MAXIMUM PRINCIPLES FOR A TIME-SPACE FRACTIONAL
DIFFUSION EQUATION
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ABSTRACT. In this paper, we focus on maximum principles of a time-space
fractional diffusion equation. Maximum principles for classical solution and
weak solution are all obtained by using properties of the time fractional de-
rivative operator and the fractional Laplace operator. We deduce maximum
principles for a full fractional diffusion equation, other than time-fractional
and spatial-integer order diffusion equations.

1. INTRODUCTION
In this paper, we focus on the following time-space fractional diffusion equation
O (u(x,t) — up(x)) + (=A) u(z,t) = f(x,t) in Qx[0,00),
(1.1) u(z,t) =0 in RM\Q, t >0,
u(z,0) = ug(z) in €,

where Q@ ¢ RY(N > 1) is a bounded domain in N-dimensional space, a,3 €
(0,1) and 09 represents the Riemann-Liouville time-fractional derivative defined
as follow

d
(12) o0(t) == (g1 0O)0),
with g, (t) = % and “#” represents usual convolution operator. The fractional
Laplace operator could be defined as follow

(1.3) (=A)o(z) :cNﬁ/R Mdy

s o=y

p22PT(2520) ;
SNTTA=R) and I'(+) represents the usual Gamma function. For more
properties about fractional Laplace operator, we refer to [1].

There are much research about maximum principles for equation (1.1) when
B =1 [2, 3], which is a time fractional diffusion equation. In the fractional elliptic
partial differential equation field, there are also lots of research about maximum
principles e.g. [4]. Recently, some maximum principles for the time fractional
diffusion equations have been applied to inverse source problems in [5].

Although maximum principles are important tools, to the best of our knowledge,
there are few results about maximum principles for equation (1.1) when «, 8 are
both non-integers. In this paper, we prove weak maximum principles for classical

with CN,p =
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and weak solutions of full fractional diffusion equation (1.1) which may provide
important tools for other research.

Notations: In the sequel, W*P? denotes the usual Sobolev spaces with derivative
k and Lebesgue exponent p; C* denotes k times differentiable function spaces.

2. MAXIMUM PRINCIPLE FOR CLASSICAL SOLUTION

In this section, firstly, let us introduce a lemma which could easily be obtained
by using Theorem 1 in [2] and formula (1.20) in [6].

Lemma 2.1. Let a function f € WH((0,T)) N C([0,T]) attain its mazimum
(minimum,) over the interval [0,T) at the point T = tg, to € (0,T]. Then the
Riemann-Liouville fractional derivative of the function f(-) — f(0) is non-negative
(non-positive) at the point ty for any , 0 < a < 1,

97 (f(to) = f£(0)) 20, (97 (f(to) — f(0)) <0), 0<a<l
Definition 2.2. Define the following concepts regarding the domain of the solution:
(1) Qr =2 x (0,T) Cc RNV+L,
(2) Lateral boundary of Qr: 0Qr := 9 x [0,T].
(3) Parabolic boundary of Q7: 0,Qr = (2 x {0}) UdrLQr.

Theorem 2.3. Let Q C RY to be a bounded domain, and let u(z,t) be a function
that is C? in x and C* in t for (z,t) € Q x (0,T), and continuous in both x and t
for (x,t) € Q x [0,T); and u is a solution of equation (1.1) with f >0 in Qr, and
ug >0 Q. Thenu >0 inQT.

Proof. Consider 0 < T" < T, and Q7+, and let us argue by contradiction. Assume
u < 0 somewhere in Q7/. Because u € C(Q7/), and Q7+ compact, there exist
(wo,t0) € Q7 such that u(zg,ty) = ming _, v < 0. Since u > 0 in 2,Qr C 0,Qr,
we have (xo,to) ¢ 8PQT/.

No matter (zg,tg) € Qv is a minimum or (zg,tg) € Q x {T'} is a minimum,
we know that 95 (u(zg,to) — u(z,0)) < 0 from Lemma 2.1. Because u(-,ty) €
C%(Q) N C(Q) and is zero outside the domain and u attains minimum at (zo, ),
we have

u(xo, tg) — u(x,t
(2.1) (—=A) u(wo,t0) = cn,p /RN ( |$(;0 0_)x|N4(rQ,B O)dz <0.
If (—A)Pu(zo,to) = 0, then u(-, ty) = 0, which is a contradiction with u(z,ty) < 0,
therefore (—A)Pu(zg,tp) < 0. But, we have 0 < f(x,t) = 95 (u(wo, to) — u(z0,0)) +
(—=A)Pu(zg,t0) < 0. Tt is a contradiction. Therefore, u > 0 in Q7. Now we obtain
uw>0in Qg for all T < T. By continuity, v > 0 in Q. O

Theorem 2.4. Let Q C RY be a bounded domain, T > 0 and let u be a function
with the same reqularity as in Theorem 2.8 and Dirichlet (zero) exterior conditions.
Then we have the following two assertions
(1) If 05 (u — uo) + (—A)Pu < 0in Q, t € [0,T], then maxp, u = maxg,q, u.
(2) If 0 (u — uo) + (—A)Pu >0 in Q, t € [0,T], then ming,. u = ming,q, u.

