A CARLEMAN ESTIMATE OF SOME ANISOTROPIC SPACE-FRACTIONAL DIFFUSION EQUATIONS

JUNXIONG JIA AND BANGYU WU

Abstract

This paper is concerned with Carleman estimates for some anisotropic space-fractional diffusion equations, which are important tools for investigating the corresponding control and inverse problems. By employing a special weight function and the nonlocal vector calculus, we prove a Carleman estimate and apply it to build a stability result for a backward diffusion problem.

1. Introduction

Fractional diffusion equations (FDE) have been studied from the aspects of partial differential equations $[6,7]$ and inverse problems $[2,10]$. Comparing to the classical diffusion equations, the nonlocal operators appeared in FDE produce many challenging problems. One of these problems is how to construct a Carleman type estimate. It is well known that the Carleman estimate is a key tool for both the direct problems and inverse problems on PDEs models [1, 4]. For time-fractional equations, Xu et al. [9] prove a Carleman estimate by transforming time-fractional diffusion equations to some integer-order diffusion equations. Then, this result has been extended and used to an inverse coefficient problem by Ren and Xu [8].

However, the results of $[8,9]$ are focused on time-fractional equations which describe the sub-diffusion phenomenon. Recently, Jin and Rundell [5] point out that the study of space-fractional inverse problems, either theoretical or numerical, is fairly scarce and difficult. To some extent we fill this gap by establishing a Carleman estimate for equations with anisotropic fractional-space operator.

The paper is organized as follows. In Section 2, we provide a brief introduction about nonlocal vector calculus. In Section 3, we prove a Carleman estimate. In Section 4, a backward diffusion problem has been studied.

2. Anisotropic space-Fractional diffusion equations

In this section, firstly, let us provide a brief review of the nonlocal vector calculus [3]. Denote n as the space dimension, $\Omega \subset \mathbb{R}^{n}$ is a bounded open set. Given vector mappings $\nu, \alpha: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ with α antisymmetric, the action of the nonlocal divergence operator \mathcal{D} on ν is defined as

$$
\begin{equation*}
\mathcal{D}(\nu)(x):=\int_{\mathbb{R}^{n}}(\nu(x, y)+\nu(y, x)) \cdot \alpha(x, y) d y \quad \text { for } x \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

Given a mapping $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the adjoint operator \mathcal{D}^{*} of \mathcal{D} is defined as

$$
\begin{equation*}
\mathcal{D}^{*}(u)(x, y)=-(u(y)-u(x)) \alpha(x, y) \quad \text { for } x, y \in \mathbb{R}^{n} \tag{2.2}
\end{equation*}
$$

[^0]From (2.1) and (2.2), one easily deduces that if $a(t, x, y)=a(t, y, x)$ denotes a second-order tensor satisfying $a=a^{T}$, then

$$
\mathcal{D}\left(a \cdot \mathcal{D}^{*} u\right)(x)=-2 \int_{\mathbb{R}^{n}}(u(y)-u(x)) \alpha(x, y) \cdot(a(t, x, y) \cdot \alpha(x, y)) d y \quad \text { for } x \in \mathbb{R}^{n} .
$$

In the following, we denote $\gamma(t, x, y):=\alpha(x, y) \cdot(a(t, x, y) \cdot \alpha(x, y))$. Given an open subset $\Omega \subset \mathbb{R}^{n}$, the corresponding interaction domain is defined as

$$
\begin{equation*}
\Omega_{\mathcal{I}}:=\left\{y \in \mathbb{R}^{n} \backslash \Omega \quad \text { such that } \alpha(x, y) \neq 0 \text { for some } x \in \Omega\right\} . \tag{2.3}
\end{equation*}
$$

Corresponding to the divergence operator $\mathcal{D}(\nu): \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined in (2.1), we define the action of the nonlocal interaction operator $\mathcal{N}(\nu): \mathbb{R}^{n} \rightarrow \mathbb{R}$ on ν by

$$
\begin{equation*}
\mathcal{N}(\nu)(x):=-\int_{\Omega \cup \Omega_{\mathcal{I}}}(\nu(x, y)+\nu(y, x)) \cdot \alpha(x, y) d y \quad \text { for } x \in \Omega_{\mathcal{I}} \tag{2.4}
\end{equation*}
$$

