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Abstract. In this paper, a backward problem for a time-space fractional diffu-
sion process has been considered. For this problem, we propose to construct the

initial function by minimizing data residual error in Fourier space domain with
variable total variation (TV) regularizing term which can protect the edges

as TV regularizing term and reduce staircasing effect. The well-posedness
of this optimization problem is obtained under a very general setting. Ac-
tually, we rewrite the time-space fractional diffusion equation as an abstract

fractional differential equation and deduce our results by using fractional op-

erator semigroup theory, hence, our theoretical results can be applied to other
backward problems for the differential equations with more general fractional

operator. Then a modified Bregman iterative algorithm has been proposed to

approximate the minimizer. The new features of this algorithm is that the
regularizing term altered in each step and we need not to solve the complex

Euler-Lagrange equation of variable TV regularizing term (just need to solve

a simple Euler-Lagrange equation). The convergence of this algorithm and the
strategy of choosing parameters are also obtained. Numerical implementations

are provided to support our theoretical analysis to show the flexibility of our

minimization model.
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1. Introduction. Diffusion phenomenon is ubiquitous in our physical world. From
the point of view of probability theory, we can derive diffusion equations by applying
centeral limit theorem to the random walk problem. If we assume the distribution
of particle jump is Gaussian, we will obtain normal diffusion equations{

∂tv(t, x)−∆v(t, x) = 0

v(x, 0) = u(x).
(1)

If we assume the particle jump satisfy Lévy distribution, by continuous time random
walk (CTRW) model, we will derive time-space fractional diffusion equation (FDE)
as follows {

∂αt v(t, x) + (−∆)βv(t, x) = 0 (x, t) ∈ R2 × (0,∞)

v(x, 0) = u(x) x ∈ R2
(2)

with α ∈ (0, 1], β ∈ (1/2, 1]. Here the time derivative is in Djrbashian-Caputo sense
defined as follows

∂αt v(t) = (g1−α ∗ ∂tv)(t) :=

∫ t

0

g1−α(t− s)v(s)ds, (3)

where

gγ(t) :=

{
1

Γ(γ) t
γ−1, t > 0,

0, t ≤ 0,
(4)

with Γ(γ) is the Gamma function. Denote the Fourier transform of function v as
F(v) or v̂, the inverse fourier transform as F−1v or v̌. Then the space fractional
derivative (−∆)β can be defined by Fourier transform as (−∆)βv = F−1(|ξ|2β v̂).
Usually, we call this type fractional derivative operator as symmetric Riesz-Feller
space fractional derivative operator.

Fractional time-space diffusion equation (2) attracts lots of researchers attention.
From the physical point of view, there are two long papers [36, 15] provide a good
summary. From the stochastic point of view, there is a good book [28] which
gives rigorous mathematical deductions. From the functional analysis point of view,
Peng, Li [21] propose fractional semigroup theory; Li, Chen [27] propose α-resolvent
operator to provide a general theory for the fractional abstract Cauchy problem
which can be applied to FDE (2) and some more general FDEs. B. Baeumer et
al. [4, 3, 1, 2] propose the concept of stochastic solutions for fractional evolution
equations and study FDEs by using stochastic methods combined with operator
semigroup theory.

In this paper, we focus on the backward problem for equation (2). As mentioned
in a recent tutorial [6], the mathematical theory of inverse problems for FDEs is
still in its infancy. However, there are already some pioneering work in this di-
rection. Cheng et al. [18] establish the uniqueness in an inverse problem for a
one-dimensional fractional diffusion equation. Sakamoto and Yamamoto [23] estab-
lish the unique existence of weak solutions and the asymptotic behavior as time t
goes to∞. They also prove the stability in the backward problem in time and the u-
niqueness in determining an initial value. Liu and Yamamoto [20] study a backward
problem for a time-fractional diffusion equation. Zhang and Xu [41] investigate an
inverse source problem for fractional diffusion equation. They obtain the unique-
ness of the inverse problem by analytic continuation and Laplace transform. Zheng
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and Wei [14] study backward problem of space fractional diffusion equations. They
show that the problem is severely ill-posed and propose a regularization method.

Recently, Wang and Liu [25] propose to use more general anomalous diffusion
models to describe the blurring effect, and the backward problems give the mathe-
matical formulation for the de-blurring process in image restoration. By using total
variation regularization term, the discontinuity of the initial data can be recovered.
In Wang and Liu’s paper, they use time-fractional diffusion models, here we intend
to use a more general time-space fractional diffusion model (2). Recovering ini-
tial data with discontinuities not only can find applications for de-blurring process
but also appeared for recovering initial temperature when we know temperature
field diffuse according to some fractional equations. Apart from the usual smooth
assumptions, the initial temperature may also exhibit discontinuities as shown in
Figure 10.4 in [35].

In the following, we assume the initial data u(x) ∈ R2 with compact support in
a bounded convex open subset Ω of the plane with Lipschitz continuous boundary
∂Ω, which is a reasonable assumption in many applications. Denote gδ(x) in Ω to
be the measurement data, our backward problem is to approximate v(0, x) = u(x)
from gδ(x). For some known error level δ > 0, the noisy data of the exact gray level
g(x) := v(T, x) satisfying

‖gδ(·)− g(·)‖L2(Ω) ≤ δ. (5)

In many applications of the backward diffusion problem, the initial distribution
u(x) is in general not smooth. Because v(T, x) generated from the Cauchy problem
(2), v(t, x) need not have compact support as u(x). Here, we only use the measure-
ment data v(T, x) in Ω, i.e., the values v(T, x) outside of Ω have nothing to do with
our reconstruction process, we can define v(T, x) for x ∈ Ω such that

‖gδ(·)− g(·)‖L2(R2\Ω) = 0. (6)

Taking Fourier transform with respect to x in (2), we obtain

∂αt v̂(t, ξ) = −|ξ|2β v̂(t, ξ). (7)

By using the Laplace transform with respect to t in (7), we can establish the relation
between u(x) and v(T, x) in frequency domain as

ĝ(ξ) = v̂(T, ξ) = Ŝ(ξ)û(ξ), Ŝ(ξ) := Eα,1(−|ξ|2βTα), (8)

where Eα,1(·) is the Mittag-Leffer function defined as

Eα,γ(z) :=

∞∑
k=0

zk

Γ(αk + γ)
, z ∈ C, α > 0, γ > 0, (9)

which can be seen as a generalization of exponential function ez. Denote Su =
F−1(Ŝ(ξ)û(ξ)), then we have

g(x) = v(T, x) = (Su)(x). (10)

Intuitively, the operator S is a convolution operator with kernel F−1(Ŝ(ξ)). In part
3 of Section 2, we will define the operator S (formula (60)) by the solution operator
of an abstract fractional evolution equation.

As mentioned by the previous works [6, 25], recovering u(x) from the noisy mea-
surement of exact v(T, x) base on relation (8) in the frequency domain is ill posed
due to the rapid decay of the forward process. Usually, there are two conventional
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methods, namely, Tikhonov regularization and truncated Fourier transform regular-
ization, to overcome this difficulty in the frequency domain. In 2013, Wang and Liu
[25] proposed to use total variation (TV) regularization for time fractional diffusion
model.

