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Abstract. This paper is concerned with Carleman estimates for some anisotr-

opic space-fractional diffusion equations, which are important tools for investi-

gating the corresponding control and inverse problems. By employing a special
weight function and the nonlocal vector calculus, we prove a Carleman esti-

mate and apply it to build a stability result for a backward diffusion problem.

1. Introduction

Fractional diffusion equations (FDE) have been studied from the aspects of par-
tial differential equations [6, 7] and inverse problems [2, 10]. Comparing to the clas-
sical diffusion equations, the nonlocal operators appeared in FDE produce many
challenging problems. One of these problems is how to construct a Carleman type
estimate. It is well known that the Carleman estimate is a key tool for both the
direct problems and inverse problems on PDEs models [1, 4]. For time-fractional
equations, Xu et al. [9] prove a Carleman estimate by transforming time-fractional
diffusion equations to some integer-order diffusion equations. Then, this result has
been extended and used to an inverse coefficient problem by Ren and Xu [8].

However, the results of [8, 9] are focused on time-fractional equations which
describe the sub-diffusion phenomenon. Recently, Jin and Rundell [5] point out
that the study of space-fractional inverse problems, either theoretical or numerical,
is fairly scarce and difficult. To some extent we fill this gap by establishing a
Carleman estimate for equations with anisotropic fractional-space operator.

The paper is organized as follows. In Section 2, we provide a brief introduction
about nonlocal vector calculus. In Section 3, we prove a Carleman estimate. In
Section 4, a backward diffusion problem has been studied.

2. Anisotropic space-fractional diffusion equations

In this section, firstly, let us provide a brief review of the nonlocal vector calculus
[3]. Denote n as the space dimension, Ω ⊂ Rn is a bounded open set. Given vector
mappings ν, α : Rn × Rn → Rk with α antisymmetric, the action of the nonlocal
divergence operator D on ν is defined as

D(ν)(x) :=

∫
Rn

(ν(x, y) + ν(y, x)) · α(x, y)dy for x ∈ Rn.(2.1)

Given a mapping u : Rn → R, the adjoint operator D∗ of D is defined as

D∗(u)(x, y) = −(u(y)− u(x))α(x, y) for x, y ∈ Rn.(2.2)
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From (2.1) and (2.2), one easily deduces that if a(t, x, y) = a(t, y, x) denotes a
second-order tensor satisfying a = aT , then

D(a · D∗u)(x) = −2

∫
Rn

(u(y)− u(x))α(x, y) · (a(t, x, y) · α(x, y))dy for x ∈ Rn.

In the following, we denote γ(t, x, y) := α(x, y) · (a(t, x, y) ·α(x, y)). Given an open
subset Ω ⊂ Rn, the corresponding interaction domain is defined as

ΩI := {y ∈ Rn\Ω such that α(x, y) 6= 0 for some x ∈ Ω} .(2.3)

Corresponding to the divergence operator D(ν) : Rn → R defined in (2.1), we define
the action of the nonlocal interaction operator N (ν) : Rn → R on ν by

N (ν)(x) := −
∫

Ω∪ΩI

(ν(x, y) + ν(y, x)) · α(x, y)dy for x ∈ ΩI .(2.4)

With these notations, we have the generalized nonlocal Green’s first identity∫
Ω

vD(a · D∗u)dx−
∫

Ω∩ΩI

∫
Ω∩ΩI

D∗v · (a · D∗u)dydx =

∫
ΩI

vN (a · D∗u)dx.(2.5)

Based on the above statements, anisotropic space-fractional diffusion equation
with the homogeneous “Dirichlet” volume-constrained condition can be written as

∂tu+D(a · D∗u) = f(t, x) on Ω× (0, T ),

u(t, x) = 0 on ΩI × (0, T ),

u(0, x) = u0(x) on Ω ∪ ΩI .