With these notations, we have the generalized nonlocal Green's first identity

$$
\begin{equation*}
\int_{\Omega} v \mathcal{D}\left(a \cdot \mathcal{D}^{*} u\right) d x-\int_{\Omega \cap \Omega_{\mathcal{I}}} \int_{\Omega_{\cap \Omega_{\mathcal{I}}}} \mathcal{D}^{*} v \cdot\left(a \cdot \mathcal{D}^{*} u\right) d y d x=\int_{\Omega_{\mathcal{I}}} v \mathcal{N}\left(a \cdot \mathcal{D}^{*} u\right) d x \tag{2.5}
\end{equation*}
$$

Based on the above statements, anisotropic space-fractional diffusion equation with the homogeneous "Dirichlet" volume-constrained condition can be written as

$$
\left\{\begin{align*}
\partial_{t} u+\mathcal{D}\left(a \cdot \mathcal{D}^{*} u\right) & =f(t, x) & & \text { on } \Omega \times(0, T), \tag{2.6}\\
u(t, x) & =0 & & \text { on } \Omega_{\mathcal{I}} \times(0, T), \\
u(0, x) & =u_{0}(x) & & \text { on } \Omega \cup \Omega_{\mathcal{I}} .
\end{align*}\right.
$$

Similarly, equation with the homogeneous "Neumann" volume-constrained condition could be written as

$$
\left\{\begin{align*}
\partial_{t} u+\mathcal{D}\left(a \cdot \mathcal{D}^{*} u\right) & =f(t, x) & & \text { on } \Omega \times(0, T), \tag{2.7}\\
\mathcal{N}\left(a \cdot \mathcal{D}^{*} u\right) & =0 & & \text { on } \Omega_{\mathcal{I}} \times(0, T), \\
u(0, x) & =u_{0}(x) & & \text { on } \Omega \cup \Omega_{\mathcal{I}}, \\
\int_{\Omega \cup \Omega_{\mathcal{I}}} u d x & =0 . & &
\end{align*}\right.
$$

Let us specify the functions $\alpha(\cdot, \cdot), a(\cdot, \cdot, \cdot)$ in the definitions of \mathcal{D} and \mathcal{D}^{*}. Assume β to be a constant between 0 and 1. Define $B_{\epsilon}(x):=\left\{y \in \Omega \cup \Omega_{\mathcal{I}}:|y-x| \leq \epsilon\right\}$, and denote $1_{B_{\epsilon}(x)}(\cdot)$ to be an indicator function which takes value 1 in $B_{\epsilon}(x)$. We choose

$$
\begin{equation*}
\alpha(x, y)=\frac{y-x}{|y-x|^{n / 2+\beta+1}} 1_{B_{\epsilon}(x)}(y), \quad a(t, x, y)=\left(a_{i j}(t, x, y)\right)_{1 \leq i, j \leq n} \tag{2.8}
\end{equation*}
$$

with $a_{i j} \in C^{1}\left([0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right), a_{i j}=a_{j i}$, and in addition, we assume

$$
\begin{equation*}
0<a_{*}|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(t, x, y) \xi_{i} \xi_{j} \leq a^{*}|\xi|^{2}, \quad \sum_{i, j=1}^{n} \partial_{t} a_{i j}(t, x, y) \xi_{i} \xi_{j} \leq a^{*}|\xi|^{2} \tag{2.9}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$ and $y \in B_{\epsilon}(x)$. Denote $\gamma(t, x, y):=\alpha(x, y) \cdot a(t, x, y) \cdot \alpha(x, y)$. Then we know that

$$
\begin{equation*}
\gamma(t, x, y)=\frac{(y-x) \cdot a(t, x, y) \cdot(y-x)}{|y-x|^{n+2 \beta+2}} 1_{B_{\epsilon}(x)}(y) . \tag{2.10}
\end{equation*}
$$

Remark 2.1. Choosing $\epsilon=\infty$ and $a(t, x, y)$ to be the identity matrix, we find that the operator $\mathcal{D}\left(a \cdot \mathcal{D}^{*}.\right)$ is just the operator $(-\Delta)^{\beta}$. Hence, equations (2.6) and (2.7) incorporate the following equation

$$
\begin{equation*}
\partial_{t} u(x, t)+(-\Delta)^{\beta} u(x, t)=f(x, t) \quad \text { in } \Omega \times(0, T) . \tag{2.11}
\end{equation*}
$$