TV regularization method successfully recover the edges of the initial data and
is robust for the noise. However, TV regularization method suffers from staircasing
effect, namely the transformation of smooth regions into piecewise constant regions.
A linear combination of the Tikhonov regularization and TV regularization with an
adaptive weight is a natural way to reduce this effect. However, linear combina-
tion of two regularization terms could be seen as a compromise between Tikhonov
regularization and TV regularization, which may not reflect the specific properties
of functions on local regions. Hence, Blomgren et al. [31] suggest letting the ex-
ponent in the regularization term depend on the data. Li et al. [11] study the
variable exponent TV regularization when exponent 1 < p̄(x) ≤ 2. Harjulehto et al.
[32] discuss the variable TV regularization allowing p̄(x) = 1 for some x by using
techniques developed in [33]. Bollt et al. [9] focus on the following variation model

min
u
J(u) =

∫
Ω

|∇u|p̄(x)dx+
λ

2

∫
Ω

|u− g|2dx, (11)

where λ > 0 is a positive constant, g is the noisy image, p̄(·) defined as

p̄(x) = p(u) = PN (|∇(Gδ̃ ∗ u)(x)|2) (12)

with Gδ̃ : R2 → R is a symmetric mollifier centered at 0 and belongs to C2 ∩W 3,2.
PN : R+ → [1, 2] is a non-increasing C2 function with PN (N) = 1 with N > 0 is a
positive real number. For example, PN can be taken as follows:

PN (s) =

{
2− 10s3

N3 + 15s4

N4 − 6s5

N5 if s ≤ N
1 if s > N

. (13)

They discuss how parameter choices affect recover results and prove the existence
and uniqueness of minimizers. Recently, in [22], the author studies image decompo-
sition problems by using variable TV regularization combined with variable Besov
space.

We attempt to use the variable total variation regularization term to penalize
our fractional backward diffusion problem. More specifically, we intend to use the
following model

uδ = argmin
u∈K

∫
Ω

|∇u|p̄(x)dx such that ‖Su− gδ‖2L2(R2) ≤ δ, (14)

where δ > 0 is error level, K is some suitable admissible set of the approximate
solution, p̄(x) defined as in (12).

By applying the Lagrangin formulation, the variable TV restoration model (14)
can be transformed into the following unconstrained minimization problem:

uδ = argmin
u∈K

∫
Ω

|∇u|p̄(x)dx+
λ

2
‖Su− gδ‖2L2(R2), (15)

where λ is a positive parameter that controls the tradeoff between a good fit to the
measurement data and the regularized solution. For each δ > 0, there exists some
λ such that (14) and (15) are equivalent.
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Comparing (11) and our model (15), the forward operator is more complex than
the identity operator. In order to solve (11), we can simply take

p̄(x) = p(g) = PN (|∇(Gδ̃ ∗ g)(x)|2) (16)

where g is the noisy image, and the exponent will not change during our computa-
tion, by doing this the Euler-Lagrange equation will be simpler than

p̄(x) = p(u) = PN (|∇(Gδ̃ ∗ u)(x)|2). (17)

For clarity, we list the Euler-Lagrange equations for (15) with (16) as follows

0 = −∇ ·
(
∇u
|∇u|

PN (|∇(Gδ̃ ∗ g)|2)|∇u|PN (|∇(Gδ̃∗g)|
2)−1

)
+ λS∗(Su− gδ), (18)

and for (15) with (17) as follows

0 =−Gδ̃ ∗ ∇ ·
(
|∇u|PN (|∇(Gδ̃∗u)|2)P ′N (|∇(Gδ̃ ∗ u)|2) · 2∇(Gδ̃ ∗ u)

)
−∇ ·

(
|∇u|PN (|∇(Gδ̃∗u)|2) ∇u

|∇u|

)
+ λS∗(Su− gδ).

(19)

For model (11), because the edges will not change so much during the compu-
tation, the reduction (16) which is taken in [9] is suitable. However, for our model
(15), because the edges will change dramatically during the evolution process, we
must iterate the value of p̄(x) during our computation. To make this clear, we
consider an image as the initial data and the solution v(1, x) of the fractional diffu-
sion equation (2) shown in Figure 1. The solution v(1, x) shown on the right hand

Figure 1. Left: Initial data; Right: The solution of the fractional
diffusion equation (2) at time T = 1 with α = 0.6, β = 0.9.

side of Figure 1 is calculated by Fourier transform and formula (8) with α = 0.6,
β = 0.9 and T = 1. The left image in Figure 2 is the boundary of the initial data
detected by Canny algorithm in the Matlab toolbox. The right image in Figure 2
is the boundary of v(1, x) also detected by Canny algorithm. From these figures, it
is clear that the boundary of the initial data will change dramatically during the
fractional evolution process as claimed in the beginning of this paragraph.

In summary, theories about existence, uniqueness and stability will be proved
in a very general setting, then restricted to backward problem for equation (2)
we propose a modified Bregman iterative algorithm to solve problem (15). In the
following, we will describe the key point of our proof. In order to prove existence,
uniqueness and stability of problem (15), we first generalize the theory constructed
in [34] to our variable total variation regularization model, during the proof we
propose a concept named CBV-coercive. After building the general theory, we need
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Figure 2. Left: Boundaries of the initial data; Right: Boundaries
of the solution of the fractional diffusion equation (2) at time T = 1
with α = 0.6, β = 0.9.

to verify the operator S appeared in (10) satisfy the conditions in the general theory.
One of the new ingredients of this paper is that we propose an abstract fractional
evolution equation (58), then prove the solution operator of this abstract evolution
equation satisfy the required conditions. Through the abstract formulation, we
obtain the existence, uniqueness and stability when the forward problem is (2)
and in addition, all the theoretical results can be applied to more general systems.
More specifically, our results is valid for system (58) in Section 2 with the spatial
derivative operator −A generate a C0-semigroup and satisfy condition (67).

The second new ingredients of this paper is that we propose a modified Bregman
iterative algorithm to solve problem (15). To the best of our knowledge, researchers
use Euler-Lagrange equations directly or construct an evolution process based on
Euler-Lagrange equations to solve image restoration problems with variable TV
regularizing term. In the traditional image restoration problem, the edges will not
change dramatically for the forward operator is the identity operator, hence, we can
assume (16) which highly reduce the computational task. In our setting, the edges
will change during the diffusion process as shown in Figure 2, so we must iterate the
exponent p̄ in our algorithm. Bregman iteration [37] is an efficient methods used
to solve TV regularization based image restoration. In the framework of Bregman
iteration methods, we obtain p̄n+1 by using the value of recovered image un, so
during every iteration we can use the Euler-Lagrange equations as in the case of
(16). Hence, on one hand we allow the exponent p̄ update during each iteration.
On the other hand, a simple Euler-Lagrange equation can be used to reduce the
computational load. However, in our modified Bregman iterative algorithm, the
regularization term changes its form at each iteration, so we need more techniques to
provide theoretical analysis of our algorithm. In Section 3, we prove the convergence
and provide a practical stopping criterion based on the detailed analysis.

The organization of this paper is as follows. In Section 2, we propose the concept
of CBV-coercive and build a general theory then use the general theory to a general
linear model with variable TV regularizing term. By using operator semigroup
and fractional operator semigroup theory, we prove the backward problems for
an abstract fractional differential equation satisfying the conditions in our general
theory. In Section 3, we propose modified Bregman iterative algorithm, then provide
detailed theoretical analysis. Finally, the numerical implementations are given in
Section 4 to support our theoretical results and to show the validity of the proposed
algorithm.
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2. Existence, Uniqueness and Stability. In this section, we will prove exis-
tence, uniqueness and stability of our minimization problem (15) in a general set-
ting. Here we need to clarify some notations used through all the following parts of
this paper.

• d stands for dimension; Ω ⊂ Rd is a bounded domain with Lipschitz boundary;
• Cm will stands for functions with continuous derivatives up to order m; Cmc

stands for compactly supported function with continuous derivatives up to
order m;

• Wm,p is the usual Sobolev space with weak derivatives of order up to m
belongs to Lp; For simplicity, we denote Hm := Wm,p when p = 2; Hm

0 will
stands for the closure of C∞c in Hm;

• For a subset Ω ∈ Rd, χΩ stands for indicator function which equal to 1 in Ω
and equal to 0 outside of Ω;

• |Ω| stands for the Lebesgue measure of Ω ⊂ Rd;
• If S is a bounded linear operator, we will denote ‖S‖ as the operator norm of
S;

• BV in this paper stands for functions of bounded variation, the norm defined
as

‖u‖BV := ‖u‖L1(Ω) + ‖u‖ ˙BV

where ‖u‖ ˙BV := supσ∈V
∫

Ω
(−udivσ)dx with V := {σ ∈ C1

c (Ω;Rd) : |σ(x)| ≤
1 for all x ∈ Ω}.