(2.6)

Similarly, equation with the homogeneous “Neumann” volume-constrained condi-
tion could be written as

∂tu+D(a · D∗u) = f(t, x) on Ω× (0, T ),

N (a · D∗u) = 0 on ΩI × (0, T ),

u(0, x) = u0(x) on Ω ∪ ΩI ,∫
Ω∪ΩI

udx = 0.

(2.7)

Let us specify the functions α(·, ·), a(·, ·, ·) in the definitions of D and D∗. Assume
β to be a constant between 0 and 1. Define Bε(x) := {y ∈ Ω ∪ ΩI : |y − x| ≤ ε},
and denote 1Bε(x)(·) to be an indicator function which takes value 1 in Bε(x). We
choose

α(x, y) =
y − x

|y − x|n/2+β+1
1Bε(x)(y), a(t, x, y) = (aij(t, x, y))1≤i,j≤n(2.8)

with aij ∈ C1([0, T ]× Rn × Rn), aij = aji, and in addition, we assume

0 < a∗|ξ|2 ≤
n∑

i,j=1

aij(t, x, y)ξiξj ≤ a∗|ξ|2,
n∑

i,j=1

∂taij(t, x, y)ξiξj ≤ a∗|ξ|2(2.9)

for all ξ ∈ Rn and y ∈ Bε(x). Denote γ(t, x, y) := α(x, y) · a(t, x, y) · α(x, y). Then
we know that

γ(t, x, y) =
(y − x) · a(t, x, y) · (y − x)

|y − x|n+2β+2
1Bε(x)(y).(2.10)
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Remark 2.1. Choosing ε =∞ and a(t, x, y) to be the identity matrix, we find that
the operator D(a ·D∗·) is just the operator (−∆)β . Hence, equations (2.6) and (2.7)
incorporate the following equation

∂tu(x, t) + (−∆)βu(x, t) = f(x, t) in Ω× (0, T ).(2.11)

In the sequel, we always denote Ω̃ := Ω∪ΩI , Q := Ω×(0, T ) and Q̃ := Ω̃×(0, T )

and define L2(0, T ; H̃2β(Ω̃)) as a space which includes functions in the following set{
u ∈ L2(Ω̃) :

∫ T

0

∫
Ω

∣∣∣∣∫
Ω̃

(u(y, t)− u(x, t))γ(t, x, y)dy

∣∣∣∣2 dxdt <∞
}

with

‖u‖2
L2(0,T ;H̃2β(·)(Ω̃))

:=

∫ T

0

∫
Ω

∣∣∣∣∫
Ω̃

(u(y, t)− u(x, t))γ(t, x, y)dy

∣∣∣∣2 dxdt.
3. A Carleman estimate

In this section, we denote L(u) = ∂tu+D(a · D∗u) and define ϕ(t) := eλt where
λ > 0 is fixed suitably.

Theorem 3.1. (Carleman estimate) We set ϕ(t) = eλt. Then there exists λ0 > 0
such that for any λ ≥ λ0 we can choose a constant s0(λ) > 0 satisfying: there exists
a constant C = C(s0, λ0) > 0 such that∫

Q

{
1

sϕ

(
|∂tu|2 + |D(a · D∗u)|2

)
+ sλ2ϕu2

}
e2sϕdxdt

+ λ

∫ T

0

∫
Ω̃

∫
Ω̃

|u(y, t)− u(x, t)|2

|y − x|n+2β
e2sϕdydxdt

≤ C
∫
Q̃

|L(u)|2e2sϕdxdt+ CeC(λ)s
(
‖u(·, T )‖2

Hβ(Ω̃)
+ ‖u(·, 0)‖2

Hβ(Ω̃)

)
for all s > s0 and all u ∈ C([0, T ];Hβ(Ω̃)) ∩ H1(0, T ;L2(Ω)) ∩ L2(0, T ; H̃2β(Ω̃))
satisfying u = 0 in ΩI × (0, T ), or N (a · D∗u) = 0 in ΩI × (0, T ).

