Rn, |y−x|>ϵ}

u(x)− u(y)

|x− y|n+2α
dy

with

Cn,α =
α22αΓ(n+2α

2 )

π
n
2 Γ(1− α)

, (2.1)

where Γ denotes the usual Gamma function. The fractional Laplacian (−∆)αu of
the function u is defined by the formula

(−∆)αu(x) = Cn,αP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2α
dy = lim

ϵ↓0
(−∆)αϵ u(x), x ∈ Rn (2.2)

provided that the limit exists [7]. Apart from this definition, one can also define
(−∆)α by using the method of bilinear Dirichlet forms [24], that is, (−∆)α is the
closed self-adjoint operator on L2(Rn) associated with the bilinear symmetric closed
form

E(u, φ) = Cn,α

2

∫
Rn

∫
Rn

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2α
dxdy, u, φ ∈ Hα(Rn), (2.3)

in the sense that

D((−∆)α) = {u ∈ Hα(Rn), (−∆)αu ∈ L2(Rn)}
and

E(u, φ) = ((−∆)αu, φ) =

∫
Rn

φ(−∆)αu dx, ∀u ∈ D((−∆)α), φ ∈ Hα(Rn).

The fractional Laplace operator has at least ten equivalent definitions, and the
equivalence has been proven in [32]. Given that we may need to face fractional
elliptic equations in a bounded domain in Section 3, we present here the definition
of regional fractional Laplacian [23]. Let Ω be a bounded domain in Rn, and let

L1(Ω) be the measurable function u on Ω such that
∫
Ω

|u(x)|
(1+|x|)n+2α dx < ∞. For

u ∈ L1(Ω), x ∈ Ω, and ϵ > 0, we write

Aα
Ω,ϵu(x) = Cn,α

∫
y∈Ω,|y−x|>ϵ

u(y)− y(x)

|x− y|n+2α
dy, (2.4)

where Cn,α is defined as in (2.1).

Definition 2.1. Let u ∈ L1(Ω). The regional fractional Laplacian Aα
Ω is defined

by the formula

Aα
Ωu(x) = lim

ϵ↓0
Aα

Ω,ϵu(x), x ∈ Ω, (2.5)

provided that the limit exists.

When Ω = Rn, the notation Aα
Rn represents the fractional power of the Laplacian

defined in (2.2). In order to give the Gauss-Green formula in the fractional Laplace
operator setting, we give the following definition [23].

Definition 2.2. For 0 ≤ s < 2, u ∈ C1(Ω), and z ∈ ∂Ω, we define the operator
N s on ∂Ω by

N su(z) := − lim
t↓0

du(z − tn(z))

dt
ts, (2.6)
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provided that the limit exists. Here, n(z) denotes the outward normal vector of ∂Ω
at point z ∈ ∂Ω.

Let ρ(x) := dist(x, ∂Ω) = inf{|y − x| : y ∈ ∂Ω}, x ∈ Ω, and for a real number
δ > 0, we set Ωδ := {x ∈ Ω, : 0 < ρ(x) < δ}. Let β > 0 be a real number, define

hβ(x) =

{
ρ(x)β−1 ∀x ∈ Ωδ, β ∈ (0, 1) ∪ (1,∞),

ln(ρ(x)) ∀x ∈ Ωδ, β = 1.
(2.7)

For 1 < β ≤ 2, we define the space

C2
β(Ω̄) := {u : u(x) = f(x)hβ(x) + g(x), ∀x ∈ Ω for some f, g ∈ C2(Ω̄)}. (2.8)

Having these preparations, now, we can state the following fractional Gauss-
Green formula [23, 46].

Lemma 2.3. Let 1/2 < α < 1 and let Aα
Ω be the nonlocal operator defined in

Definition 2.1. Then, for every u := fh2α + g ∈ C2
2α(Ω̄) and φ ∈ C2

2α(Ω̄),∫
Ω

Aα
Ωu(x)φ(x)dx =

1

2
Cn,α

∫
Ω

∫
Ω

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2α
dxdy

−Bn,α

∫
∂Ω

φN 2−2αu dS,

(2.9)

where dS denotes the surface measure, Bn,α is a constant related to Cn,s which can
be found in [23] or [46].

Throughout the rest of this paper, A0
Ω will be understood as the identity operator.

3. Forward Problem

In this section, we will prove the well-posedness for the loss- and dispersion-
dominated equations. Before going further, let us make more specific assumptions
about these two equations which are valid in what follows.

Assumption 1:

(1) In order to make our presentation more concise, without loss of generality,
we assume the space dimension n = 2.

(2) Assume q(·) be a bounded function and has compact support. Denote
BR as a ball centered at the origin, then there exists R > 0 such that
supp(q) ⊂ BR. In addition, we assume that there exist two constants
qmin, qmax such that −1 < qmin ≤ q(·) ≤ qmax <∞.

(3) Let γ be a piecewise constant function, and without loss of generality, in this
paper we assume γ(x) = γ̃1Ω, where Ω is a subset of BR (Ω̄ $ supp(q) $
BR) and γ̃ is a constant in [0, 1/2].

(4) Let η, τ be two non-negative piecewise constant functions related to γ. Let
η̃, τ̃ be two positive constants, τ(x) = τ̃ if γ(x) ̸= 0 and τ(x) = 0 if γ(x) = 0.
η(x) = η̃ if γ(x) ̸= 1/2 and η(x) = 0 if γ(x) = 1/2.

Remark 3.1. All assumptions in Assumption 1 are based on the physical model.
For example, if we assume that γ(x) = 0 in (1.5), then τ(x) = 0 for sin(πγ(x)) = 0
and if we assume that γ(x) = 1/2 in (1.5), then η(x) = 0 for cos(πγ(x)) = 0.

Figure 1 presents the assumptions stated in Assumption 1 for the relation be-
tween the area with attenuating media Ω, the support of the scatterer supp(q) and
the circle with radius R clearly.
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BR

supp(q)
medium without attenuation

Ω
attenuating medium

Figure 1. The relation between the area with attenuating media
Ω, the support of the scatterer supp(q), and the circle with radius
R.

Because one advantage of the space fractional wave equation is that it can sep-
arate amplitude loss effect and dispersion effect, we can study the loss-dominated
equation and dispersion-dominated equation separately.