2.1. General Theory. In this subsection, we build a general theory for the fol-
lowing unconstrained minimization problem

min
u∈Lq(Ω)

T (u). (20)

In order to use compactness properties of function spaces for unconstrained min-
imization problems, we introduce the following property: define T to be CBV-
coercive if

T (u)→ +∞ whenever J(u)→ +∞, (21)

where J(·) satisfies ‖u‖BV ≤ CJ(u).

Theorem 2.1. Suppose J is defined as in (21) and T is CBV-coercive. If 1 ≤
q < d

d−1 and T is lower semi-continuous, then problem (20) has a solution. If in

addition q = d
d−1 , dimension d ≥ 2, and T is weakly lower semi-continuous, then a

solution also exists. In either case, the solution is unique if T is strictly convex.

Proof. Let un be a minimizing sequence for T ; in other words,

lim
n→∞

T (un) = inf
u∈Lq(Ω)

T (u) := Tmin. (22)

Since T is CBV-coercive, the {un} are BV-bounded. By Theorem 2.5 in [34], there
exists a subsequence unk which converges to some ū ∈ Lq(Ω). Convergence is weak
if q = d

d−1 . By the (weak) lower semi-continuity of T ,

T (ū) ≤ lim inf
k→∞

T (unk) = Tmin. (23)

Uniqueness of minimizers follows immediately from strict convexity.
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Next, we consider a sequence of perturbed problems

min
u∈Lq(Ω)

Tn(u). (24)

Theorem 2.2. Assume J is defined as in (21), 1 ≤ q < d
d−1 and that T and each

of the Tns are CBV-coercive, lower semi-continuous, and have a unique minimizer.
Assume in addition:

1. Uniform CBV-coercivity: for any sequence vn ∈ Lq(Ω),

lim
n→∞

Tn(vn) =∞ whenever lim
n→∞

J(vn) =∞. (25)

2. Consistency: Tn → T uniformly on J-bounded sets, i.e. given B > 0 and
ε > 0, there exists N such that

|Tn(u)− T (u)| < ε whenever n ≥ N, J(u) ≤ B. (26)

Then problem (20) is stable with respect to the perturbations (24), i.e. if ū minimizes
T and un minimizes Tn, then

‖un − ū‖Lq(Ω) → 0.

If q = d
d−1 , d ≥ 2, and one can replaces the lower semi-continuity assumption on T

and each Tn by weak lower semi-continuity, then convergence is weak:

un − ū ⇀ 0.

Proof. Note that Tn(un) ≤ Tn(ū), by assumption (2), we have

lim inf
n→∞

Tn(un) ≤ lim sup
n→∞

Tn(un) ≤ T (ū) <∞

and hence by assumption (1), the uns are J-bounded. Remember the properties of
J , the uns are BV-bounded. Now suppose our results does not hold. By Theorem
2.5 in [34], there exists a subsequence unk which converges in Lq(Ω)(weak Lq(Ω) if
q = d

d−1 ) to some û 6= ū. By the (weak) lower semi-continuity of T ,

T (û) ≤ lim inf
k→∞

T (unk)

= lim
k→∞

(T (unk)− Tnk(unk)) + lim inf
k→∞

Tnk(unk)

≤ T (ū).

But this contradicts the uniqueness of the minimizer ū of T .

2.2. Variable TV Regularization for General Linear Problems. In this sub-
section, we consider the following special form of T :

T (u) = F (u) +
λ

2
‖Su− g‖2L2(Ω), (27)

where

F (u) = max
ν(x)≥0,|σ(x)|≤1

∫
Ω

(
∇ · (p̄ν p̄−1σ)u− (p̄− 1)ν p̄

)
dx (28)

and ν ranges over the set of C1(Ω̄) functions with positive minimum, σ ranges over
functions in C1

c (Ω) with |σ(x)| ≤ 1, p̄ defined as in (12), S is a linear bounded
operator from Lq(Ω) to L2(Ω), g is a function in L2(Ω), λ > 0 is a positive real
number. As demonstrated in [9], if u, p̄ are C1, F (u) defined above is equivalent to∫

Ω

|∇u|p̄dx. (29)
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So instead of (15) in the previous section, in this subsection we consider T defined
in (27). For this particular T , we define

J(u) = ‖u‖L2(Ω) + F (u) +
1

4
|Ω|, (30)

which obviously satisfies ‖u‖BV ≤ CJ(u).

Theorem 2.3. Assume d = 2 and that 1 ≤ q ≤ d
d−1 , S is a linear bounded operator

from Lq(Ω) to L2(Ω) and g is a function in L2(Ω). In addition, we assume that

SχΩ 6= 0. (31)

Then T defined in (27) is CBV-coercive with J defined in (30), and the functional
T has a minimizer.

Proof. The lower semi-continuous or weakly lower semi-continuous of F (u) follows
from Theorem 9 and Theorem 12 in [9]. Hence the (weakly) lower semi-continuous
of J(u) obviously hold. If we can prove T in (27) is CBV-coercive, by Theorem 2.1,
the functional T has a minimizer. So the main task is to prove T is CBV-coercive.
Decompose u as follows:

u = ν + w (32)

where

w =

∫
Ω
udx

|Ω|
χΩ

∫
Ω

νdx = 0. (33)

Using Poincaré inequality and Hölder’s inequality, there exists a positive constant
C such that for any q such that 1 ≤ q ≤ d

d−1 = r,

‖ν‖Lq(Ω) ≤ |Ω|
1
q−

1
r ‖ν‖Lr(Ω)

≤ (|Ω|+ 1)1− 1
rC‖ν‖ ˙BV

≤ C1

(
F (ν) +

1

4
|Ω|
) (34)

where C1 := (|Ω|+ 1)
1
dC. In the last inequality of (34), we used (35) in [9]. Using

(34) and the decomposition (32), we have

J(u) = ‖u‖L2(Ω) + F (u) +
1

4
|Ω|

≤ ‖w‖L2(Ω) + (C1 + 1)(F (ν) +
1

4
|Ω|).

(35)

From the assumption (31), there exists C2 > 0 such that

‖Sw‖L2(Ω) = C2‖w‖L2(Ω). (36)

From the definition of T and the decomposition (32), we obtain

T (u) = F (u) +
λ

2
‖(Sν − g) + Sw‖2L2

≥ F (u) +
λ

2
(‖Sν − g‖L2 − ‖Sw‖L2)2

≥ F (u) +
λ

2
‖Sw‖L2(‖Sw‖L2 − 2‖Sν − g‖L2).

(37)
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By (34), we obtain

‖Sν − g‖L2 ≤ C1‖S‖F (u) +
1

4
C1‖S‖|Ω|+ ‖g‖L2 . (38)

Combining (36), (37) and (38), we have

T (u) ≥F (u) +
λ

2
C2‖w‖L2(C2‖w‖L2

− 2(C1‖S‖F (u) +
1

4
C1‖S‖|Ω|+ ‖g‖L2)).

(39)

From the definition of T (u) in (27), we obtain that

F (u) ≤ T (u). (40)

Case 1: C2‖w‖L2 − 2(C1‖S‖F (u) + 1
4C1‖S‖|Ω| + ‖g‖L2)) ≥ 1. From (39), we

obtain

‖w‖L2 ≤ 2

λC2
T (u). (41)

Hence, considering (40), we finally obtain

J(u) ≤
(

2

λC2
+ (C1 + 1)

)
T (u) +

C1 + 1

4
|Ω|. (42)

Case 2: C2‖w‖L2−2(C1‖S‖F (u)+ 1
4C1‖S‖|Ω|+‖g‖L2) < 1. Obviously, we have

‖w‖L2 ≤
1 + 2(C1‖S‖F (u) + 1

4C1‖S‖|Ω|+ ‖g‖L2)

C2
(43)

Combining (40) with the above inequality, we obtain

J(u) ≤
(

2C1‖S‖
C2

+ C1 + 1

)
T (u) +

1 + 1
4C1‖S‖|Ω|+ ‖g‖L2

C2
. (44)

Considering case 1 and case 2, (42) and (44) yields the CBV-coercivity of T .