In the sequel, we always denote $\tilde{\Omega}:=\Omega \cup \Omega_{\mathcal{I}}, Q:=\Omega \times(0, T)$ and $\tilde{Q}:=\tilde{\Omega} \times(0, T)$ and define $L^{2}\left(0, T ; \tilde{H}^{2 \beta}(\tilde{\Omega})\right)$ as a space which includes functions in the following set

$$
\left\{u \in L^{2}(\tilde{\Omega}): \int_{0}^{T} \int_{\Omega}\left|\int_{\tilde{\Omega}}(u(y, t)-u(x, t)) \gamma(t, x, y) d y\right|^{2} d x d t<\infty\right\}
$$

with

$$
\|u\|_{L^{2}\left(0, T ; \tilde{H}^{2 \beta(\cdot)}(\tilde{\Omega})\right)}^{2}:=\int_{0}^{T} \int_{\Omega}\left|\int_{\tilde{\Omega}}(u(y, t)-u(x, t)) \gamma(t, x, y) d y\right|^{2} d x d t
$$

3. A Carleman estimate

In this section, we denote $L(u)=\partial_{t} u+\mathcal{D}\left(a \cdot \mathcal{D}^{*} u\right)$ and define $\varphi(t):=e^{\lambda t}$ where $\lambda>0$ is fixed suitably.
Theorem 3.1. (Carleman estimate) We set $\varphi(t)=e^{\lambda t}$. Then there exists $\lambda_{0}>0$ such that for any $\lambda \geq \lambda_{0}$ we can choose a constant $s_{0}(\lambda)>0$ satisfying: there exists a constant $C=C\left(s_{0}, \lambda_{0}\right)>0$ such that

$$
\begin{aligned}
\int_{Q}\left\{\frac{1}{s \varphi}\right. & \left.\left(\left|\partial_{t} u\right|^{2}+\left|\mathcal{D}\left(a \cdot \mathcal{D}^{*} u\right)\right|^{2}\right)+s \lambda^{2} \varphi u^{2}\right\} e^{2 s \varphi} d x d t \\
& +\lambda \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \frac{|u(y, t)-u(x, t)|^{2}}{|y-x|^{n+2 \beta}} e^{2 s \varphi} d y d x d t \\
& \leq C \int_{\tilde{Q}}|L(u)|^{2} e^{2 s \varphi} d x d t+C e^{C(\lambda) s}\left(\|u(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2}+\|u(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2}\right)
\end{aligned}
$$

for all $s>s_{0}$ and all $u \in C\left([0, T] ; H^{\beta}(\tilde{\Omega})\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \tilde{H}^{2 \beta}(\tilde{\Omega})\right)$ satisfying $u=0$ in $\Omega_{\mathcal{I}} \times(0, T)$, or $\mathcal{N}\left(a \cdot \mathcal{D}^{*} u\right)=0$ in $\Omega_{\mathcal{I}} \times(0, T)$.
Remark 3.2. Solutions mentioned in Theorem 3.1 do exist, which can be easily verified by using the method developed in [3].
Proof. Set $v=e^{s \varphi} u, P v=e^{s \varphi} L\left(e^{-s \varphi} v\right)=e^{s \varphi} f$. Assume that $\left.u\right|_{\Omega_{\mathcal{I}}}=0$ or $\mathcal{N}(a$. $\left.\mathcal{D}^{*} u\right)\left.\right|_{\Omega_{\mathcal{I}}}=0$. Obviously, we obtain $P v=\partial_{t} v-\left(s \lambda \varphi v-\mathcal{D}\left(a \cdot \mathcal{D}^{*} v\right)\right)=e^{s \varphi} f$. In addition, we have