3.1. Loss-dominated model. Based on the time-domain equation (1.7), we can
easily derive the loss-dominated fractional Helmholtz equation as follow:

∆u+ iωτ(−∆)γ+1/2u+ k2(1 + q(x))u = 0 in R2. (3.1)

As usual, the scatterer is illuminated by a plane incident field

uinc(x) = eikx·d, (3.2)

where d = (cos(θ), sin(θ)) ∈ S1 = {x ∈ R2 : |x| = 1} is the incident direction and
θ ∈ (0, 2π) is the incident angle. Evidently, the incident field satisfies

∆uinc + k2uinc = 0 in R2. (3.3)

Before setting up the scattering problem, we need the following formula:

(−∆)αeikx·d = k2αeikx·d with 0 < α < 1. (3.4)

The total field u consists of the incident field uinc and the scattered field us:

u = uinc + us. (3.5)

It follows form (3.1), (3.3), (3.5) and formula (3.4) that the scattered field satisfies

∆us + iωτ(−∆)γ+1/2us + k2(1 + q(x))us = (−k2q(x)− iωτk2γ+1)uinc (3.6)

in R2. By our assumption, function γ is zero outside Ω which is contained in a
ball with radius R, so the scattered field as usual should satisfy the Sommerfeld
radiation condition:

lim
r→∞

√
r (∂ru

s − ikus) = 0, (3.7)

where r = |x|. In the domain R2\Ω̄, equation (3.6) is reduced to

∆us + k2us = −k2quinc. (3.8)
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Relying on the classical scattering theory [2], we know that the solution of equation
(3.6) in R2\B̄R can be written under the polar coordinates as follows:

us(r, θ) =
∑
n∈Z

H
(1)
n (kr)

H
(1)
n (kR)

ûsne
inθ, (3.9)

where H
(1)
n is the Hankel function of the first kind with order n and

ûsn = (2π)−1

∫ 2π

0

us(R, θ)e−inθdθ.

Let B : H1/2(∂BR) → H−1/2(∂BR) be the Dirichlet-to-Neumann (DtN) operator
defined as follows: for an us ∈ H1/2(∂BR),

(Bus)(R, θ) = k
∑
n∈Z

H
(1)′

n (kR)

H
(1)
n (kR)

ûsne
inθ. (3.10)

Then, the solution in (3.9) satisfies the following transparent boundary condition:

∂nu
s = Bus on ∂BR, (3.11)

where n is the unit outward normal on ∂BR. The problem can then be converted to
the bounded domain. Since we consider the bounded domain problem, the fractional
Laplace operator may need to be adapted to the regional fractional Laplace operator
introduced in Section 2.2. Following Assumption 1, we write the bounded elliptic
problem as{

∆us + iωτA
γ̃+1/2
Ω us + k2(1 + q)us = (−k2q − iωτk2γ+1)uinc in BR,

∂nu
s = Bus on ∂BR.

(3.12)

Now, the key step is that how to construct an appropriate weak form for problem
(3.12). Since Laplace operator appears in equation (3.12), we expect that the
interior regularity of u will be high enough to ensure

N 2−2(γ̃+1/2)u(z) = N 1−2γ̃u(z) = lim
t↓0

n(z) · ∇u(z − tn(z))t1−2γ̃ = 0 (3.13)

with z ∈ ∂Ω. Based on these considerations, A
γ̃+1/2
Ω may be more appropriately

defined as an operator with fractional Neumann boundary condition. Inspired by
the method used in [24, 23, 25, 46] and the bilinear closed form defined in (2.3), we
define the following bilinear form for u, φ ∈ H γ̃+1/2(Ω):

EN
Ω (u, φ) =

C2,γ̃+1/2

2

∫
Ω

∫
Ω

(u(x)− u(y))(φ(x)− φ(y))

|x− y|3+2γ̃
dxdy. (3.14)

Let AL be the closed linear operator associated with the closed elliptic form EN
Ω in

the sense that
D(AL) := {u ∈ H γ̃+1/2(Ω), ∃ v ∈ L2(Ω),

EN
Ω (u, φ) = (v, φ), ∀φ ∈ H γ̃+1/2(Ω)},

ALu = v.

(3.15)

Remark 3.2. The operator AL can be considered as a realization of the operator

A
γ̃+1/2
Ω on L2(Ω) with the fractional Neumann type boundary conditionN 2−2(γ̃+1/2)u =
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0 on ∂Ω. Specifically, if Ω has a C2 boundary, then based on the ideas of Propo-
sition 6.1 in [46],we find that D(AL) ∪ C2

2γ̃+1(Ω̄) = {u ∈ C2
2γ̃+1(Ω̄), N 1−2γ̃u(z) =

0 on ∂Ω}.

Based on these considerations, equation (3.12) should have the following form:{
∆us + iωτALu

s + k2(1 + q)us = (−k2q − iωτk2γ+1)uinc in BR,

∂nu
s = Bus on ∂BR.

(3.16)

Define a : H1(BR)×H1(BR) → C as

a(us, φ) =

∫
BR

∇us · ∇φ̄dx− iωτEN
Ω (us, φ̄)

− k2
∫
BR

(1 + q(x))usφ̄ dx−
∫
∂BR

Busφ̄dS,
(3.17)

then define b : H1(BR) → C as

b(φ) =

∫
BR

(k2q(x) + iωτk2γ̃+1)uincφ̄ dx. (3.18)

Following (3.15) and (3.16), we can easily obtain the variational form of equation
(3.12) as follows:

a(us, φ) = b(φ) ∀φ ∈ H1(BR). (3.19)

For a given scatterer q, fractional order function γ and an incident field uinc, we
define the map S(q, γ, uinc) by us = S(q, γ, uinc), where us is the solution of the
problem (3.12) or the variational problem (3.19). It is easily seen that the map
S(q, γ, uinc) is linear with respect to uinc but is nonlinear with respect to q, in
addition, γ is assumed to be known in the fractional scattering problem. Hence,
we may denote S(q, γ, uinc) by S(q)uinc.

Theorem 3.3. Let 0 < γ̃ < 1/2. If the wavenumber k is sufficiently small, then
the variational problem (3.19) admits a unique weak solution in H1(BR) and S(q)
is a bounded linear map from L2(BR) to H

1(BR). Furthermore, there is a constant
C depends on BR and ∥q∥L∞(BR), such that

∥S(q)uinc∥H1(BR) ≤ Ck∥uinc∥L2(BR). (3.20)

The proof is inspired by the method used in [2, 3, 4, 5] for the integer order
Helmholtz equation, so we only give a sketch here for concise.

Proof. Define

a1(u
s, φ) = (∇us,∇φ)− iωτEN

Ω (us, φ)− ⟨Bus, φ⟩,
a2(u

s, φ) = −((1 + q)us, φ).

It is obviously that a = a1 + k2a2. Since EN
Ω (us, us) ≥ 0, we can obtain

|a1(us, us)| ≥ C∥∇us∥2L2(BR) + |ωτ |EN
Ω (us, us) + C∥us∥2L2(∂BR)

≥ C∥us∥2H1(BR),

where we used Theorem 2.6.4 in [39]. Afterward, we define an operator A :
L2(BR) → H1(BR) by

a1(Au
s, φ) = a2(u

s, φ), ∀φ ∈ H1(BR).
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Using the Lax-Milgram lemma, it follows that ∥Aus∥H1(BR) ≤ C∥us∥L2(BR). Define

a function w ∈ L2(BR) by requiring w ∈ H1(BR) and satisfying

a1(w,φ) = b(φ) ∀φ ∈ H1(BR). (3.21)

It follows from the Lax-Milgram lemma again that

∥w∥H1(BR) ≤ C(k2∥q∥L∞(BR) + |ω|τk2γ̃+1)∥uinc∥L2(BR). (3.22)

Using the operator A, we can see that problem (3.19) is equivalent to finding us ∈
L2(BR) such that

(I + k2A)us = w. (3.23)

When the wavenumber is small enough, the operator I+k2A has a uniform bounded
inverse. Then, we have the estimate ∥us∥L2(BR) ≤ C∥w∥L2(BR). Rearranging

(3.23), we have us = w − k2Aus, so we obtain

∥us∥H1(BR) ≤ ∥w∥H1(BR) + Ck2∥us∥L2(BR) ≤ Ck∥uinc∥L2(BR),

where we used (3.22) in the second inequality. �
In order to obtain a similar result for a general wavenumber k > 0, we need the

following uniqueness result.