Remark 1. In the above theorem, if we assume the solution lies in a closed convex
subset K of Lq with 1 ≤ q ≤ d

d−1 , T can be written as

T (u) = F (u) +
λ

2
‖Su− g‖2L2(Ω) +

1

χK
. (45)

Because the above T is strictly convex, using same procedure as in the proof of
theorem 2.3, we obtain the following theorem.

Theorem 2.4. Assume d = 2 and that 1 ≤ q ≤ d
d−1 , K is a closed convex subset

of Lq(Ω), S is a linear bounded operator from Lq(Ω) to L2(Ω) and g is a function
in L2(Ω). In addition, we assume that

SχΩ 6= 0. (46)

Then T defined in (27) is CBV-coercive with J defined in (30), and the functional
T has a unique constrained minimizer over K.

Next, we addresses the stability of minimizers to functionals of (27). Consider
perturbed functionals

Tn(u) = F (u) +
λ

2
‖Snu− gn‖2L2(Ω), (47)
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Theorem 2.5. Assume 1 ≤ q ≤ d
d−1 , limn→∞ ‖gn − g‖L2(Ω) = 0, the Sns are each

bounded linear and converge pointwise to S, and for each n,

‖SnχΩ‖L2 ≥ γ > 0. (48)

Also assume each Sn has a unique minimizer un and that S has a unique minimizer
ū. Then for 1 ≤ q < d

d−1 , we have

lim
n→∞

‖un − ū‖Lq(Ω) = 0, (49)

for q = d
d−1 , the convergence is weak

un ⇀ ū. (50)

Proof. It suffices to show that conditions (1) and (2) of Theorem 2.2 hold. For
condition (1), put un = νn + wn as in (32) and (33), and repeat the proof of

theorem 2.2. Since ‖SnχΩ‖L2 ≥ γ
√
|Ω|‖wn‖L2(Ω), letting M be an upper bound on

S and each Sn, m is an upper bound on ‖g‖L2 and each ‖gn‖L2 , one obtains

Tn(un) ≥F (un) +
λ

2
γ
√
|Ω|‖wn‖L2(γ

√
|Ω|‖wn‖L2

− 2(C1MF (un) +
1

4
C1‖Sn‖Vol(Ω) +m)).

(51)

This yields uniform CBV-coercivity by same argument as in the proof of Theorem
2.2. Since

|Tn(u)− T (u)| ≤λ
2

(‖Snu− Su‖L2 + ‖gn − g‖L2)((‖Sn‖+ ‖S‖)‖u‖L2

+ ‖gn‖L2 + ‖g‖L2),

condition (2) is obviously satisfied.

2.3. Variable TV Regularization for Fractional Backward Diffusion. In
this subsection, we firstly construct an abstract fractional evolution equation based
on the following time-space fractional diffusion system for homogeneous media:{

∂αt v(t, x) + (−∆)βv(t, x) = 0 (x, t) ∈ R2 × (0,∞)

v(x, 0) = u(x) x ∈ R2
. (52)

with 0 < α ≤ 1, β ∈ (1/2, 1]. u is the initial data in R2 with compact support in
a bounded convex open subset Ω of the plane with Lipschitz continuous boundary
∂Ω.

Define an operator A = −∆ with domain

D(A) = {u ∈ H1
0 (R2) : ∆u ∈ L2(R2)}. (53)

Let X = L2(R2), then A is a bounded linear operator defined on X. By Theorem
2.4.1 in [7], we know that A is m-accretive and −A generates a uniformly expo-
nentially stable and contractive C0-semigroup, denoted as T (t). From the proof of
Theorem 2.4.1 in [7], we know that there exists a constant c > 0 such that

‖T (t)‖ ≤ e−ct, (54)

where ‖ · ‖ is the operator norm. Considering (54), for 1
2 < β ≤ 1, we can define

the following bounded linear operator

A−βx =
1

Γ(β)

∫ ∞
0

tβ−1T (t)xdt ∀ x ∈ X. (55)
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Then as illustrated in [7], [26] or [29], we can define the operator Aβ as the inverse
operator of A−β . Hence, we have

AβA−βx = x ∀ x ∈ X and D(Aβ) = R(A−β). (56)

For any x ∈ D(A), the above positive power of operator A has the following Bal-
akrichnan representations [26]

Aβx =
sin(πα)

π

∫ ∞
0

tα−1(tI +A)−1Axdx ∀ x ∈ D(A), (57)

which may provide more intuitive ideas to the readers. With these preparations, we
can recast system (52) into the following abstract ordinary differential equations on
Banach space X = L2(R2) as follows{

∂αt v(t) +Aβv(t) = 0 t ∈ (0,∞)

v(0) = u
. (58)

Remark 2. Usually the fractional Laplacian operator defined as

(−∆)βv := F−1(|ξ|2β v̂).

So in order to obtain a meaningful abstract form (58), we need to state the equiv-
alence of Aβ defined in (57) and the usual definition by Fourier transform. By
Proposition 8.3.3 in [26], we know that if v ∈ D(Aβ) then Aβv = F−1(|ξ|2β v̂).
That is to say if v ∈ H1

0 (R2)∩H2β(R2), the abstract form is equivalent to the usual
definition by Fourier transform.

Remark 3. The operator A can be defined more generally as follow

Au := −∇ · (a(x)∇u) + c(x)u if u ∈ D(A),

where a(·), c(·) are functions in C1, D(A) defined as in (53) and in addition, we
suppose the operator A defined above satisfies the strong elliptic condition. It is
well known that this operator generate a contractive C0−semigroup [24] and we
can define fractional operator as in (55),(56) and (57), so the abstract fractional
evolution equation (58) incorporate a natural generalization of fractional Laplace
operator. In the following part of this article, we only present the proof of the
Laplace case. That is because once we define the general operator mentioned in
this remark appropriately, it satisfies all the properties of the operator semigroup
which we used and the proof will be almost same.

Now we can prove the main theorem in this subsection.

Theorem 2.6. Let K be a closed convex subset of L2(Ω), gδ is the measurement
data in time T . Then the optimization problem

argmin
u∈K

F (u) +
λ

2
‖Su− gδ‖L2(R2) (59)

has a unique minimizer over K for any fixed λ > 0.

Proof. We attempt to use Theorem 2.4 to obtain the result, so we need to verify
that the operator S is bounded from L2 to L2, and SχΩ 6= 0.

Step 1. Bounded of operator S. Taking the measure µ in [19] to be δβ(·), using
Theorem 3.7 in [19], we find that −Aβ generates a bounded C0-semigroup denoted
as Sβ(t). For simplicity, we denote Sβ as Sβ(T ) for short. Using Corollary 2.10
in [8], we know that −Aβ generate an α-order fractional semigroup proposed in
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[21]. We denote the α-order fractional semigroup generated by −Aβ as Sα,β(t),
particularly for t = T , denote Sα,β as Sα,β(T ) for short. Instead of the semigroup
property, this α-order fractional semigroup satisfies the following equality∫ t+s

0

Sα,β(τ)

(t+ s− τ)α
dτ −

∫ t

0

Sα,β(τ)

(t+ s− τ)α
dτ −

∫ s

0

Sα,β(τ)

(t+ s− τ)α
dτ

= α

∫ t

0

∫ s

0

Sα,β(τ1)Sα,β(τ2)

(t+ s− τ1 − τ2)1+α
dτ1dτ2

in the strong operator topology. Noting our definition of v(x, 1) for x /∈ Ω in Section
1, we have the following expression for operator S:

(Su)(x) =

{
(Sα,βu)(x), x ∈ Ω

gδ(x), x /∈ Ω.
. (60)

Now the meaning of the operator S is not restricted to the one used in (10). In
order to obtain our results, we need to introduce the following lemma (restated in
our setting) proved in Section 3 of [8].