$$
\begin{aligned}
\left\|e^{s \varphi} f\right\|_{L^{2}(Q)}^{2}= & \int_{Q}\left|\partial_{t} v\right|^{2} d x d t+2 \int_{Q} \partial_{t} v\left(-s \lambda \varphi v+\mathcal{D}\left(a \cdot \mathcal{D}^{*} v\right)\right) d x d t \\
& +\int_{Q}\left|s \lambda \varphi v-\mathcal{D}\left(a \cdot \mathcal{D}^{*} v\right)\right|^{2} d x d t \\
\geq & \int_{Q}\left|\partial_{t} v\right|^{2} d x d t+2 \int_{Q} \partial_{t} v \mathcal{D}\left(a \cdot \mathcal{D}^{*} v\right) d x d t+2 \int_{Q} \partial_{t} v(-s \lambda \varphi v) d x d t \\
\equiv & \int_{Q}\left|\partial_{t} v\right|^{2} d x d t+\mathrm{I}_{1}+\mathrm{I}_{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\int_{Q} f^{2} e^{2 s \varphi} d x d t \geq \mathrm{I}_{1}+\mathrm{I}_{2}, \quad \int_{Q}\left|\partial_{t} v\right|^{2} d x d t \leq \int_{Q} f^{2} e^{2 s \varphi} d x d t+\left|\mathrm{I}_{1}+\mathrm{I}_{2}\right| \tag{3.2}
\end{equation*}
$$

In the following, $C_{j}>0(j \in \mathbb{N})$ denote generic constants which are independent of s and λ. Because s and λ are assumed to be large enough constants, without loss of generality, we can assume $s>1$ and $\lambda>1$. For the term I_{1}, we have

$$
\begin{align*}
&\left|\mathrm{I}_{1}\right|=\left|2 \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \mathcal{D}^{*} \partial_{t} v \cdot a \cdot \mathcal{D}^{*} v d y d x d t+2 \int_{0}^{T} \int_{\Omega_{\mathcal{I}}} \partial_{t} v \mathcal{N}\left(a \cdot \mathcal{D}^{*} v\right) d x d t\right| \\
&=\left|2 \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}}\left(\partial_{t} v(y, t)-\partial_{t} v(x, t)\right) \gamma(t, x, y)(v(y, t)-v(x, t)) d y d x d t\right| \\
&=\mid-\int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \partial_{t} \gamma(t, x, y)(v(y, t)-v(x, t))^{2} d y d x d t \\
& \quad+\left.\int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \gamma(t, x, y)(v(y, t)-v(x, t))^{2} d y d x\right|_{t=0} ^{t=T} \mid \\
& \leq C_{1}\|v\|_{L^{2}\left(0, T ; H^{\beta}(\tilde{\Omega})\right)}^{2}+C_{1}\|v(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2}+C_{1}\|v(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2} \tag{3.3}
\end{align*}
$$

where (2.5) and (2.9) have been used. For the term I_{2}, we have

$$
\begin{align*}
\mathrm{I}_{2} & =-s \lambda \int_{Q} 2\left(\partial_{t} v\right) v \varphi d x d t=s \lambda \int_{Q} v^{2} \partial_{t} \varphi d x d t-\left.s \lambda\left(\int_{\Omega} \varphi v^{2} d x\right)\right|_{t=0} ^{t=T} \tag{3.4}\\
& \geq s \lambda^{2} \int_{Q} \varphi v^{2} d x d t-s \lambda \int_{\Omega}\left(e^{\lambda T}|v(x, T)|^{2}+|v(x, 0)|^{2}\right) d x
\end{align*}
$$

From the first inequality in (3.2), and estimate (3.3) and (3.4), we obtain

$$
\begin{align*}
\left\|e^{s \varphi} f\right\|_{L^{2}(Q)}^{2} \geq & s \lambda^{2} \int_{Q} \varphi v^{2} d x d t-C_{1}\|v\|_{L^{2}\left(0, T ; H^{\beta}(\tilde{\Omega})\right)}^{2}-C_{1}\|v(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2} \tag{3.5}\\
& -C_{1}\|v(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2}-s \lambda \int_{\tilde{\Omega}}\left(e^{\lambda T}|v(x, T)|^{2}+|v(x, 0)|^{2}\right) d x
\end{align*}
$$

In the following, we estimate $\|v\|_{L^{2}\left(0, T ; H^{\beta}(\tilde{\Omega})\right)}^{2}$. Obviously, we have

$$
\begin{align*}
\int_{Q}(P v) v d x d t & =\int_{Q} v \partial_{t} v d x d t-\int_{Q} s \lambda \varphi v^{2} d x d t+\int_{Q} v \mathcal{D}\left(a \cdot \mathcal{D}^{*} v\right) d x d t \tag{3.6}\\
& \equiv J_{1}+J_{2}+J_{3}
\end{align*}
$$