Lemma 3.4. Given the scatterer q ∈ L∞(BR), the direct scattering problem (3.16)
has at most one solution.

Proof. It suffices to show that us = 0 in BR if uinc = 0 (no source term). From the
Green’s formula and fractional Gauss-Green formula (Lemma 2.3), we have

0 =

∫
BR

us(∆ūs − iωτALū
s)− ūs(∆us + iωτALu

s) dx

=

∫
∂BR

us
∂ūs

∂n
− ūs

∂us

∂n
dS − i Cn,γ̃+1/2ωτ

∫
Ω

∫
Ω

|us(x)− us(y)|2

|x− y|n+2γ̃+1
dx dy

= −i

(
2Im

∫
∂BR

ūsBus dS + Cn,γ̃+1/2ωτ

∫
Ω

∫
Ω

|us(x)− us(y)|2

|x− y|n+2γ̃+1
dx dy

)
.

For the last equality of the above formula, the second term in the bracket is non-
negative. Based on the same ideas used in the proof of Theorem 2.6.5 in [39], we

obtain that us = 0 on ∂BR. The boundary condition (3.11) yields further ∂us

∂n = 0

on ∂BR. Therefore, we easily see that us = 0 in R2\BR. Let us recall that for
uinc = 0, we have {

∆us + iωτALu
s + k2(1 + q)us = 0 in BR

∂nu
s = Bus on ∂BR.

(3.24)

By taking the absolute value on both sides of the above equation, we obtain

|∆us|2 + ω2τ2|ALu
s|2 ≤ |k2(1 + q)us| for x ∈ BR.

Hence, it is obviously that

|∆us(x)|2 ≤ |k2(1 + q(x))us(x)| for x ∈ BR.

From the results in [27], we obtain us = 0 in BR. �
With the above lemma, we can obtain the following result for general k > 0 by

using the Fredholm alternative theorem.



12 J.X.JIA, S. YUE, J. PENG, AND J. GAO

Theorem 3.5. Given the scatterer q ∈ L∞(BR), the variational problem (3.19)
admits a unique weak solution in H1(BR) for all k > 0, and S(q) is a bounded
linear map from L2(BR) to H

1(BR). Furthermore, the estimate

∥Suinc∥H1(BR) ≤ C∥uinc∥L2(BR), (3.25)

holds, where the constant C depends on k, BR, and ∥q∥L∞(BR).

Theorem 3.6. Assume that q1, q2 ∈ L∞(BR). Then,

∥S(q1)u
inc −S(q2)u

inc∥H1(BR) ≤ C∥q1 − q2∥L∞(BR)∥uinc∥L2(BR), (3.26)

where the constant C depends on k, BR, and ∥q2∥L∞(BR).

Proof. Let us1 = S(q1)u
inc and us2 = S(q2)u

inc. It follows that for j = 1, 2

∆usj + iωτALu
s
j + k2(1 + qj)u

s
j = (−k2qj − iωτk2γ+1)uinc.

By setting δus = us1 − us2, we have

∆δus + iωτALδu
s + k2(1 + q1)δu

s = −k2(q1 − q2)(u
inc + us2).

The function δus also satisfies the boundary condition

∂nδu
s = Bδus on ∂BR.

By using similar methods for proving Theorem 3.5, we obtain

∥δus∥H1(BR) ≤ C∥q1 − q2∥L∞(BR)∥uinc + us2∥L2(BR).

Using Theorem 3.5 for us2, we have ∥us2∥H1(BR) ≤ C∥uinc∥L2(BR), which gives

∥S(q1)u
inc −S(q2)u

inc∥H1(BR) ≤ C∥q1 − q2∥L∞(BR)∥uinc∥L2(BR),

where the constant C depends on k, BR, and ∥q2∥L∞(BR). �

3.2. Dispersion-dominated model. Based on the time-domain equation (1.6),
we can easily obtain the dispersion-dominated fractional Helmholtz equation as
follows:

(−∆)γ+1u− k2(1 + q)u = 0 in R2. (3.27)

Given that model (3.27) is obviously a higher-order elliptic equation, we may trans-
fer this model to a lower-order elliptic system. As mentioned in the above section,
the total field u consists of the incident field uinc and the scattered field us:

u = uinc + us, (3.28)

with uinc(x) = eikx·d. Using formula (3.4), we will obtain

(−∆)γ+1uinc − k2γ+2uinc = 0. (3.29)

We can easily see that the scattered field us satisfies

(−∆)γ+1us − k2(1 + q)us = (k2q + k2 − k2γ+2)uinc. (3.30)

Since 2γ + 2 > 2, equation (3.30) is a high-order elliptic equation that has been
relatively ignored by the general theories of fractional elliptic equations. For high-
order equations, they can be transformed into some elliptic systems, which will
consequently generate cross-correlated terms and may prevent the usage of unique
continuation results. Therefore, equation (3.30) seems more difficult than the loss-
dominated equation.
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By our assumption, there has attenuation effect in domain Ω ⊂ supp(q) ⊂ BR

and no attenuation effect in BR\Ω. Hence, we may see that the operator (−∆)γ

results in the “perturbation” of the non-attenuation equation. Given that the
fractional equation (3.30) can be reduced to (3.8) in R2\Ω, the operator defined in
(3.10) remains valid. Similar to the loss-dominated case, we consider the bounded

domain equation. In this case, the regional fractional Laplace operator Aγ̃
Ω needs

to be used. Based on these considerations, we obtain the following elliptic system:

(−∆)gs − k3/2(1 + q)us = (k3/2q + k3/2 − k2γ+3/2)uinc in BR,

Aγ̃
Ωu

s − k1/2gs = 0 in Ω,

∂

∂n
gs = Bgs on ∂BR,

us = gs on ∂Ω.

(3.31)

In the above system and in what follows, the scattered field us outside Ω is defined
as gs. Because gs satisfies a second-order elliptic equation, we expect that the
interior regularity of gs will be high enough to ensure that no boundary term exists
in the fractional Gauss-Green formula (2.9). Following the ideas used in Section 7
in [46], we define

ED
Ω (us, ψ) =

C2,γ̃

2

∫
Ω

∫
Ω

(us(x)− us(y))(ψ(x)− ψ(y))

|x− y|2+2γ̃
dxdy +

∫
∂Ω

usψdS.

For Us = (gs, us) ∈ H1(BR) × H γ̃(Ω) and Φ = (φ,ψ) ∈ H1(BR) × H γ̃(Ω), we
define

aD(Us,Φ) =

∫
BR

∇gs · ∇φ̄dx−
∫
∂BR

Bgsφ̄dS

− k3/2
∫
BR

(1 + q)usφ̄dx+ ED
Ω (us, ψ̄)− k1/2

∫
Ω

gsψ̄dx,

and

bD(Φ) = k3/2
∫
BR

(q + 1− k2γ)uincφ̄dx.