Lemma 2.7. Let Sβ(t) is a bounded C0-semigroup, Sα,β(t) is an α-order fractional
semigroup with α ∈ (0, 1). Then the following representation holds

Sα,β(t) =

∫ ∞
0

φt,α(s)Sβ(s)ds, t > 0, (61)

where φt,α(s) = t−αΦα(st−α), Φα(z) is the function of Wright type defined as

Φα(z) :=

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
, 0 < α < 1, (62)

and (61) holds in the strong sense.

For functions of Wright type, there are many usefully literatures [10, 12, 13].
Here we only recall that Φα(t) is a probability density function satisfies:

Φα(t) ≥ 0, t > 0;

∫ ∞
0

Φα(t)dt = 1. (63)

Considering Lemma 2.7 and the above properties (63), for every u ∈ X, we have

‖Su‖L2(Ω) = ‖Sα,βu‖L2(Ω) ≤
∫ ∞

0

φT,α(s)‖Sβ(s)u‖L2ds

≤ C
∫ ∞

0

φT,α(s)ds‖u‖L2

= C‖u‖L2(Ω),

(64)

where we used the fact that Sβ(s) is a bounded C0-semigroup.
Step 2. Operator S does not annihilate constant functions. Assume ‖Sα,βχΩ‖L2(Ω) =

0, that is ∫ ∞
0

φT,α(s)Sβ(s)χΩds = 0 a.e. (65)

By the definition of φT,α(s), we know that∫ ∞
0

T−αΦα(T−αs)Sβ(s)χΩds = 0 a.e. (66)
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Since Φα(s) is a probability density, if Sβ(s)χΩ ≥ 0 a.e., we can conclude that
Sβ(s)χΩ = 0 a.e. for almost all s > 0. By the strong continuity of C0-semigroup,
we will obtain lims→0 ‖Sβ(s)χΩ−χΩ‖L2(R2) = 0, that is to say ‖χΩ‖L2(R2) = 0 which
is a contradiction. So ‖SχΩ‖L2(Ω) = ‖Sα,βχΩ‖L2(Ω) > 0 which means SχΩ 6= 0 in

L2(Ω).
Now we verify the positive condition Sβ(s)χΩ ≥ 0 a.e.. Since χΩ ≥ 0, we just

need to verify that Sβ(s) is a positive preserving operator semigroup. For more
properties of positive preserving operator semigroup, we refer to [30, 40]. Here,
for the reader’s convenience, we give the following lemma (Theorem 4.6.14 in [30])
which is useful for our proof.

Lemma 2.8. Let {T (t)}t≥0 be a strongly continuous contraction semigroup on the
space Lp(Rd,R), 1 < p <∞, with generator (−A,D(A)). The semigroup {T (t)}t≥0

is positive preserving if and only if∫
Rd

(−Au)(u+)p−1dx ≤ 0 (67)

holds for all u ∈ D(A).

In our setting, A = −∆, p = 2, (67) can be verified as follows∫
Rd

(∆u)u+dx = −
∫
Rd
∇u · ∇u+dx (68)

= −
∫
Rd
|∇u+|2dx ≤ 0, (69)

where we used

∇u+ =

{
∇u, a.e. on {u > 0}
0, a.e. on {u ≤ 0}.

Hence, the semigroup stated in (54) is positive preserving. Then from the proof of
Theorem 3.7 in [19], there exists a probability measures {µ(t)}t≥0 such that

Sβ(t) =

∫ ∞
0

T (s)µ(t)ds. (70)

Considering (70), the C0-semigroup Sβ(t) is obviously positive preserving that is
Sβ(t)χΩ ≥ 0 a.e..

At last, let us consider the stability of the minimizer of (59) with respect to the
perturbations on the operator S and gδ for any fixed λ > 0. We state this result as
follows.

Theorem 2.9. Let the hypothesis in Theorem 2.6 be satisfied. Define two func-
tionals

T∗(u) := F (u) +
λ

2
‖Su− g‖2L2(R2),

Tn(u) := F (u) +
λ

2
‖Snu− gn‖2L2(R2), n = 1, 2, . . .

and denote by

u∗ := argmin
u∈K

T∗(u), un := argmin
u∈K

Tn(u).

If limn→∞ ‖gn−g‖L2(R2) = 0, Sn converge pointwise to S as n→∞, then it follows

that un ⇀ u as n→∞ in the weak topology of L2(Ω).
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Proof. We will use Theorem 2.5 to obtain the above result. Here we just need to
verify condition (48). From the proof of Theorem 2.6, we know that there exists a
constant c > 0 such that

‖SχΩ‖L2 ≥ c > 0. (71)

Since here we just concern the case with large enough n and Sn converge to S
pointwise, we can find a positive constant N > 0 such that if n ≥ N then we have

‖SnχΩ − SχΩ‖L2 ≤ c

2
. (72)

From (71) and (72), we obtain

‖SnχΩ‖L2 ≥ c

2
> 0 (73)

for every n ≥ N .

Remark 4. For the general operator A mentioned in remark 3, in order to obtain
the same results as in the Laplace case, we may need to assume the function c(·)
has a small positive bound to verify the conditions mentioned in lemma 2.8. In
summary, the proof of Theorem 2.6 and Theorem 2.9 just require −A generate a
contraction C0-semigroup and satisfies condition (67). In addition, by some modifi-
cations, we may obtain similar results for space distributed order fractional diffusion
equations studied in [19, 5]. Because the modifications is not trivial, it may be more
appropriate to report in another paper.

3. Numerical Approach. The well-posedness of our optimization problem (59)
is obtained in the previous section. In this section, we propose modified Bregman
iterative method to solve (59) efficiently. The Bregman distance associated with a
convex functional F (·) between points u and v is defined as

Dp
F (u, v) := F (u)− F (v)− < p, u− v >, (74)

where p ∈ ∂F (v) = {w : F (u) − F (v) ≥< w, u − v >, ∀u} is the sub-gradient of
F (·) at the point v. Then our optimization problem (59) becomes

u∗ := argmin
u∈K

F (u∗)+ < p, u− u∗ > +Dp
F (u, u∗) +

λ

2
‖Su− gδ‖2L2(R2) (75)

with p ∈ ∂F (u∗). Since the forward problem can be solved efficiently in the fre-
quency domain, by Parseval identity, we have the following equivalent form

u∗ := argmin
u∈K

F (u∗)+ < p, u− u∗ > +Dp
F (u, u∗) +

λ

2
‖Ŝû− ĝδ‖2L2(R2) (76)

where Ŝ defined as in (8).
Instead of solving (14), Osher et al.[37] proposed Bregman iterative regularization

to solve (76) approximately by using the following iterative formula:

um+1 = argmin
u

Dpm

F (u, um) +
λ

2
‖Ŝû− ĝδ‖2L2(R2) (77)

for m = 0, 1, 2, . . ., beginning with p0 = u0 = 0. In order to simplify the computa-
tion, we introduce

Fm(u) =

∫
Ω

|∇u|p̄
m(x)dx, (78)
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where p̄m(x) = PN (|∇(Gδ̃ ∗ um)(x)|2). Instead of F (u) (p̄ dependent on u) by
Fm(u) defined above, the Euler-Lagrange equation will be significantly simplified
for each step as illustrated in (18) and (19). Through this simplification, we can
still capture the change of edges during evolution process by just solving a simple
Euler-Lagrange equation.