Remark 3.2. Solutions mentioned in Theorem 3.1 do exist, which can be easily
verified by using the method developed in [3].

Proof. Set v = esϕu, Pv = esϕL(e−sϕv) = esϕf . Assume that u|ΩI = 0 or N (a ·
D∗u)|ΩI = 0. Obviously, we obtain Pv = ∂tv − (sλϕv − D(a · D∗v)) = esϕf. In
addition, we have

‖esϕf‖2L2(Q) =

∫
Q

|∂tv|2dxdt+ 2

∫
Q

∂tv
(
− sλϕv +D(a · D∗v)

)
dxdt

+

∫
Q

|sλϕv −D(a · D∗v)|2dxdt

≥
∫
Q

|∂tv|2dxdt+ 2

∫
Q

∂tvD(a · D∗v)dxdt+ 2

∫
Q

∂tv(−sλϕv)dxdt(3.1)

≡
∫
Q

|∂tv|2dxdt+ I1 + I2.

Thus ∫
Q

f2e2sϕdxdt ≥ I1 + I2,

∫
Q

|∂tv|2dxdt ≤
∫
Q

f2e2sϕdxdt+ |I1 + I2|.(3.2)
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In the following, Cj > 0 (j ∈ N) denote generic constants which are independent of
s and λ. Because s and λ are assumed to be large enough constants, without loss
of generality, we can assume s > 1 and λ > 1. For the term I1, we have

|I1| =

∣∣∣∣∣2
∫ T

0

∫
Ω̃

∫
Ω̃

D∗∂tv · a · D∗vdydxdt+ 2

∫ T

0

∫
ΩI

∂tvN (a · D∗v)dxdt

∣∣∣∣∣
=

∣∣∣∣∣2
∫ T

0

∫
Ω̃

∫
Ω̃

(∂tv(y, t)− ∂tv(x, t))γ(t, x, y)(v(y, t)− v(x, t))dydxdt

∣∣∣∣∣
=

∣∣∣∣∣−
∫ T

0

∫
Ω̃

∫
Ω̃

∂tγ(t, x, y)(v(y, t)− v(x, t))2dydxdt

+

∫
Ω̃

∫
Ω̃

γ(t, x, y)(v(y, t)− v(x, t))2dydx
∣∣∣t=T
t=0

∣∣∣∣∣
≤C1‖v‖2L2(0,T ;Hβ(Ω̃))

+ C1‖v(·, T )‖2
Hβ(Ω̃)

+ C1‖v(·, 0)‖2
Hβ(Ω̃)

,(3.3)

where (2.5) and (2.9) have been used. For the term I2, we have

I2 =− sλ
∫
Q

2(∂tv) v ϕdxdt = sλ

∫
Q

v2∂tϕdxdt− sλ
(∫

Ω

ϕv2dx
)∣∣∣t=T
t=0

≥ sλ2

∫
Q

ϕv2dxdt− sλ
∫

Ω

(
eλT |v(x, T )|2 + |v(x, 0)|2

)
dx.

(3.4)

From the first inequality in (3.2), and estimate (3.3) and (3.4), we obtain

‖esϕf‖2L2(Q) ≥ sλ
2

∫
Q

ϕv2dxdt− C1‖v‖2L2(0,T ;Hβ(Ω̃))
− C1‖v(·, T )‖2

Hβ(Ω̃)

− C1‖v(·, 0)‖2
Hβ(Ω̃)

− sλ
∫

Ω̃

(
eλT |v(x, T )|2 + |v(x, 0)|2

)
dx.

(3.5)

In the following, we estimate ‖v‖2
L2(0,T ;Hβ(Ω̃))

. Obviously, we have∫
Q

(Pv)vdxdt =

∫
Q

v∂tvdxdt−
∫
Q

sλϕv2dxdt+

∫
Q

vD(a · D∗v)dxdt

≡J1 + J2 + J3.