Then, we can define the weak formulation of system (3.31) as follow:

aD(Us,Φ) = bD(Φ) ∀Φ ∈ H1(BR)×H γ̃(Ω). (3.32)

We use an iterative procedure to prove the well-posedness for the dispersion-
dominated equation under the small wavenumber assumption. Different to the
loss-dominated equation, we cannot employ the unique continuation result for the
second-order elliptic operators [26] to prove uniqueness. Hence, the Fredholm al-
ternative theorem cannot provide a unique solution for a general wavenumber. To
achieve well-posedness without small wavenumber assumptions, a unique continu-
ation result for the regional fractional Laplacian may needs to be constructed.

Theorem 3.7. Let 0 < γ̃ < 1/2 and

k <

 min
(

C2,γ̃

2 , 1
)

2(1 + ∥q∥L∞(BR))(1 + ∥uinc∥L2(BR))

2

with C2,γ̃ is defined as in (2.1). The variational problem (3.32) admits a unique
weak solution in H1(BR)×H γ̃(Ω).
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Proof. Step 1: An iterative method is employed to show the existence of this
problem. Let us0 = gs0 = 0, and write the following system:

−∆gsn+1 = k3/2(1 + q)usn + k3/2(q + 1− k2γ)uinc in BR,

Aγ̃
Ωu

s
n+1 = k1/2gsn in Ω,

∂

∂n
gsn+1 = Bgsn+1 on ∂BR,

usn+1 = gsn on ∂Ω.

(3.33)

The weak form of the above system (3.33) can be written as∫
BR

∇gsn+1 · ∇φ̄dx−
∫
∂BR

Bgsn+1φ̄dS

= k3/2
∫
BR

(1 + q)usnφ̄dx+ k3/2
∫
BR

(q + 1− k2γ)uincφ̄dx,

(3.34)

ED
Ω (usn+1, ψ̄) = k1/2

∫
Ω

gsnψ̄dx. (3.35)

Given that this system can be easily solved by using the Lax-Milgram lemma, we
may obtain a series of solutions usn ∈ H γ̃(Ω) and gsn ∈ H1(BR) with n = 0, 1, 2, · · · .

We now need some uniform estimates of the solution series {gsn, usn}n=0,1,2,···.
Taking φ, ψ as equal to gsn+1, u

s
n+1 in (3.34), we obtain

k∥gsn+1∥2H1(BR) ≤k
3/2(1 + ∥q∥L∞(BR))(∥usn∥L2(Ω) + ∥gsn∥L2(BR))∥gsn+1∥L2(BR)

+ k3/2(1 + ∥q∥L∞(BR))∥uinc∥L2(BR)∥gsn+1∥L2(BR)

≤1

2
k2(1 + ∥q∥L∞(BR))

2(∥usn∥L2(Ω) + ∥gsn∥L2(BR)

+ ∥uinc∥L2(BR))
2 +

k

2
∥gsn+1∥2L2(BR),

where the properties of the DtN operator has been used [39] for the term on the
left hand side. Then, we easily find that

∥gsn+1∥H1(BR) ≤k1/2(1 + ∥q∥L∞(BR))(∥usn∥Hγ̃(Ω)

+ ∥gsn∥H1(BR) + ∥uinc∥L2(BR)).
(3.36)

Taking φ, ψ as equal to gsn+1, u
s
n+1 in (3.35) and using (7.2) in [46], we obtain

C1∥usn+1∥2Hγ̃(Ω) ≤ k1/2
∫
Ω

gsnu
s
n+1dx ≤ k1/2∥gsn∥L2(Ω)∥usn+1∥Hγ̃(Ω)

≤ 1

2C1
k∥gsn∥2H1(Ω) +

C1

2
∥usn+1∥2Hγ̃(Ω),

(3.37)

where C1 = min
(

C2,γ̃

2 , 1
)
. Then, we easily know that

∥usn+1∥Hγ̃(Ω) ≤
k1/2

C1
∥gsn∥H1(BR). (3.38)

We now assume that ∥gsk∥H1(BR) + ∥usk∥Hγ̃(Ω) ≤ 1 with k = 0, 1, · · · , n − 1. Com-
bining (3.36) and (3.38), we finally obtain that

∥gsn∥H1(BR) + ∥usn∥Hγ̃(Ω) ≤
2k1/2

C1
(1 + ∥q∥L∞(BR))(1 + ∥uinc∥L2(BR)). (3.39)
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By our condition on k, we know that

∥gsn∥H1(BR) + ∥usn∥Hγ̃(Ω) ≤ 1. (3.40)

Hence, we obtain that (3.40) holds for n ∈ N.
From Section 7 in [40], we know that H γ̃(Ω) and H1(BR) are compactly embed-

ded into space L2(Ω) and L2(BR), respectively. Therefore, for some functions us

and gs, we have

usn ⇀ us in H γ̃(Ω), gsn ⇀ gs in H1(BR),

usn → us in L2(Ω), gsn → gs in L2(BR),
(3.41)

where “⇀” indicates weak convergence. Adding (3.34) and (3.35) together and
using the above convergence properties (3.41), we finally arrive at

aD(Us,Φ) = bD(Φ), (3.42)

with Us = (gs, us) and Φ = (φ,ψ). Hence, a solution of system (3.32) has been
found.
Step 2: Taking two solutions Us

1 = (gs1, u
s
1) and Us

2 = (gs2, u
s
2). Denote δUs =

Us
1 − Us

2 = (δgs, δus), then δUs satisfies

(−∆)δgs − k3/2(1 + q)δus = 0 in BR,

Aγ̃
Ωδu

s − k1/2δgs = 0 in Ω,

∂

∂n
δgs = Bδgs on ∂BR,

δus = δgs on ∂Ω.

(3.43)

For the above system (3.43), performing the same procedure from (3.36) to (3.39),
we obtain

∥δgs∥H1(BR) + ∥δus∥Hγ̃(Ω)

≤ 2k1/2

C1
(1 + ∥q∥L∞(BR))(∥δgs∥H1(BR) + ∥δus∥Hγ̃(Ω)).

(3.44)

Based on our assumptions, we find

∥δgs∥H1(BR) + ∥δus∥Hγ̃(Ω) < ∥δgs∥H1(BR) + ∥δus∥Hγ̃(Ω). (3.45)

Hence, the proof is completed. �

Remark 3.8. In Theorem 3.7, we only prove us ∈ H γ̃(Ω) which seems can be
improved. From the second equation in (3.31) and gs ∈ H1(BR), we may expect
us ∈ H1+γ̃(Ω) ∪ H1(BR). The key point is the following fractional order elliptic
equation: {

Aγ̃
Ωu

s = kgs in Ω,

us = gs on ∂Ω.
(3.46)

Intuitively, we can obtain some higher regularity properties of us globally. However,
the regional fractional Laplace operator used here differs from the spectral Dirich-
let fractional Laplacian employed in [8], which is illustrated in [21]. Obviously,
the regional fractional Laplace operator also differs from the fractional Laplacian
studied in [42]. Therefore, the conclusions obtained in [8, 42] cannot be used direct-
ly. Because the interior regularity for equations with regional fractional Laplacian
cannot be easily obtained [38], we speculate that intricate new techniques need to
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be developed apart from the existing techniques shown in [8, 42]. Hence, we will
not investigate equation (3.46) further in this paper.