Using the definition of Bregman distance (74), problem (77) will becomes

um+1 = argmin
u

Fm(u)− Fm(um)− < pm, u− um > +
λ

2
‖Ŝû− ĝδ‖2L2(R2). (79)

From the results in Section 2, it is easy to find that u1 is well defined. By similar
arguments as deriving (3.4),(3.5) and (3.6) in [25], we can also deduce that {um :
m ∈ N} is well defined. Now let us firstly provide a recursive procedure which
can solve (77) numerically in Algorithm 1. Then, let us prove the properties of

Algorithm 1 Recursive Procedure

set

(u0, p0) = (0, 0)

F0(u) =

∫
Ω

|∇u|PN (|∇(Gδ̃∗g
δ)(x)|2)dx

u1 = argmin
u

F0(u) +
λ

2
‖Ŝû− ĝδ‖2L2(R2)

f̂1 = ĝδ − Ŝû1

repeat

um+1 = argmin
u

Fm(u) +
λ

2
‖Ŝû− ĝδ − f̂m‖2L2(R2)

f̂m+1 = f̂m + ĝδ − Ŝûm+1

until Some stopping condition is satisfied

{um : m ∈ N} appeared in Algorithm 1 and the stoping criterion for iteration based
on (79). Since the regularizing term changed during iteration in our case, the proof
is more complex than the TV regularization case.

Theorem 3.1. For any fixed λ > 0, the data fitting error from the iteration is
non-increasing, i.e.,

‖Ŝûm+1 − ĝδ‖L2(R2) ≤ ‖Ŝûm − ĝδ‖L2(R2), m = 1, 2, . . . (80)

Moreover, it follows that

‖ŜûM − ĝδ‖2L2(R2) ≤
2

λM
(‖∇u∗‖L2 + |Ω|) + δ2, (81)

where u∗ is the minimizer of functional ‖Ŝû− ĝδ‖2L2(R2), δ > 0 is the known error

level.
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Proof. Obviously, we have

λ

2
‖Ŝûm+1 − ĝδ‖2L2 ≤ Dpm

Fm
(um+1, um) +

λ

2
‖Ŝûm+1 − ĝδ‖2L2

≤ Dpm

Fm
(um, um) +

λ

2
‖Ŝûm − ĝδ‖2L2

=
λ

2
‖Ŝûm − ĝδ‖2L2 .

(82)

By direct computations, we can obtain

Dpm

Fm
(u, um)−Dpm−1

Fm−1
(u, um−1) +Dpm−1

Fm−1
(um, um−1)

=Fm(u)− Fm(um)+ < pm, um − u > −Fm−1(u) + Fm−1(um−1)

− < um−1 − u, pm−1 > +Fm−1(um)− Fm−1(um−1)

+ < um−1 − um, pm−1 >

=Fm(u)− Fm(um)− Fm−1(u) + Fm−1(um)+ < um − u, pm − pm−1 > .

(83)

Summing up the following estimates into (83)

< um − u, pm − pm−1 > =
λ

2
< um − u,−F−1(∂û‖Ŝû− ĝδ‖2L2 |û=ûm) >

=
λ

2
< ûm − û,−∂û‖Ŝû− ĝδ‖2L2 |û=ûm >

≤ λ

2
(‖Ŝû− ĝδ‖2L2 − ‖Ŝûm − ĝδ‖2L2),

(84)

then we have

Dpm

Fm
(u, um)−Dpm−1

Fm−1
(u, um−1) +Dpm−1

Fm−1
(um, um−1)

≤ Fm(u)− Fm(um)− Fm−1(u) + Fm−1(um)

+
λ

2
(‖Ŝû− ĝδ‖2L2 − ‖Ŝûm − ĝδ‖2L2).

(85)

Take u = u∗ in (85) and rewrite it as

Dpm

Fm
(u∗, u

m) +
λ

2
‖Ŝûm − ĝδ‖2L2 ≤Fm(u)− Fm(um)− Fm−1(u)

+ Fm−1(um) +Dpm−1

Fm−1
(u∗, u

m−1)

−Dpm−1

Fm−1
(um, um−1) +

λ

2
δ2.

(86)

Taking summation for m = 1, . . . ,M yields

DpM

FM
(u∗, u

m) +
λ

2

M∑
m=1

‖Ŝûm − ĝδ‖2L2 ≤ FM (u∗) +
λ

2
Mδ2, (87)

where we used u0 = p0 = 0. Considering DpM

FM
(u∗, u

m) ≥ 0, we finally arrive at

‖ŜûM − ĝδ‖2L2 ≤
2

λM
(‖∇u∗‖L2 + |Ω|) + δ2. (88)
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Theorem 3.2. Assume that u is the exact initial distribution. The optimal strategy
for regularizing parameters (λ,M) is that

2

λM
(‖∇u∗‖L2 + |Ω|) = δ2. (89)

For such a strategy, we have the optimization convergence rate

‖Ŝ(ûM − û)‖L2(R2) ≤ (
√

2 + 1)δ as δ → 0. (90)

Proof. The results can be obtained by using Theorem 3.1 and the following estimate

‖Ŝ(ûM − û)‖L2 ≤ ‖ŜûM − ĝδ‖L2 + ‖Ŝû− ĝδ‖L2 ≤ ‖ŜûM − ĝδ‖L2 + δ.

Since ‖∇u∗‖L2 is unknown, the strategy (89) can not be implemented numerically
for choosing (λ,M). An implementable scheme is that we fix λ, then choosing the
iteration stopping value M such that

‖ŜûM − ĝδ‖L2(R2) ≤ τδ (91)

is satisfied first time for some specified τ > 1.
For our problem, we must consider how to evaluate p̄(x) during each iteration.

In order to simplify the computation and reduce the number of parameters needed
to be specify, here we use a surrogate for p̄(x) = PN (|∇(Gδ̃ ∗u)(x)|2). The essential
idea of p̄(x) is that its value is 1 near the edges and its value is 2 away from the
edges. So we can use some simple algorithm to detect the edges firstly, then based
on the estimated edges build our exponent p̄(x). Denote um to be the input of the
(m+1)s iterate, we need to specify p̄(x) from um. Using some simple edge detection
algorithm, we will obtain the estimated edges denoted as E(um) which is an image
with value 1 on the detected edges and with value 0 away from the edges. Then,
we define

p̄m(x) = 2I −Gδ̃ ∗ E(um) (92)

where I is the matrix which has the same dimension as um and each element of I
is equal to 1, Gδ̃ defined as in (12) is a smoothing kernel.

Now we are ready to consider the algorithm for solving

um+1 = argmin
u

Fm(u) +
λ

2
‖Ŝû− ĝm‖2L2 (93)

with ĝm = ĝδ + f̂m for m = 0, 1, . . .. Firstly, we introduce a new function w to
represent the gradient term ∇u in optimization problem (93), which generates an
equivalent constrained convex optimization problem:

min
u,w

{∫
Ω

|w|p̄
m(x)dx+

λ

2
‖Ŝû− ĝm‖2L2

}
such that w(x) = ∇u(x). (94)

Secondly, we split the domain Ω into three parts, for some small constant ε > 0,

Ω1 := {x ∈ Ω : 1 ≤ p̄m(x) < 1 + ε},
Ω2 := {x ∈ Ω : 1 + ε ≤ p̄m(x) ≤ 2− ε},
Ω3 := {x ∈ Ω : 2− ε < p̄m(x) ≤ 2}.

(95)
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Approximately, we can take p̄(x) = 1 on Ω1 and p̄(x) = 2 on Ω3. Hence, we can
rewrite (94) as follows

min
u,w

{∫
Ω1

|w|dx+

∫
Ω2

|w|p̄
m(x)dx+

∫
Ω3

|w|2dx+
λ

2
‖Ŝû− ĝm‖2L2

}
such that w(x) = ∇u(x).