Proof. We only prove the second result, the first one could be proved similarly. If
u(z,0) > 0, then we use Theorem 2.3 to see u > 0 in Qr, and since 9,Qr C Qr and
ulp,@r = 0, ming . u = ming,q, u = 0. Otherwise, we assume that « > 0 not hold
everywhere in Qr, so there exists (z9,%9) € Q7 such that ming, u = u(zo,t9) < 0.
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By the proof of Theorem 2.3, it is not possible that there exists a negative minimum
in Qr U (Q x {T'}), therefore, the minimum in Qr must be in 9,Q7. O

3. MAXIMUM PRINCIPLE FOR WEAK SUPERSOLUTION

For convenience, denote HZ(Q2) (s € R) as follow

(3.1) H:(Q) == {ue W*?R"Y) : u=0in RV\Q},
and LP(Q) (1 < p < o0) as
(3.2) LP(Q) :={u e LP(RY) : u=0in RV\Q}.
Denote
c u(x,t) —uly,t))(v(z,t) —v(y,t
(3.3) a(u,v) = %/}RN /RN (u(@,?) |(£J_);|(Niw) (y ))dxdy.

We say that a function u is a weak supersolution of (1.1) in Qr with f € L*(Qr)
and ug € L%(Q), if u belongs to the space

V, i={u € L%((0,T}; LA(2) N L3((0, T); HE ()
such that g1 * (u — ug) € C([0,T]; L2(Q)), and (g1_a * (u — ug))|t=0 = O},
and for any nonnegative test function
(3-4) n € Hy?(Qr) = WH2([0,T]; L2() N L2([0, TT; HY ()
with n|t=7 = 0 there holds

(3.5) /OT /Q =t [g1—a * (u — ug)] dzdt + /OT a(u,n)dt > /OT /Q fndzxdt.

We could provide an equivalent weak formulation of (1.1) where kernel g;_, is
replaced by a more regular kernel g;_q m(m € N). For the detailed definition of
91—a,m, we refer to Section 2 in [7]. We could also introduce a function h,, which
satisfy g1—am = 91—a * hm with “+” represents the convolution operator. For
concisely, we only provide some important properties of functions g1 m and hy,
as follows

Gi-am € WHH0,T)),  g1—am — gi—a in L*([0,T]) as m — oo,
(3.6) gi—a,m and h,, are all nonnegative functions for every m € N,
If fe LP(]0,T),X),1 <p< oo, there holds h,, x f — f in LP([0,T], X),

where X represents a Banach space. Now we could show another definition of weak
solution which is equivalent to equation (3.5).

Lemma 3.1. Let u € V, is a weak supersolution of equation (1.1) if and only if
for any nonnegative function v € H?(Q) one has

/Qq/zﬁt [91—a,m * (v —uo)] dz + a(hp * u, )

(3.7)

> /(hm * flde a.e. t € (0,T), meN.
Q
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Proof. The ‘if’ part is readily seen as follows. Given an arbitrary nonnegative
n € HM(Qr) satisfying |7 = 0, we take in (3.7) ¢ (z) = n(t,z) for any fixed
t € (0,T), integrate from ¢t = 0 to t = T, and integrate by parts with respect to the
time variable. Then by using the approximating properties of the kernels h,,, we
obtain (3.5). To show the ‘only-if’ part, we choose the test function

T Tt
(3.8) n(z,t) = /t ho (o —t)p(o, x)do = /0 hm(0)p(o +t,z)do,

with arbitrary m € N and nonnegative ¢ € H?(Qr) satisfying p|i—r = 0; 7 is a
nonnegative since ¢ and h,, are both nonnegative functions. For the first term in
(3.5), it can be transformed to

T
(39) / / — ¥t [gl—oz,m * (U - uO)] dl‘dt,
0 Q

where we used gi—a,m = gi1—a * Ry and the Fubini’s theorem. For the term
fOT a(u,n)dt, we have

T
/0 a(u,n)dt
_ens 1 f e t) —uly ) (e 0) — ey, ),
o /0 /RN/RN/t (0 — 1) P dodzdydt
evg [T (o * w) (2, 8) = (b ) (y, 1)) (p(2, 1) — @(y, 1))
/0 /RN /]RN dxdydt