For the term J_{1}, we find that

$$
\left|J_{1}\right|=\left|\int_{Q} v \partial_{t} v d x d t\right|=\left|\frac{1}{2} \int_{Q} \partial_{t}\left(v^{2}\right) d x d t\right| \leq \frac{1}{2} \int_{\tilde{\Omega}}\left(|v(x, T)|^{2}+|v(x, 0)|^{2}\right) d x
$$

For the term J_{2}, we have $\left|J_{2}\right|=\left|-\int_{Q} s \lambda \varphi v^{2} d x d t\right| \leq C_{2} \int_{Q} s \lambda \varphi v^{2} d x d t$. At last, for the term J_{3}, using (2.5), we have

$$
\begin{aligned}
J_{3} & =\int_{0}^{T} \int_{\tilde{\Omega}} v \cdot \mathcal{D}\left(a \cdot \mathcal{D}^{*} v\right) d x d t=\int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \mathcal{D}^{*} v \cdot a(t, x, y) \cdot \mathcal{D}^{*} v d y d x d t \\
& =\int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}}(v(y, t)-v(x, t))^{2} \gamma(t, x, y) d y d x d t \\
& \geq a_{*} \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \frac{(v(y, t)-v(x, t))^{2}}{|y-x|^{n+2 \beta}} d y d x d t
\end{aligned}
$$

From (3.6) and the above estimates on J_{1}, J_{2} and J_{3}, we obtain

$$
\begin{align*}
\int_{Q} \lambda(P v) v d x d t \geq & a_{*} \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \lambda \frac{(v(y, t)-v(x, t))^{2}}{|y-x|^{n+2 \beta}} d y d x d t-C_{2} \int_{Q} s \lambda^{2} \varphi v^{2} d x d t \\
& -\frac{1}{2} \lambda \int_{\tilde{\Omega}}\left(|v(x, T)|^{2}+|v(x, 0)|^{2}\right) d x . \tag{3.7}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\int_{Q} \lambda(P v) v d x d t & \leq\|P v\|_{L^{2}(Q)}\left(\lambda\|v\|_{L^{2}(Q)}\right) \leq \frac{1}{2}\|P v\|_{L^{2}(Q)}^{2}+\frac{\lambda^{2}}{2}\|v\|_{L^{2}(Q)}^{2} \tag{3.8}\\
& \leq \frac{1}{2}\left\|f e^{s \varphi}\right\|_{L^{2}(Q)}^{2}+\frac{\lambda^{2}}{2}\|v\|_{L^{2}(Q)}^{2} .
\end{align*}
$$

Hence, (3.7) and (3.8) yield

$$
\begin{array}{r}
a_{*} \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \lambda \frac{(v(y, t)-v(x, t))^{2}}{|y-x|^{n+2 \beta}} d y d x d t \leq C_{2} \int_{Q} s \lambda^{2} \varphi v^{2} d x d t+\frac{1}{2}\left\|f e^{s \varphi}\right\|_{L^{2}(\tilde{Q})}^{2} \\
+\frac{\lambda^{2}}{2}\|v\|_{L^{2}(Q)}^{2}+\frac{1}{2} \lambda \int_{\tilde{\Omega}}\left(|v(x, T)|^{2}+|v(x, 0)|^{2}\right) d x .
\end{array}
$$

Estimating the first term on the right-hand side by (3.5), we obtain

$$
\begin{aligned}
& a_{*} \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \lambda \frac{(v(y, t)-v(x, t))^{2}}{|y-x|^{n+2 \beta}} d y d x d t \leq C_{3}\left\|f e^{s \varphi}\right\|_{L^{2}(\tilde{Q})}^{2}+C_{3}\|v\|_{L^{2}\left(0, T ; H^{\beta}(\tilde{\Omega})\right)}^{2} \\
& \quad+C_{3} \lambda^{2}\|v\|_{L^{2}(Q)}^{2}+C_{3} \lambda\left(\|v(\cdot, T)\|_{L^{2}(\tilde{\Omega})}^{2}+\|v(\cdot, 0)\|_{L^{2}(\tilde{\Omega})}^{2}\right)+C_{3}\|v(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2} \\
& \quad+C_{3}\|v(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2}+C_{3} s \lambda\left(e^{\lambda T}\|v(\cdot, T)\|_{L^{2}(\tilde{\Omega})}^{2}+\|v(\cdot, 0)\|_{L^{2}(\tilde{\Omega})}^{2}\right) .
\end{aligned}
$$