4. Inverse Methods

In this section, we provide the well-posedness theory for Bayesian inversion with
model reduction error. As a straightforward extension, we show the relationship
between the Bayesian method and the regularization method. Then, we investigate
the small error limit problem, that is, whether the estimated function tends to be
the true function if both the model reduction error and white noise vanish. At last,
the general theory has been applied to a concrete inverse scattering problem.

4.1. Well-posedness. Let X,Y be separable Hilbert space equipped with the
Borel σ-algebra, and let Ga : X → Y be a measurable mapping. Following the
ideas presented in [29], we wish to solve the inverse problem of finding x from y
where

y = Ga(x) + ϵ+ η, (4.1)

and η ∈ Y denotes noise, ϵ denotes the model reduction error. We employ a
Bayesian approach to solve this problem in which we let (x, y) ∈ X × Y be a
random variable and compute x|y. We specify the assumptions on the random
variable (x, y) as follows:

Assumption 2:

• Prior: x ∼ µ0 measure on X and µ0 is chosen to be a Gaussian with mean
x̄ and covariance operator Cx ∈ L+

1 (X).
• Noise: η ∼ Q0 = N (0, Cη) measure on Y with Cη ∈ L+

1 (Y ), and η ⊥ x.
• Model Reduction Error: ϵ ∼ Rϵ̄ = N (ϵ̄, Cϵ) measure on Y with Cϵ ∈ L+

1 (Y ),
and η ⊥ ϵ.

For simplicity, we take Y = RJ with J ∈ N+ in the following. Let (E, ⟨·, ·⟩, ∥·∥E)
be the Cameron-Martin space of the Gaussian measure µ0 on X, and we make the
following assumptions concerning the potential Φ appearing in Bayes’ formula.

Assumption 3: The function Φ : X × Y → R satisfies the following:

(1) For every ϵ > 0, there is an M ∈ R, such that for all u ∈ X,

Φ(x; y) ≥M − ϵ∥u∥2X .

(2) there exist p > 0 and for every r > 0 a K1 = K1(r) > 0 such that, for all
x ∈ X and y ∈ Y with |y| < r,

Φ(x; y) ≤ K1(1 + ∥x∥pX);

(3) for every r > 0 there is K2 = K2(r) > 0 such that, for all x1, x2 ∈ X and
y ∈ Y with max{∥x1∥X , ∥x2∥X , |y|} < r,

|Φ(x1; y)− Φ(x2; y)| ≤ K2∥x1 − x2∥X ;

(4) there is q ≥ 0 and for every r > 0 a K3 = K3(r) > 0 such that, for all
y1, y2 ∈ Y with max{|y1|, |y2|} < r, and for all x inX,

|Φ(x; y1)− Φ(x; y2)| ≤ K3(1 + ∥x∥qX)|y1 − y2|.
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Given that we cannot assume ϵ ⊥ x in (4.1), we then assume (ϵ, x) ∈ H := Y ×X
that is distributed according to a Gaussian measure N ((ϵ̄, x̄), C). Denote

Cx = E(x− x̄)⊗ (x− x̄), Cϵ = E(ϵ− ϵ̄)⊗ (ϵ− ϵ̄),

Cxϵ = E(x− x̄)⊗ (ϵ− ϵ̄), Cϵx = E(ϵ− ϵ̄)⊗ (x− x̄).

According to Theorem 6.20 in [44] (which results can also be found in [22]), we find
that ϵ|x ∼ N (ϵ̄x, Cϵ|x), where

ϵ̄x = ϵ̄+ CϵxC−1
x (x− x̄), Cϵ|x = Cϵ − CϵxC−1

x Cxϵ.

Define

ν = ϵ+ η, (4.2)

we have

ν|x = ϵ|x+ η, (4.3)

and ν|x ∼ N (ν̄x, Cν|x), where

ν̄x = ϵ̄+ CϵxC−1
x (x− x̄), Cν|x = Cη + Cϵ − CϵxC−1

x Cxϵ. (4.4)

Thus, we obtain

y|x ∼ Q̃ := N (G(x) + ν̄x, Cν|x).

We assume throughout the following that Q̃ ≪ Q0 for x µ0-a.s. Thus, for some
potential Φ : X × Y → R, we have

dQ̃
dQ0

(y) =
1

Z(y)
exp(−Φ(x; y)). (4.5)

Thus, for a fixed x, Φ(x; ·) : Y → R is measurable.
We define ς0 to be the product measure

ς0(dx, dy) = µ0(dx)Q0(dy). (4.6)

We assume in what follows that Φ(·, ·) is ς0 measurable. Then, the random variable

(x, y) is distributed according to measure ς(dx, dy) = µ0(dx)Q̃(dy). Furthermore,
it then follows that ς ≪ ς0 with

dς

dς0
(x, y) =

1

Z(y)
exp(−Φ(x; y)). (4.7)

By similar methods used in the proof of Theorems 4.3 and 4.4 in [19], we can prove
the following theorem. The details of this proof are omitted for conciseness.

Theorem 4.1. Assume that Φ : X × Y → R is ς0 measurable, Assumption 2 holds
and that, for y Q0-a.s.,

Z(y) :=

∫
X

exp(−Φ(x; y))µ0(dx) > 0. (4.8)

Then, the conditional distribution of x|y exists under ς, and is denoted by µy.
Furthermore µy ≪ µ0 and, for y ς-a.s.,

dµy

dµ0
(x) =

1

Z(y)
exp(−Φ(x; y)). (4.9)
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Moreover, the measure µy is Lipschitz in the data y, with respect to the Hellinger
distance: if µy and µy′

are two measures given by (4.9) with data y and y′, then
there is C = C(r) > 0 such that, for all y, y′ with max{|y|, |y′|} ≤ r,

dHell(µ
y, µy′

) ≤ C|y − y′|. (4.10)

Consequently all polynomially bounded functions of x ∈ X are continuous in y. In
particular the mean and covariance operator are continuous in y.

Remark 4.2. Let ν be a common reference measure of measures µ and µ′. The
Hellinger distance used in Theorem 4.1 is defined by

dHell(µ, µ
′) =

1

2

∫ (√
dµ

dν
−
√
dµ′

dν

)2

dν

1/2

.

Remark 4.3. When Y is assumed to be a general Hilbert space, Theorem 4.1 still
holds if we add the following assumptions:

(1) Im(C1/2
η ) = Im(C1/2

ν|x ) and E := Im(C1/2
η );

(2) G(x) + ν̄x ∈ E;

(3) the operator T := (C−1/2
η C1/2

ν|x )(C
−1/2
η C1/2

ν|x )
∗ − I is Hilbert-Schmidt in Ē.

If the operators Cη and Cν|x commute with each other, then these conditions can
be simplified further by employing Theorem 2.9 in [17].