(3.6)

For the term J1, we find that

|J1| =
∣∣∣∣∫
Q

v∂tvdxdt

∣∣∣∣ =

∣∣∣∣12
∫
Q

∂t(v
2)dxdt

∣∣∣∣ ≤ 1

2

∫
Ω̃

(
|v(x, T )|2 + |v(x, 0)|2

)
dx.

For the term J2, we have |J2| =
∣∣∣− ∫Q sλϕv2dxdt

∣∣∣ ≤ C2

∫
Q
sλϕv2dxdt. At last, for

the term J3, using (2.5), we have

J3 =

∫ T

0

∫
Ω̃

v · D(a · D∗v)dxdt =

∫ T

0

∫
Ω̃

∫
Ω̃

D∗v · a(t, x, y) · D∗vdydxdt

=

∫ T

0

∫
Ω̃

∫
Ω̃

(v(y, t)− v(x, t))2γ(t, x, y)dydxdt

≥a∗
∫ T

0

∫
Ω̃

∫
Ω̃

(v(y, t)− v(x, t))2

|y − x|n+2β
dydxdt.
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From (3.6) and the above estimates on J1, J2 and J3, we obtain∫
Q

λ(Pv)vdxdt ≥a∗
∫ T

0

∫
Ω̃

∫
Ω̃

λ
(v(y, t)− v(x, t))2

|y − x|n+2β
dydxdt− C2

∫
Q

sλ2ϕv2dxdt

− 1

2
λ

∫
Ω̃

(
|v(x, T )|2 + |v(x, 0)|2

)
dx.(3.7)

On the other hand, we have∫
Q

λ(Pv)vdxdt ≤‖Pv‖L2(Q)

(
λ‖v‖L2(Q)

)
≤ 1

2
‖Pv‖2L2(Q) +

λ2

2
‖v‖2L2(Q)

≤1

2
‖fesϕ‖2L2(Q) +

λ2

2
‖v‖2L2(Q).

(3.8)

Hence, (3.7) and (3.8) yield

a∗

∫ T

0

∫
Ω̃

∫
Ω̃

λ
(v(y, t)− v(x, t))2

|y − x|n+2β
dydxdt ≤C2

∫
Q

sλ2ϕv2dxdt+
1

2
‖fesϕ‖2

L2(Q̃)

+
λ2

2
‖v‖2L2(Q) +

1

2
λ

∫
Ω̃

(
|v(x, T )|2 + |v(x, 0)|2

)
dx.

Estimating the first term on the right-hand side by (3.5), we obtain

a∗

∫ T

0

∫
Ω̃

∫
Ω̃

λ
(v(y, t)− v(x, t))2

|y − x|n+2β
dydxdt ≤ C3‖fesϕ‖2L2(Q̃)

+C3‖v‖2L2(0,T ;Hβ(Ω̃))

+C3λ
2‖v‖2L2(Q)+ C3λ

(
‖v(·, T )‖2

L2(Ω̃)
+‖v(·, 0)‖2

L2(Ω̃)

)
+C3‖v(·, T )‖2

Hβ(Ω̃)

+C3‖v(·, 0)‖2
Hβ(Ω̃)

+ C3sλ
(
eλT ‖v(·, T )‖2

L2(Ω̃)
+ ‖v(·, 0)‖2

L2(Ω̃)

)
.(3.9)

Considering estimates (3.5) and (3.9), we obtain

sλ2

∫
Q

ϕv2dxdt + a∗

∫ T

0

∫
Ω̃

∫
Ω̃

λ
|v(y, t)− v(x, t)|2

|y − x|n+2β
dydxdt

≤C4‖fesϕ‖2L2(Q̃)
+ C4‖v‖2L2(0,T ;Hβ(Ω̃))

+ C4λ
2‖v‖2L2(Q)+ C4‖v(·, T )‖2

Hβ(Ω̃)