9 |z — y|N+25

T
z/ a(hpm, * u, p)dt.
0

Observe that g1—a.m * (u — ug) € oWH2([0,T]; L2(Q2)) where 0 means vanishing
at t = 0. Therefore, combining (3.9) and the above equation, then integrating by
parts and using ¢|;—7 = 0 yields

T T
(3.10) /0 /Qcpat [g1—a,m * (v —ug)] dz + a(hp, * u, p)dt > /0 /Q(hm x f)dadt,

for all m € N and ¢ € HM¥(Qr) with ¢l = 0. By means of a simple ap-
proximation argument, we obtain that (3.10) holds true for any ¢ of the form
o(x,t) = X(t,,,)%(x) where X (4, +,) denotes the characteristic function of the time-
interval (t1,t3), 0 < t; <ty < T and ¢ € H?(Q) is nonnegative. Appealing to the
Lebesgue’s differentiation theorem [8], the proof is complete. (]

Before going further, we need an important formula which could be found in [7]
that is for a sufficiently smooth function « on (0,T) one has for a.e. t € (0,T),

H’(u(t))%(k xu)(t) = %(/f « H(w))(t) + (—H (u(t)) + H'(u(t))u(t))k(t)

’ /o (H (u(t = 5)) = H(u(t)) = H'(u(t) [u(t — ) — u(®) (—‘”2“) s,

where H € CY(R) and k € WH1([0,7]). Denote y™ = max{y,0} and y~ =
max{—y,0}. Now, taking H(y) = 3(y™)?, for any function u € L?([0,T]), there

(3.11)
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will be a direct corollary of the above formula

d 1d
+ > - 2
(3.12) u(t) dt(k*u)(t) 25 dt(k x (ut)?), ae te(0,7T).
Denote v = —u and for v, we could also obtain
d 1d
+ > - +\2
(3.13) v(t) dt(k xv)(t) > 5 dt(k’* (v1)?), a.e. te(0,7).
Now replacing u back into (3.13), we find that
d 1d 9
. < ——=— .e. .
(3.14) u(t)” dt(k*u)(t) 2dt(k*( 7)), ae te(0,T)

Now, we prove the maximum principle for the weak supersolution of (1.1).

Theorem 3.2. Let Q C RY be a bounded domain, T > 0, and u a weak superso-
lution of problem (1.1) with ug > 0 a.e. in Q and f > 0 a.e. in Q x[0,T]. Then
u>0 ae inRY x[0,7T).

Proof. We proceed by a contradiction argument. Taking ¢ in (3.10) to be u~, the
negative part of u. Suppose u~ is nonzero in a set of positive measure. We know
that

/T /Q u” O [k * (u — wo)| do+a(hp, *u,u™ ) dt

// m # fu”dadt.

Let us first analyze the second term on the left hand side of (3.15). Because
hm * u — w in L2([0,T]; L?(Q)) as m — oo, we could deduce that fOTa(hm *
u”)dt — fOTa(u,u_) dt as m — oo. From

Ta( u”)dt = Ta( it — [ a(um, )t
0
/0 a(u™,u”)dt = CNB/ /RN/RN |xi #ég’ D fedydt > o,

we find that
T T
/ a(u,u™)dt < / a(u,u”)dt.
0 0

Noticing that (ut(z,t) — ut(y,t)) (v (z,t) — u™ (y,t)) <0, we obtain

(3.16) /OT a(u,u™)dt < /OTa(u+,u)dt <O0.

Hence, there exists a large positive number M > 0 such that if m > M, we have

(3.15)

T
(3.17) / a(hy *u,u”)dt < 0.
0

For the first term on the left hand side of (3.15), we have

T
/ / U O [g1—a,m * (u — up)] dadt
0o Ja
T T
= / / U O [g1—a,m * u] dedt — / / U~ g1—a,mUodxdl.
0 Q 0 Q
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Noticing that the second term on the righthand side is bigger than or equal to zero,
we infer that

(3.18) / /u Ot [91—am * (U — ug)] dmdt</ /u Ot [91—a,m * u] dxdt.

Using formula (3.14), we obtain

1
(3.19) / / U O [g1—a,m * uldzdt < —= / (91—am * (W) (z, T)dz < 0.
o Jo 2 Ja
From (3.18) and (3.19), we conclude that

T
(3.20) / / U O [g1—a,m * (0 —up)|dxdt <0 for m € N.
0o Ja

Considering (3.17) and (3.20), for sufficiently large m, we deduce that

T
(3.21) / / w0 [g1—a,m * (u—ug)] dx + a(hy, * u,u™)dt <0
0o Ja

Since f > 0 a.e. on Qr, v~ > 0 a.e. on Qr and gi_q,m > 0 on (0,7, we obtain

// m * flu~dadt > 0,

which contradicts to (3.15) and (3.21). Therefore, u > 0 a.e. in RY x [0,7]. O
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