Remark 4.4. By applying some small modifications as stated in [19], Theorem 4.1
still holds when X is a separable Banach space.

In the last part of this section, we explain the relations between the Bayesian
methods and regularization methods. For this, the MAP estimators and the Onsager-
Machlup functional play an important role, which can be seen from the work
[20, 18, 26]. Similar to [18], we define a function I : X → R by

I(x) =

Φ(x; y) +
1

2
∥x− x̄∥2E if x− x̄ ∈ E, and

+∞ else,
(4.11)

where E denotes the Cameron-Martin space of the Gaussian measure µ0 on X. The
MAP estimate of a measure µ can be defined as follows.

Definition 4.5. Let

M ϵ = sup
x∈X

µ(Bϵ(x)).

Any point x̂ ∈ X satisfying

lim
ϵ→0

µ(Bϵ(x̂))

M ϵ
= 1

is a MAP estimate for the measure µ.

With these definitions, we present the following results.

Theorem 4.6. Suppose that Assumption 2 hold. Assume also that there exists an
M ∈ R such that Φ(x; y) ≥M for any x ∈ X.

• Let zδ = argmaxz∈X µy(Bδ(z)). There is a z̄ ∈ E and a subsequence of
{zδ}δ>0 which converges to z̄ strongly in X.
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• The limit z̄ is a MAP estimator and a minimizer of I.

Corollary 4.7. Under the conditions of Theorem 4.6, we have the following.

• Any MAP estimator, given by Definition 4.5, minimizes the Onsager-Machlup
functional I.

• Any z∗ ∈ E which minimizes the Onsager-Machlup functional I is a MAP
estimator for measure µy appeared in Theorem 4.1.

Following Assumption 2, the proofs of Theorem 4.6 and Corollary 4.7 are exactly
the same as those in [18]. Therefore, we only provide these two results in this paper.

4.2. Small error limits. This section is devoted to a small error limit problem,
which could be seen as a result of posterior consistency: the idea that the posterior
concentrates near the truth that give rise to the data in the small error limits. The
present study is inspired by the work [6, 18]. For notational simplicity, we assume
that x̄ = 0 throughout this section. We also let G be the forward operator without
model reduction error and let Gn be the forward operator with model reduction error
1
nϵn with n ∈ N, where ϵn ∼ N (ϵ̄, Cϵ) is defined similarly as that in Assumption

2. In the following, we denote the truth by x†, let X be a separable Hilbert space,
and assume that Y = RJ . The problem can be written as

yn = Gn(x
†) +

1

n
ϵn +

1

n
ηn (4.12)

where n ∈ N and ηn ∼ Q0 = N (0, Cη) is defined similarly as in Assumption 2.
Similar to (4.2) and (4.3), we can define νn, νn|x. Then we have νn|x ∼ N (ν̄nx , Cn

ν|x)

where

ν̄nx =
1

n

(
ϵ̄+ CϵxC−1

x (x− x̄)
)
=

1

n
ν̄x,

Cn
ν|x =

1

n2
(
Cη + Cϵ − CϵxC−1

x Cxϵ
)
=

1

n2
Cν|x.

(4.13)

Assume µ0 satisfy Assumption 2, we have the following formula for the posterior
measure:

dµyn

dµ0
(x) ∝ exp

(
−n

2

2
|yn − G(x)− ν̄nx |2Cν|x

)
(4.14)

If we assume that G,Gn are uniformly Lipschitz continuous on bounded sets, then
based on Theorem 4.6 and Corollary 4.7, the MAP estimate of the above measure
are the minimizers of

In(x) := ∥x∥2E + n2|yn −Gn(x)− ν̄nx |2Cν|x
, (4.15)

where E denotes the Cameron-Martin space of the Gaussian measure µ0 on X.
With these preparations, we can show the main result of this section as follows.

Theorem 4.8. Assume that Gn,G : X → RJ are uniformly Lipschitz on bounded
sets and x† ∈ E. For every x ∈ E, we assume

lim
n→+∞

|Gn(x)− G(x)| = 0. (4.16)

For every n ∈ N, let xn ∈ E be a minimizer of In given by (4.15). Then, there exist
a x∗ ∈ E and a subsequence of {xn}n∈N that converges weakly to x∗ in E, almost
surely. For any such x∗, we have G(x∗) = G(x†).
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Proof. For two column vectors a, b ∈ RJ , denote ⟨a, b⟩Cν|x := aT · C−1
ν|x · b, where a

T

represents the transpose of a. Based on (4.12) and (4.13), we obtain

In =∥x∥2E + n2
∣∣∣∣Gn(x

†)− Gn(x) +
1

n
ϵn − 1

n
ϵ̄+

1

n
ηn − 1

n
CϵxC−1

x x

∣∣∣∣2
Cν|x

=∥x∥2E + n2|Gn(x
†)− Gn(x)|2Cν|x

+ |ϵn − ϵ̄+ ηn − CϵxC−1
x x|2Cν|x

+ 2n⟨Gn(x
†)− Gn(x), ϵn − ϵ̄+ ηn − CϵxC−1

x x⟩Cν|x

Define

Jn =
1

n2
∥x∥2E + |Gn(x

†)− Gn(x)|2Cν|x
+

1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x x|2Cν|x

+
2

n
⟨Gn(x

†)− Gn(x), ϵn − ϵ̄+ ηn − CϵxC−1
x x⟩Cν|x .

We obtain argminx In = argminx Jn. Define xn ∈ E as xn = argminx∈E Jn(x). The
existence of xn obviously follows from Theorem 5.4 in [44]. Based on the definition
of xn, we have

1

n2
∥xn∥2E + |Gn(x

†)− Gn(xn)|2Cν|x
+

1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x xn|2Cν|x

+
2

n
⟨Gn(x

†)− Gn(xn), ϵn − ϵ̄+ ηn − CϵxC−1
x xn⟩Cν|x

≤ 1

n2
∥x†∥2E +

1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x x†|2Cν|x
.

Some simple calculations yields

1

n2
∥xn∥2E+|Gn(x

†)− Gn(xn)|2Cν|x
+

1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x xn|2Cν|x

≤ 1

n2
∥x†∥2E +

1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x x†|2Cν|x

+
2

n
|Gn(x

†)− Gn(xn)|Cν|x |ϵn − ϵ̄+ ηn − CϵxC−1
x xn|Cν|x .

(4.17)

Using Young’s inequality, we have

2

n
|Gn(x

†)− Gn(xn)|Cν|x |ϵn − ϵ̄+ ηn − CϵxC−1
x xn|Cν|x

≤m− 1

m
|Gn(x

†)− Gn(xn)|2Cν|x
+

m

m− 1

1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x xn|2Cν|x

(4.18)

for a large enough real number m which will be specified later. Substituting (4.18)
into (4.17), we have

1

n2
∥xn∥2E+

1

m
|Gn(x

†)− Gn(xn)|2Cν|x
≤ 1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x x†|2Cν|x

+
1

n2
∥x†∥2E +

1

(m− 1)n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x xn|2Cν|x
.