Considering estimates (3.5) and (3.9), we obtain

$$
\begin{align*}
& s \lambda^{2} \int_{Q} \varphi v^{2} d x d t+a_{*} \int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \lambda \frac{|v(y, t)-v(x, t)|^{2}}{|y-x|^{n+2 \beta}} d y d x d t \\
& \leq C_{4}\left\|f e^{s \varphi}\right\|_{L^{2}(\tilde{Q})}^{2}+C_{4}\|v\|_{L^{2}\left(0, T ; H^{\beta}(\tilde{\Omega})\right)}^{2}+C_{4} \lambda^{2}\|v\|_{L^{2}(Q)}^{2}+C_{4}\|v(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2} \\
& \quad \quad+C_{4}\|v(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2}+C_{4} s \lambda\left(e^{\lambda T}\|v(\cdot, T)\|_{L^{2}(\tilde{\Omega})}^{2}+\|v(\cdot, 0)\|_{L^{2}(\tilde{\Omega})}^{2}\right) . \tag{3.10}
\end{align*}
$$

Now, we take $s>0, \lambda>0$ large enough to absorb the second and third terms on the right-hand side into the left-hand side, then we obtain

$$
\begin{aligned}
\int_{Q} s \lambda^{2} \varphi v^{2} d x d t & +\int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \lambda \frac{|v(y, t)-v(x, t)|^{2}}{|y-x|^{n+2 \beta}} d y d x d t \\
& \leq C_{5}\left\|f e^{s \varphi}\right\|_{L^{2}(\tilde{Q})}^{2}+C_{5} e^{C(\lambda) s}\left(\|v(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2}+\|v(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2}\right)
\end{aligned}
$$

Because $v=e^{s \varphi} u$, in addition, we have

$$
\begin{align*}
& \int_{Q} s \lambda^{2} \varphi u^{2} e^{2 s \varphi} d x d t+\int_{0}^{T} \int_{\tilde{\Omega}} \int_{\tilde{\Omega}} \lambda \frac{|u(y, t)-u(x, t)|^{2}}{|y-x|^{n+2 \beta}} e^{2 s \varphi} d y d x d t \\
& 11) \quad \leq C_{5}\left\|f e^{s \varphi}\right\|_{L^{2}(\tilde{Q})}^{2}+C_{5} e^{C(\lambda) s}\left(\|u(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2}+\|u(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2}\right) . \tag{3.11}
\end{align*}
$$

Since $\partial_{t} u=-s \lambda \varphi e^{-s \varphi} v+e^{-s \varphi} \partial_{t} v$, we obtain $\frac{1}{s \varphi}\left|\partial_{t} u\right|^{2} e^{2 s \varphi} \leq 2 s \lambda^{2} \varphi v^{2}+\frac{2}{s \varphi}\left|\partial_{t} v\right|^{2}$. By the second inequality in (3.2), inequality (3.11) and estimates for $\mathrm{I}_{1}, \mathrm{I}_{2}$, we find

$$
\begin{align*}
\int_{Q} \frac{1}{s \varphi}\left|\partial_{t} u\right|^{2} e^{2 s \varphi} d x d t \leq & C \int_{\tilde{Q}} f^{2} e^{2 s \varphi} d x d t \tag{3.12}\\
& +C e^{C(\lambda) s}\left(\|u(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{2}+\|u(\cdot, 0)\|_{H^{\beta}(\tilde{\Omega})}^{2}\right) .
\end{align*}
$$

From $\mathcal{D}\left(a \cdot \mathcal{D}^{*} u\right)=f-\partial_{t} u$, we can finish the proof by using (3.11) and (3.12).

4. Applications to an inverse problem

The backward in time problem can be briefly described as: Let $0 \leq t_{0}<T$. For system (2.6) or (2.7), determine $u\left(x, t_{0}\right), x \in \Omega$ from $u(x, T), x \in \Omega \cup \Omega_{\mathcal{I}}$.