(96)

Based on the domain decomposition, we define w1 := w|Ω1
, w2 := w|Ω2

and w3 :=
w|Ω3

.
Thirdly, by using the splitting technique, we construct an iterative procedure of

alternately solving a pair of easy subproblems. The first three subproblems can be
called ’w-subproblem’ for fixed u = u∗:

argmin
w1

{∫
Ω1

|w1|dx+
λ̃

2
‖w1 −∇u∗‖2L2(Ω1)

}
, (97)

argmin
w2

{∫
Ω2

|w2|p̄
m(x)dx+

λ̃

2
‖w2 −∇u∗‖2L2(Ω2)

}
, (98)

argmin
w3

{∫
Ω3

|w3|2dx+
λ̃

2
‖w3 −∇u∗‖2L2(Ω3)

}
. (99)

The last subproblem is the ’u-subproblem’ for fixed w = w∗:

argmin
u

{
λ

2
‖Ŝû− ĝm‖2L2(Ω) +

λ̃

2
‖w∗ −∇u‖2L2(Ω)

}
. (100)

Using the definition of Frechet derivatives and standard computations, we can
easily obtain the minimizer of the subproblems (97), (99) and (100). Because the
deduction is standard, we omit the details and just give the results as follows:

w1[u∗](x) =


0 x /∈ Ω1

0 x ∈ Ω1 and |∇u∗(x)| ≤ 1
λ̃(

|∇u∗(x)| − 1
λ̃

)
∇u∗(x)
|∇u∗(x)| x ∈ Ω1 and |∇u∗(x)| > 1

λ̃

, (101)

w3[u∗](x) =

{
0 x /∈ Ω3
∇u∗(x)

λ̃+2
x ∈ Ω3,

(102)

û[w∗, gm](ξ) =
λŜ(ξ)ĝm(ξ)− iλ̃ξ · ŵ∗

λŜ2(ξ) + λ̃|ξ|2
. (103)

For subproblem (98), by a simple calculation, we can obtain the Euler-Lagrange
equation

0 = −∇ ·
(
w2

|w2|
p̄(x)|w2|p̄(x)−1

)
+ λ̃(w2 −∇u∗) (104)

Denote

Jsub2(w2) :=

∫
Ω2

|w2|p̄
m(x)dx+

λ̃

2
‖w2 −∇u∗‖2L2(Ω2).

Taking g̃mij to be a standard finite difference approximation of the right hand side
of (104) at xi,j and tm, we get an Euler-like updating scheme

wm+1
2 i,j [u∗] = wm2 i,j [u

∗]−∆tg̃mi,j . (105)
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Here we use an adaptive step size scheme. The new value wm+1
2 i,j [u∗] is accepted for

each step in which the cost is improved, Jsub2(wm+1
2 i,j [u∗]) < Jsub2(wm2 i,j [u

∗]), and

the step ∆t is increased by a factor ∆t → (1 + s)∆t, s > 0. For each unsuccessful
step where Jsub2(wm+1

2 i,j [u∗]) ≥ Jsub2(wm2 i,j [u
∗]), the trial step is not used, and the

step size is decreased, ∆t→ (1− s)∆t.
In order to solve optimization problem (94) by solving subproblems from (97)

to (100), we need to solve subproblems from (97) to (100) iteratively with many
times to obtain an accurate solution. However, as mentioned in [39], we actually
only need to solve these subproblems with few iterations. Hence, we may not need
to solve subproblem (98) with very high accuracy. That is to say we can run the
iterative procedure (105) with few steps.

At last, we state the discrete version of gradient operator and frequency opera-
tion. For a function f , the discrete version of ∇f is (∇f)i,j := ((∇f)1

i,j , (∇f)2
i,j)

with

(∇f)1
i,j =

{
fi+1,j−fi,j

δx1
1 ≤ i < N

0 i = N,
(∇f)2

i,j =

{
fi,j+1−fi,j

δx2
1 ≤ j < N

0 j = N.

For simplicity, we assume that Ω := [−L,L] × [−L,L] is a square, which yields
that δx1 = δx2 := δx = 2L

N . Then from Shannon-Nyquist sampling principle, the
maximum frequency from the spatial grids is [−Ω0,Ω0] with

Ω0 =
2π

δx
=
πN

L
.

We can compute the discrete Fourier transform in [−Ω0,Ω0]× [−Ω0,Ω0] with uni-
form frequency distribution {ξm,n : m,n = 1, 2, . . . , N}.

Under these considerations, the iterative scheme for solving the optimization
problem for the backward time-space fractional diffusion model can be implemented
by the Bregman iterative algorithm with some modifications. For the details, see
Algorithm 2.

4. Numerical Examples. In this section, we consider two typical examples. In
these two examples, we will compare our results with TV regularizing and Tikhonov
regularizing model. Here we first list the two models as follows

uTV = argmin
u

{
‖u‖TV +

λ

2
‖Ŝû− ĝδ‖2L2(R2)

}
, (106)

uTik = argmin
u

{
‖∇u‖2L2 +

λ

2
‖Ŝû− ĝδ‖2L2(R2)

}
, (107)

where λ is the regularization parameter, gδ is the measured data with noise. For
the TV regularization model, we refer to [37] which described clearly how to solve
TV regularization model. For Tikhonov regularization model, it can be solved just
by a small modification of algorithm stated in [37]. More explicitly, we just need
to change the Euler-Lagrange equation of problem (106) by the Euler-Lagrange
equation of problem (107).

In our numerical examples, we choose

Gδ̃(x) =
1

δ̃
exp

(
− 1

4δ̃2
|x|2
)
, (108)
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Algorithm 2 Modified Bregman Iteration Algorithm

Input: gδ, δ, λ, λ̃, τ,mmax, kmax, `max, Gδ̃, E(·) is some edge detector,∆t, ε, s, tol

set u0 = p0 = 0, g0 = gδ,m = 0
while ‖Ŝûm − ĝδ‖L2 ≥ τδ and m ≤ mmax do
um,0 = um p̄m = 2I −Gδ̃ ∗ E(um)
for k = 0 to kmax do
wk+1

1 ←− w1[um,k]

while ` ≤ `max and ‖w`+1
2 − w`2‖L2 > tol do

g̃` = −∇ ·
(
w`2
|w`2|

p̄m|w`2|p̄
m−1

)
+ λ̃(w`2 −∇um,k)

if Jsub2(w`2) > Jsub2(w`2 −∆tg̃`) then

w`+1
2 ←− w`2 −∆tg̃`, ∆t←− (1 + s)∆t

else
∆t←− (1− s)∆t

end if
end while
wk+1

3 ←− w2[um,k], wk+1 ←− wk+1
1 + wk+1

2 + wk+1
3

um,k+1 ←− u[wk+1, ĝm]
end for
um+1 ←− um,k+1, ĝm+1 ←− ĝm + (ĝδ − Ŝûm+1)

end while
Output: um+1

as the smoothing kernel Gδ̃ appeared in Algorithm 2. In the following, we take
parameters in Algorithm 2 as follows

δ̃ = 0.4, τ = 1.01, mmax = 500, kmax = 2, `max = 5, tol = 10−6,

s = 0.1, ∆t = 0.1, ε = 0.1,

E(·) to be the Canny edge detection algorithm in the Matlab toolbox.

For the noise, we take δ = 0.0005 and δ = 0.005 respectively. Because the value
of λ can determine the convergence rate of our algorithm, we take different λ for
different noise level. If we take λ too big, ‖Su1 − ĝδ‖L2 may less than τδ when the
first iteration finished. In this case, we may incorporate more noise in our result
u1. If we take λ too small, the iteration will converge too slow to obtain our final
results, e.g. exceed 500 steps. For δ = 0.0005 and δ = 0.005, we take λ = 1011 and
λ = 109 respectively in our numerical experiments.

In order to avoid the error in solving the forward fractional differential equation,
we solve (2) to obtain the solution at time T using the Laplace transform

v̂(T, ξ) = Eα,1(−|ξ|2βTα)û(ξ),

where the Mittag-Leffler function Eα,1(·) is numerically calculated up to desired
accuracy by standard algorithm provided by Podlubny [17].

Denote x = (x1, x2) ∈ R2 and ξ = (ξ1, ξ2) ∈ R2. We generate the final measure-
ment data with noise by

gδ := vδ(T, x) = F−1(v̂(T, ξ)) + δ · randn(x) ·max(F−1(v̂(T, ξ))),
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where randn is the pseudo-random number generating from the standard normal
distribution. Here we add noise as in [38] where the δ stands for the noise level is
100× δ, e.g. when δ = 0.05 the noise level is 5%.

