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Abstract. In this paper, we focus on maximum principles of a time-space

fractional diffusion equation. Maximum principles for classical solution and

weak solution are all obtained by using properties of the time fractional de-
rivative operator and the fractional Laplace operator. We deduce maximum

principles for a full fractional diffusion equation, other than time-fractional

and spatial-integer order diffusion equations.

1. Introduction

In this paper, we focus on the following time-space fractional diffusion equation
∂αt (u(x, t)− u0(x)) + (−∆)βu(x, t) = f(x, t) in Ω× [0,∞),

u(x, t) = 0 in RN\Ω, t ≥ 0,

u(x, 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain in N -dimensional space, α, β ∈
(0, 1) and ∂αt · represents the Riemann-Liouville time-fractional derivative defined
as follow

∂αt v(t) :=
d

dt
(g1−α ∗ v(·))(t),(1.2)

with gγ(t) = tγ−1

Γ(γ) and “∗” represents usual convolution operator. The fractional

Laplace operator could be defined as follow

(−∆)βv(x) = cN,β

∫
RN

v(x)− v(y)

|x− y|N+2β
dy,(1.3)

with cN,β =
β22βΓ(N+2β

2 )

πN/2Γ(1−β)
and Γ(·) represents the usual Gamma function. For more

properties about fractional Laplace operator, we refer to [1].
There are much research about maximum principles for equation (1.1) when

β = 1 [2, 3], which is a time fractional diffusion equation. In the fractional elliptic
partial differential equation field, there are also lots of research about maximum
principles e.g. [4]. Recently, some maximum principles for the time fractional
diffusion equations have been applied to inverse source problems in [5].

Although maximum principles are important tools, to the best of our knowledge,
there are few results about maximum principles for equation (1.1) when α, β are
both non-integers. In this paper, we prove weak maximum principles for classical
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and weak solutions of full fractional diffusion equation (1.1) which may provide
important tools for other research.

Notations: In the sequel, W k,p denotes the usual Sobolev spaces with derivative
k and Lebesgue exponent p; Ck denotes k times differentiable function spaces.

2. Maximum Principle for Classical Solution

In this section, firstly, let us introduce a lemma which could easily be obtained
by using Theorem 1 in [2] and formula (1.20) in [6].

Lemma 2.1. Let a function f ∈ W 1,1((0, T )) ∩ C([0, T ]) attain its maximum
(minimum) over the interval [0, T ] at the point τ = t0, t0 ∈ (0, T ]. Then the
Riemann-Liouville fractional derivative of the function f(·)− f(0) is non-negative
(non-positive) at the point t0 for any α, 0 < α < 1,

∂αt (f(t0)− f(0)) ≥ 0, (∂αt (f(t0)− f(0)) ≤ 0), 0 < α < 1.

Definition 2.2. Define the following concepts regarding the domain of the solution:

(1) QT := Ω× (0, T ) ⊂ RN+1.
(2) Lateral boundary of QT : ∂LQT := ∂Ω× [0, T ].
(3) Parabolic boundary of QT : ∂pQT := (Ω× {0}) ∪ ∂LQT .

Theorem 2.3. Let Ω ⊂ RN to be a bounded domain, and let u(x, t) be a function
that is C2 in x and C1 in t for (x, t) ∈ Ω× (0, T ), and continuous in both x and t
for (x, t) ∈ Ω̄× [0, T ]; and u is a solution of equation (1.1) with f ≥ 0 in Q̄T , and
u0 ≥ 0 in Ω. Then u ≥ 0 in Q̄T .

Proof. Consider 0 < T ′ < T , and Q̄T ′ , and let us argue by contradiction. Assume
u < 0 somewhere in Q̄T ′ . Because u ∈ C(Q̄T ′), and Q̄T ′ compact, there exist
(x0, t0) ∈ Q̄T ′ such that u(x0, t0) = minQ̄T ′ u < 0. Since u ≥ 0 in ∂pQ̄T ′ ⊂ ∂pQ̄T ,

we have (x0, t0) /∈ ∂pQ̄T ′ .
No matter (x0, t0) ∈ QT ′ is a minimum or (x0, t0) ∈ Ω × {T ′} is a minimum,

we know that ∂αt (u(x0, t0) − u(x0, 0)) ≤ 0 from Lemma 2.1. Because u(·, t0) ∈
C2(Ω) ∩ C(Ω̄) and is zero outside the domain and u attains minimum at (x0, t0),
we have

(−∆)βu(x0, t0) = cN,β

∫
RN

u(x0, t0)− u(x, t0)

|x0 − x|N+2β
dx ≤ 0.(2.1)

If (−∆)βu(x0, t0) = 0, then u(·, t0) = 0, which is a contradiction with u(x0, t0) < 0,
therefore (−∆)βu(x0, t0) < 0. But, we have 0 ≤ f(x, t) = ∂αt (u(x0, t0)−u(x0, 0)) +
(−∆)βu(x0, t0) < 0. It is a contradiction. Therefore, u ≥ 0 in QT ′ . Now we obtain
u ≥ 0 in Q̄T ′ for all T ′ < T . By continuity, u ≥ 0 in Q̄T . �

Theorem 2.4. Let Ω ⊂ RN be a bounded domain, T > 0 and let u be a function
with the same regularity as in Theorem 2.3 and Dirichlet (zero) exterior conditions.
Then we have the following two assertions

(1) If ∂αt (u− u0) + (−∆)βu ≤ 0 in Ω, t ∈ [0, T ], then maxQ̄T u = max∂pQT u.