For this problem, there are many studies when $t_{0}>0$ or $t_{0}=0$. As a simple application, we prove a conditional stability estimate for $\left\|u\left(\cdot, t_{0}\right)\right\|_{L^{2}(\Omega)}$ when $t_{0}>0$.

Theorem 4.1. Let u to be a solution of system (2.6) or (2.7) satisfying $u \in$ $C\left([0, T] ; H^{\beta}(\tilde{\Omega})\right) \cap L^{2}\left(0, T ; \tilde{H}^{2 \beta}(\tilde{\Omega})\right), \partial_{t} u \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. For $t_{0} \in(0, T)$, there exist constants $\theta \in(0,1)$ and $C>0$ depending on $t_{0}, a_{*}, a^{*}, T, \Omega$ and $\Omega_{\mathcal{I}}$ such that

$$
\begin{equation*}
\left\|u\left(\cdot, t_{0}\right)\right\|_{L^{2}(\Omega)} \leq C\|u\|_{L^{2}(\tilde{Q})}^{1-\theta}\|u(\cdot, T)\|_{H^{\beta}\left(\Omega \cup \Omega_{\mathcal{I}}\right)}^{\theta} \tag{4.1}
\end{equation*}
$$

where θ depends on t_{0} and $\theta\left(t_{0}\right)$ increases as $t_{0} \rightarrow T$.
Proof. We choose t_{1}, t_{2} such that $0<t_{2}<t_{1}<t_{0}$, take $\delta_{k}=e^{\lambda t_{k}}, k=0,1,2$ and choose a function $\chi \in C^{\infty}(\mathbb{R})$ such that $0 \leq \chi \leq 1, \chi(t)=1$ if $t>t_{1}$, and $\chi(t)=0$ if $t>t_{2}$. Now, we use Theorem 3.1 by similar ideas as in the proof of Theorem 9.2 in $[10]$ to conclude that $\left\|u\left(\cdot, t_{0}\right)\right\|_{L^{2}(\Omega)} \leq C\|u\|_{L^{2}(\tilde{Q})}^{1-\theta}\|u(\cdot, T)\|_{H^{\beta}(\tilde{\Omega})}^{\theta}$ with $\theta=\frac{2\left(\delta_{0}-\delta_{1}\right)}{C+2\left(\delta_{0}-\delta_{1}\right)}$.

Acknowledgments

This work was partially supported by NSFC under Contact 11501439, 41604106, and Major program of NSFC under Contact 41390454, and postdoctoral science foundation project of China under Contact 2017T100733.

References

[1] A. L. Bukhgeim and M. V. Klibanov. Global uniqueness of a class of multidimensional inverse problems. Doklady Akademii Nauk SSSR, 24:269-272, 1981.
[2] J. Cheng, J. Nakagawa, M. Yamamoto, and T. Yamazaki. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Problems, 25(11):115002, 2009.
[3] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Review, 54(4):667-696, 2012.
[4] J. Fan, Y. Jiang, and G. Nakamura. Inverse problems for the Boussinesq system. Inverse Problems, 25(8):085007, 2009.
[5] B. Jin and W. Rundell. A tutorial on inverse problems for anomalous diffusion processes. Inverse Problems, 31(3):035003, 2015.
[6] R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339(1):1-77, 2000.
[7] C. Mou and Y. Yi. Interior regularity for regional fractional Laplacian. Communications in Mathematical Physics, 340(1):233-251, 2015.
[8] C. Ren and X. Xu. Local stability for an inverse coefficient problem of a fractional diffusion equation. Chinese Annals of Mathematics, Series B, 35(3):429-446, 2014.
[9] X. Xu, J. Cheng, and M. Yamamoto. Carleman estimate for a fractional diffusion equation with half order and application. Applicable Analysis, 90(9):1355-1371, 2011.
[10] M. Yamamoto. Carleman estimates for parabolic equations and applications. Inverse Problems, 25(12):123013, 2009.

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, ChiNA;

E-mail address: jjx323@xjtu.edu.cn
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, ChiNA;

E-mail address: bangyuwu@xjtu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 35R11, 35R30, 26A33.
 Key words and phrases. Fractional diffusion equation, Carleman estimate, Backward diffusion problem.