In our discretization, we discrete Ω = [−10, 10]2, the support of u(x), by uniform
grids (x1(i), x2(j)) ∈ [−10, 10]2 with i, j = 1, . . . , 256.

We use relative error (RelErr) to quantitatively compare our solution with those
based on TV regularization and Tikhonov regularization. For given finite dimen-
sional vectors g and its noisy form gδ representing the image, the above RelErr has
the representation

RelErr(gδ, g) :=
‖gδ − g‖L2(Ω)

‖g‖L2(Ω)
× 100%. (109)

Example 1. We consider u(x) = e−|x|
2

, T = 1. In this case, the exact solution
has the following form

v̂(T, ξ) = πEα,1(−|ξ|2βTα)û(ξ)e−|ξ|
2

. (110)

We take α = 0.6, β = 1 and T = 1 to see the difference between the three different
models. In Table 1, relative error defined in (109) for three different methods
are presented. Because the noise added by random algorithms, we run the three
different algorithms 100 times and the data are the averages.

Table 1. The values of RelErr of three methods for Example 1

RelErr TV model Tikhonov model Variable TV model

σ = 0.0005 3.8283% 0.3857% 0.3696%

σ = 0.005 8.8646% 0.6559% 0.6597%

From Table 1, we could clearly know that TV model’s performance is much weaker
than the Tikhonov model and our variable TV model’s performance is comparable
to the Tikhonov model. Because the differences for recovered functions obtained by
different methods can not see clearly form the figures of the recovered function, we
will not provide the comparison figures for the recovered function and only provide
the original data, recovered data with δ = 0.0005 and δ = 0.005 in Figure 3 which
show that the recovered data have no visual difference with the original data.

Example 2. Consider a phantom model generated by standard function phan-
tom.m in Matlab with defalut parameters. We use the gray level (piecewise con-
stant) of this image as the values of u(x), see Figure 4. In this example, we take
α = 0.6 and β = 0.9 and N = 256. In the following, we provide Table 2 to present
the performance of the three different models. As in Example 1, we also run the
three different algorithms 100 times and the data in Table 2 are the averages. Table
2 demonstrate that the TV model’s performance is better than Tikhonov model
when the initial data is a piecewise constant function. Our variable TV model as
expected preform comparable to the TV model. Hence, Example 1 and Example
2 reflect that our model can change the value of p̄ and the algorithm proposed in
Section 3 can solve our variable TV regularization model effectively. Based on same
considerations as stated in Example 1, we will not present the three different figures
of the recovered function and only present the recovered functions of our variable
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Figure 3. Left: Original function; Middle: Recovered function by
variable TV model with δ = 0.0005; Right: Recovered function by
variable TV model with δ = 0.005 for Example 1.

Figure 4. Initial function for Example 2.

TV model in Figure 5 which show that the recovered functions are much similar to
the original data.

Table 2. The values of RelErr of three methods for Example 2

RelErr TV model Tikhonov model Variable TV model

σ = 0.0005 13.0053% 13.7772% 13.0666%

σ = 0.005 22.7222% 25.2101% 22.7810%

Figure 5. Left: Recovered function by variable TV model with
δ = 0.0005 for Example 2; Right: Recovered function by the vari-
able TV model with δ = 0.005 for Example 2.
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Now, we provide a simple verification of our theoretical results Theorem 3.2.
Here, we take δ = 0.0005. From Theorem 3.2, we know that

λM =
2

δ2
(‖∇u∗‖L2 + |Ω|) = C

for some unknown constant C. We take λ = 1011, 1
4 × 1011, 1

16 × 1011 respectively,
then run our program by taking τ = 1.01 and using our stop criterion (91) to
obtain the iterative step M . For clarity, the values of M , RelErr with different
choices of λ are shown in Table 3. From Table 3, we find that M = 9, 34, 150 when

Table 3. The values of RelErr with different parameters λ of Vari-
able TV model for Example 2

λ = 1011 λ = 1
4 × 1011 λ = 1

16 × 1011

σ = 0.0005 M = 9 M = 34 M = 150

RelErr = 13.0792% RelErr = 13.0342% RelErr = 13.0275%

λ = 1011, 1
4 × 1011, 1

16 × 1011 respectively, which indicate that the numerical results
are almost the same as predicted by the theoretical results. Although we choose
three different values of λ and obtain three different maximum iteration numbers,
the values of RelErr are almost the same, which demonstrate that the estimated
results are not sensitive to different values of parameter λ. The results shown in
Table 3 are obtained by running our algorithm once, and each time the results will
be a little different for the noise is added randomly.

After theoretical justifications, we want to clarify an interesting phenomena
which reveals some essential different properties of the inverse problems for integer-
order differential equations and fractional-order differential equations.

Discontinuity for normal and anomalous diffusion. In this part, we also
use the phantom model generated by standard function phantom.m in Matlab with
defalut parameters (same as in Example 2) as our initial data then take T = 1,
σ = 0.0005, β = 1 and the time derivative α = 0.5, . . . , 1. In order to provide a
clear explanation, we take 100 points between [0.5, 1] for α. Then we use our variable
TV regularizing model to recover the true initial data and plot the RelErr value for
each α in Figure 6. Because we used the same model, the degree of ill-posedness
intuitively can be represented by the RelErr value. Small RelErr value indicate that
our model can provide a good result, hence, the degree of ill-posedness is weak. In
contradict, large RelErr value indicate that the degree of ill-posedness is strong.
From Figure 6, we clearly find that even for α = 0.99 the degree of ill-posedness is
much weaker than the integer-order equation. This implies that for α < 1 the degree
of ill-posedness varies continuously, however, for α = 1 the degree of ill-posedness is
much higher than any value of α < 1. The degree of ill-posedness may not change
continuously at the point 1. This observation may be explained by the properties of
Mittag-Leffler function Eα,1(z). For α = 1, it is an exponential function, however,
for any value α < 1 the Mittag-Leffler function behaves like polynomial functions
for large z (Theorem 1.3 in [16]). This property also be observed in [42] which
propose a fractional extension of instantaneous frequency attribute to detect thin
layers of sandstone formations. They use fractional order of 0.99 and illustrate only
0.01 smaller than integer-order 1 will bring very different results.
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Figure 6. The curve of the relative error of the recovered data for
different values of parameter α.

From the above two typical examples, it is obviously that our algorithm behaves
like L2 based Tikhonov regularization model when the initial function is smooth and
behaves like TV regularization model when the initial function is piecewise constant.
Hence, our model has more flexibility compared with Tikhonov regularization model
and TV regularization model.

5. Conclusion. In this work, backward diffusion problem of a time-space fraction-
al diffusion equation are discussed under the regularization framework. Variable
total variation (TV) regularizing term are employed to overcome the deficiencies of
Tikhonov and TV regularization methods. The existence, uniqueness and stability
of the solution for the minimization problem with variable TV regularizing term
are obtained by using the fractional operator semigroup theory. Meanwhile, a new
modified Bregman iterative algorithm are proposed to approximate the minimizer.
Concerning this new algorithm, both the convergence and the strategy of choosing
parameters are illustrated theoretically. In the end, numerical tests are provided,
which demonstrate the good performance and flexibility of the proposed method.

Finally, we point out some future directions along the line of this work. The
first is concerned with the inversion of initial data and fractional-order simultane-
ously. In some problems, we can estimate the fractional-order firstly, then solve the
backward problem. However, sometimes, we need to estimate the initial data and
the fractional-order simultaneously, which require to construct more sophisticated
algorithms, e.g., alternate iterative type algorithms for fractional-order and initial
data. The second is concerned with the generalization of the isotropic fractional
diffusion equations employed here to anisotropic equations. For anisotropic equa-
tions, Fourier transform may not be used directly and new techniques need to be
developed.
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