(4.19)

We then focus on the third term on the right-hand side of the above inequality.
Simple calculations yield the following:

1

(m− 1)n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x xn|2Cν|x

≤ 2

m− 1

1

n2
|ϵn − ϵ̄+ ηn|2Cν|x

+
2

m− 1

1

n2
C1∥xn∥2E .

(4.20)
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Here, we take a sufficiently large m such that 2
m−1C1 ≤ 1

2 . By substituting (4.20)

into (4.19), we obtain

1

2n2
∥xn∥2E +

1

m
|Gn(x

†)− Gn(xn)|2Cν|x
≤ 2

(m− 1)n2
|ϵn − ϵ̄+ ηn|2Cν|x

+
1

n2
∥x†∥2E +

1

n2
|ϵn − ϵ̄+ ηn − CϵxC−1

x x†|2Cν|x
.

(4.21)

Taking expectation on both sides of the above inequality, we obtain

1

2n2
E∥xn∥2E +

1

m
E|Gn(x

†)− Gn(xn)|2Cν|x
≤ 1

n2

(
∥x†∥2E +

2

m− 1
K1 +K2

)
,

where

K1 := E|ϵn − ϵ̄+ ηn|2Cν|x
, K2 := E|ϵn − ϵ̄+ ηn − CϵxC−1

x x†|2Cν|x
.

Obviously, K1 and K2 are bounded and independent of n. Hence, we have

E|Gn(x
†)− Gn(xn)|2Cν|x

→ 0 as n→ ∞ (4.22)

and

E∥xn∥2E ≤ 2∥x†∥2E +
4

m− 1
K1 + 2K2. (4.23)

Similar to the proof of (4.4) in [18], by (4.23), we obtain that there exists x∗ ∈ E
and a subsequence {xnk(k)}k∈N of {xn}x∈N such that

E⟨xnk(k), v⟩E → E⟨x∗, v⟩E for any v ∈ E. (4.24)

By (4.22), we have |Gnk(k)(x
†)−Gnk(k)(xnk(k))|Cν|x → 0 in probability as k → ∞.

Therefore, there exists a subsequence {xm(k)} of {xnk(k)} such that

Gm(k)(x
†)− Gm(k)(xm(k)) → 0 a.s. as k → ∞.

Following our hypothesis, we know that Gm(k)(x
†) → G(x†) as k → ∞. Hence, we

have

Gm(k)(xm(k)) → G(x†) a.s. as k → ∞.

From (4.24), we obtain ⟨xm(k)−x∗, v⟩E → 0 in probability as k → ∞, and so there
exists a subsequence {xm̂(k)} of {xm(k)} such that xm̂(k) converges weakly to x∗ in
E almost surely as k → ∞. Because E is compactly embedded in X, this implies
that xm̂(k) → x∗ in X almost surely as k → ∞. Since

|G(x∗)− Gm̂(k)(xm̂(k))| ≤ |G(x∗)− Gm̂(k)(x
∗)|+ |Gm̂(k)(x

∗)− Gm̂(k)(xm̂(k))|,

according to hypothesis (4.16) and Gn are uniformly Lipschitz bounded, we obtain

Gm̂(k)(xm̂(k)) → G(x∗) a.s. as k → ∞.

The proof is therefore completed. �

In the above theorem, we assume that the truth x† belongs to the Cameron-
Martin space E. We can show a weaker convergence result when x† only belongs
to X.

Theorem 4.9. Suppose that Gn, G and xn satisfy the assumptions of Theorem 4.8,
and that x† ∈ X. Then, there exists a subsequence of {Gn(xn)}n∈N converging to
G(x†) almost surely.
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We show the proof of Theorem 4.8 in detail. Combining the above calculations
with the arguments used in the proof of Corollary 4.3 in [18], we can easily write
the complete proof of Theorem 4.9.

4.3. Applications to an inverse scattering problem. Before going further, we
provide a hypothesis on the covariance operator.

Assumption 4: The operator A, densely defined on the Hilbert space H =
L2(BR;Rn), satisfies the following properties:

(1) A is positive-definite, self-adjoint and invertible;
(2) the eigenfunctions {ϕj}j∈N of A, form an orthonormal basis for H;

(3) there are C± > 0 such that the eigenvalues satisfy αj ≈ j2/n, for all j ∈ N;
(4) there is C > 0 such that

sup
j∈N

(
∥ϕj∥L∞ +

1

j1/n
Lip(ϕj)

)
≤ C.

4.3.1. Without model reduction error. As a warm up, let us consider the case with-
out model reduction error, which can be covered by the theory developed in [15].
Let BR ⊂ R2 be the ball mentioned in Section 3.1. We set X = Cu(BR), and define
V := H1(BR). Let ℓj with j = 1, 2, · · · , J are linear functionals on V , that means
ℓj ∈ V ∗ where V ∗ is the dual space of V . Define

q̃(x) := log(1 + q(x)), (4.25)

and as shown in Section 3.1, we denote us(x) = S(eq̃ − 1)uinc. According to
Theorem 3.5, we may know that us ∈ H1(BR). Hence, in our setting, the unknown
function x should be the function q̃ and the observation operator can be defined as

G(q̃) = {Gj(q̃)}Jj=1 := {ℓj(S(eq̃ − 1)uinc)}Jj=1. (4.26)

We take a prior on q̃ to denote the measure N (0, A−s) with s > 1 where A is an
operator satisfy Assumption 4 with n = 1. From Theorem 2.18 in [19], we obtain
that µ0(X) = 1.

Denote Q0 = N (0,Γ), Qq̃ = N (G(q̃),Γ). Taking B1 as a unit ball in X. Since

|G(q̃)| ≤ ∥S(eq̃ − 1)uinc∥H1 ≤ C <∞, (4.27)

and η ∼ N (0,Γ), noting that y is Q0-a.s. finite, we have for some M =M(y) <∞

sup
q̃∈B1

1

2
|Γ−1/2(y − G(q̃))|2 < M.

Denote Z =
∫
X
exp(−Φ(x; y))µ0(dx), by Theorem 6.28 in [15], we know that

Z ≥
∫
B1

exp(−M)µ0(dq̃) = exp(−M)µ0(B1) > 0.

Thus, by Theorem 2.1 in [15], we obtain

dµy

dµ0
(q̃) =

1

Z(y)
exp(−Φ(q̃; y)),

where

Φ(q̃; y) =
1

2
|Γ−1/2(y − G(q̃))|2. (4.28)

Considering (4.27) and Theorem 3.6, we easily verify that Φ in (4.28) satisfies
Assumption 3. Hence, we actually prove the following theorem.
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Theorem 4.10. For the two-dimensional inverse scattering problem related with
the loss-dominated fractional Helmholtz equation (problem (1.11) with G given by
(4.26)), if we assume q̃ = log(1 + q) ∼ µ0 where µ0 = N (0, A−s) with s > 1. In
addition, we assume η ∈ RJ , η ∼ Q0 where Q0 = N (0,Γ). Then the posterior mea-
sure µy exists and absolutely continuous with respect to µ0 with Randon-Nikodym
derivative given by

dµy

dµ0
(q̃) =

1

Z(y)
exp(−Φ(q̃; y)),

where

Φ(q̃; y) =
1

2
|Γ−1/2(y − G(q̃))|2, Z(y) =

∫
Cu(BR)

exp(−Φ(q̃; y))µ0(dq̃), (4.29)

In addition, the measure µy is continuous in the Hellinger metric with respect to
the data y.