+ C4‖v(·, 0)‖2
Hβ(Ω̃)

+ C4sλ
(
eλT ‖v(·, T )‖2

L2(Ω̃)
+ ‖v(·, 0)‖2

L2(Ω̃)

)
.(3.10)

Now, we take s > 0, λ > 0 large enough to absorb the second and third terms on
the right-hand side into the left-hand side, then we obtain∫

Q

sλ2ϕv2dxdt+

∫ T

0

∫
Ω̃

∫
Ω̃

λ
|v(y, t)− v(x, t)|2

|y − x|n+2β
dydxdt

≤C5‖fesϕ‖2L2(Q̃)
+ C5e

C(λ)s
(
‖v(·, T )‖2

Hβ(Ω̃)
+ ‖v(·, 0)‖2

Hβ(Ω̃)

)
.

Because v = esϕu, in addition, we have∫
Q

sλ2ϕu2e2sϕdxdt+

∫ T

0

∫
Ω̃

∫
Ω̃

λ
|u(y, t)− u(x, t)|2

|y − x|n+2β
e2sϕdydxdt

≤C5‖fesϕ‖2L2(Q̃)
+ C5e

C(λ)s
(
‖u(·, T )‖2

Hβ(Ω̃)
+ ‖u(·, 0)‖2

Hβ(Ω̃)

)
.(3.11)
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Since ∂tu = −sλϕe−sϕv + e−sϕ∂tv, we obtain 1
sϕ |∂tu|

2e2sϕ ≤ 2sλ2ϕv2 + 2
sϕ |∂tv|

2.

By the second inequality in (3.2), inequality (3.11) and estimates for I1, I2, we find∫
Q

1

sϕ
|∂tu|2e2sϕdxdt ≤C

∫
Q̃

f2e2sϕdxdt

+ CeC(λ)s
(
‖u(·, T )‖2

Hβ(Ω̃)
+ ‖u(·, 0)‖2

Hβ(Ω̃)

)
.

(3.12)

From D(a · D∗u) = f − ∂tu, we can finish the proof by using (3.11) and (3.12). �

4. Applications to an inverse problem

The backward in time problem can be briefly described as: Let 0 ≤ t0 < T . For
system (2.6) or (2.7), determine u(x, t0), x ∈ Ω from u(x, T ), x ∈ Ω ∪ ΩI .

For this problem, there are many studies when t0 > 0 or t0 = 0. As a simple
application, we prove a conditional stability estimate for ‖u(·, t0)‖L2(Ω) when t0 > 0.

Theorem 4.1. Let u to be a solution of system (2.6) or (2.7) satisfying u ∈
C([0, T ];Hβ(Ω̃))∩L2(0, T ; H̃2β(Ω̃)), ∂tu∈L2(0, T ;L2(Ω)). For t0∈(0, T ), there exist
constants θ ∈ (0, 1) and C > 0 depending on t0, a∗, a

∗, T , Ω and ΩI such that

‖u(·, t0)‖L2(Ω) ≤ C‖u‖1−θL2(Q̃)
‖u(·, T )‖θHβ(Ω∪ΩI),(4.1)

where θ depends on t0 and θ(t0) increases as t0 → T .

Proof. We choose t1, t2 such that 0 < t2 < t1 < t0, take δk = eλtk , k = 0, 1, 2
and choose a function χ ∈ C∞(R) such that 0 ≤ χ ≤ 1, χ(t) = 1 if t > t1, and
χ(t) = 0 if t > t2. Now, we use Theorem 3.1 by similar ideas as in the proof

of Theorem 9.2 in [10] to conclude that ‖u(·, t0)‖L2(Ω) ≤ C‖u‖1−θ
L2(Q̃)

‖u(·, T )‖θ
Hβ(Ω̃)

with θ = 2(δ0−δ1)
C+2(δ0−δ1) . �
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