Apart from this well-posedness result, the approximation [16] and MAP estima-
tors results [18] can also be obtained under the aforementioned setting.

4.3.2. With model reduction error. For the fractional Helmholtz equation in some
unbounded domain, we usually need to calculate it by adding some artificial bound-
ary conditions (e.g., absorbing boundary conditions or perfectly matched layer
methods). As a simple illustration, we will analyze the following absorbing bound-
ary conditions:

∂nu
s = ikus on ∂D, (4.30)

where D ⊂ Rn is a bounded Lipschitz domain. With this boundary condition, our
problem takes the following form:{

∆us + iωτALu
s + k2(1 + q)us = (−k2q − iωτk2γ+1)uinc in D

∂nu
s = ikus, on ∂D,

(4.31)

where supp(q) ⊂ D. As in Section 3.1, we denote us = Sa(q)u
inc. The operator Sa

and the operator S in Section 3.1 will be similar if the domain D is large enough.
For operator Sa, Theorems 3.3, 3.5, and 3.6 can be established similarly (actually,
the proof will be simpler). Denote ϵ̃ = Sa(q)u

inc − S(q)uinc, then ϵ̃ means the
system reduction error brought by the absorbing boundary condition.

Similar to Subsection 4.3.1, define V := H1(D). Let ℓj with j = 1, 2, · · · , J are
linear functionals on V , that means ℓj ∈ V ∗. Define

q̃(x) := log(1 + q(x)), (4.32)

then the forward operator will be defined as follows:

Ga(q̃) = {Gj
a(q̃)}Jj=1 := {ℓj(Sa(e

q̃ − 1)uinc)}Jj=1. (4.33)

The system reduction error can be defined as

ϵ = {ℓj(ϵ̃)}Jj=1 = {ℓj(Sa(q)u
inc −S(q)uinc)}Jj=1. (4.34)

Based on these considerations, our model can be formulated as

y = Ga(q̃) + ϵ+ η, (4.35)
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where ϵ, η ∈ RJ . In our setting, the covariance operators Cη and Cν|q̃ are symmetric
matrix. Hence, we can obtain the following form of the potential Φ:

Φ(q̃; y) =
1

2
|C−1/2

ν|q̃ (y − Ga(q̃)− ν̄q̃)|2. (4.36)

Let s ∈ R+, µ0 = N (0, A−2(s+1)), and X = H1+s(D). Based on Lemma 6.27 in
[44], we conclude that µ0(X) = 1 if A satisfies Assumption 4.

Theorem 4.11. For the two-dimensional inverse scattering problem concerned with
the loss-dominated fractional Helmholtz equation with absorbing boundary condition
(problem (4.31) with Ga given by (4.33)), if we assume q̃ = log(1 + q) ∼ µ0 where
µ0 = N (0, A−2(s+1)) with s > 0. In addition, we assume η ∈ RJ , η ∼ Q0 where
Q0 = N (0, Cη), (ϵ, q̃) ∈ H := RJ × H1+s(D) distributed according to a Gaussian
measure N ((ϵ̄, 0), C). Denote ν and ν|q̃ have same meaning with (4.2) and (4.3).
Then the posterior measure µy exists and absolutely continuous with respect to µ0

with Randon-Nikodym derivative given by

dµy

dµ0
(q̃) =

1

Z(y)
exp(−Φ(q̃; y)),

where

Φ(q̃; y) =
1

2
|C−1/2

ν|q̃ (y − Ga(q̃)− ν̄q̃)|2, (4.37)

and

Z(y) =

∫
H1+s(D)

exp(−Φ(q̃; y))µ0(dq̃).

In addition, the measure µy is continuous in the Hellinger metric with respect to
the data y.

Proof. To conclude the proof of this theorem, we need to check Z > 0 Q0-a.s. and
Φ defined in (4.37) satisfy Assumption 3. For the former one, notice that

|Ga(q̃)| ≤ ∥Sa(q̃)∥H1(D) ≤ C <∞,

where C depends on ∥q̃∥L∞(D) which can be bounded by ∥q̃∥H1+s(D). Because
η ∼ N (0, Cη), y is Q0-a.s. finite, for some M =M(y) <∞, we have

1

2
|C−1/2

ν|q̃ (y − Ga(q̃)− ν̄q̃)|2 < M.

Hence, by Theorem 6.28 in [15], we know that

Z ≥
∫
B1

exp(−M)µ0(dq̃) = exp(−M)µ0(B1) > 0.

To check Φ defined in (4.37) satisfy Assumption 3, we should notice that

∥Sa(q̃1)−Sa(q̃2)∥H1(D) ≤ C∥q̃1 − q̃2∥L∞(D) ≤ C∥q̃1 − q̃2∥H1+s(D), (4.38)

which can be verified easily by employing similar methods used in the proof of
Theorem 3.6. Considering (4.38), Assumption 3 can be verified by some simple
calculations. Hence, the proof is completed. �
Remark 4.12. We provide a simple example, which only incorporates model reduc-
tion error induced by the absorbing boundary condition. Using a similar method,
we may incorporate some other kinds of model reduction error (e.g., induced by
perfectly matched layer).
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Under the above setting, we easily know that the Onsager-Machlup function has
the following form:

I(q̃) =

{
|C−1/2

ν|q̃ (y − Ga(q̃)− ν̄q̃)|2 + ∥q̃∥2E if q̃ ∈ E, and

+∞ else,
(4.39)

with E = A−(s+1)H1+s(D). According to Theorems 4.6 and 4.7, we can calculate
the minimizers of function I(q̃) to obtain some appropriate estimators. Based on
this observation, it seems that we can design algorithms by employing ideas used
in [5, 31]. However, the present work focuses on the theoretical foundations. For
designing practical algorithms, we will report it in our future work.

5. Conclusion

Based on fractional Helmholtz equations, we study two scattering problems re-
lated to the loss- and dispersion-dominated fractional Helmholtz equations. For the
former, we establish well-posedness for a general wavenumber k > 0 and prove the
Lipschitz continuity of the solution with respect to the scatterer. For the latter,
because the problem seems intricate, we only prove well-posedness for a sufficiently
small wavenumber. For general wavenumbers, the problem needs to be investigated
further and some unique continuation results of fractional Laplace operators may
need to be established.

In order to study an inverse scattering problem related to the loss-dominated
fractional Helmholtz equation, we generalize the traditional infinite-dimensional
Bayesian method to the infinite-dimensional Bayesian model error method which
allows a part of the noise to depend on the target function (the function needs to
be estimated). A result similar to posterior consistency has been obtained, and
the relationship between Bayesian methods and regularization methods has been
discussed. In the end, the general theory has been applied to an inverse scattering
problem of the loss-dominated fractional Helmholtz equation.

There are numerous further problems, e.g., designing an algorithm for inverse
problems with this new model; generalizing our theory to incorporate the variable
Besov prior [28].
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