(2) If ∂αt (u− u0) + (−∆)βu ≥ 0 in Ω, t ∈ [0, T ], then minQ̄T u = min∂pQT u.

Proof. We only prove the second result, the first one could be proved similarly. If
u(x, 0) ≥ 0, then we use Theorem 2.3 to see u ≥ 0 in Q̄T , and since ∂pQT ⊂ Q̄T and
u|∂pQT = 0, minQ̄T u = min∂pQT u = 0. Otherwise, we assume that u ≥ 0 not hold

everywhere in QT , so there exists (x0, t0) ∈ Q̄T such that minQ̄T u = u(x0, t0) < 0.
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By the proof of Theorem 2.3, it is not possible that there exists a negative minimum
in QT ∪ (Ω× {T}), therefore, the minimum in Q̄T must be in ∂pQT . �

3. Maximum Principle for Weak Supersolution

For convenience, denote Hs
e (Ω) (s ∈ R) as follow

Hs
e (Ω) :=

{
u ∈W s,2(RN ) : u = 0 in RN\Ω

}
,(3.1)

and Lpe(Ω) (1 ≤ p ≤ ∞) as

Lpe(Ω) :=
{
u ∈ Lp(RN ) : u = 0 in RN\Ω

}
.(3.2)

Denote

a(u, v) :=
cN,β

2

∫
RN

∫
RN

(u(x, t)− u(y, t))(v(x, t)− v(y, t))

|x− y|N+2β
dxdy.(3.3)

We say that a function u is a weak supersolution of (1.1) in QT with f ∈ L∞(QT )
and u0 ∈ L2

e(Ω), if u belongs to the space

Vp :=
{
u ∈ L2p([0, T ];L2

e(Ω)) ∩ L2([0, T ];Hβ
e (Ω))

such that g1−α ∗ (u− u0) ∈ C([0, T ];L2
e(Ω)), and (g1−α ∗ (u− u0))|t=0 = 0

}
,

and for any nonnegative test function

η ∈ H1,β
e (QT ) := W 1,2([0, T ];L2

e(Ω)) ∩ L2([0, T ];Hβ
e (Ω))(3.4)

with η|t=T = 0 there holds∫ T

0

∫
Ω

−ηt [g1−α ∗ (u− u0)] dxdt+

∫ T

0

a(u, η)dt ≥
∫ T

0

∫
Ω

fηdxdt.(3.5)

We could provide an equivalent weak formulation of (1.1) where kernel g1−α is
replaced by a more regular kernel g1−α,m(m ∈ N). For the detailed definition of
g1−α,m, we refer to Section 2 in [7]. We could also introduce a function hm which
satisfy g1−α,m = g1−α ∗ hm with “∗” represents the convolution operator. For
concisely, we only provide some important properties of functions g1−α,m and hm
as follows

g1−α,m ∈W 1,1([0, T ]), g1−α,m → g1−α in L1([0, T ]) as m→∞,
g1−α,m and hm are all nonnegative functions for every m ∈ N,
If f ∈ Lp([0, T ], X), 1 ≤ p <∞, there holds hm ∗ f → f in Lp([0, T ], X),

(3.6)

where X represents a Banach space. Now we could show another definition of weak
solution which is equivalent to equation (3.5).

Lemma 3.1. Let u ∈ Vp is a weak supersolution of equation (1.1) if and only if
for any nonnegative function ψ ∈ Hβ

e (Ω) one has∫
Ω

ψ∂t [g1−α,m ∗ (u− u0)] dx+ a(hm ∗ u, ψ)

≥
∫

Ω

(hm ∗ f)ψdx a.e. t ∈ (0, T ), m ∈ N.
(3.7)
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Proof. The ‘if’ part is readily seen as follows. Given an arbitrary nonnegative
η ∈ H1,β

e (QT ) satisfying η|t=T = 0, we take in (3.7) ψ(x) = η(t, x) for any fixed
t ∈ (0, T ), integrate from t = 0 to t = T , and integrate by parts with respect to the
time variable. Then by using the approximating properties of the kernels hm, we
obtain (3.5). To show the ‘only-if’ part, we choose the test function

η(x, t) =

∫ T

t

hm(σ − t)ϕ(σ, x)dσ =

∫ T−t

0

hm(σ)ϕ(σ + t, x)dσ,(3.8)

with arbitrary m ∈ N and nonnegative ϕ ∈ H1,β
e (QT ) satisfying ϕ|t=T = 0; η is a

nonnegative since ϕ and hm are both nonnegative functions. For the first term in
(3.5), it can be transformed to∫ T

0

∫
Ω

−ϕt [g1−α,m ∗ (u− u0)] dxdt,(3.9)

where we used g1−α,m = g1−α ∗ hm and the Fubini’s theorem. For the term∫ T
0
a(u, η)dt, we have∫ T

0

a(u, η)dt

=
cN,β

2

∫ T

0

∫
RN

∫
RN

∫ T

t

hm(σ − t) (u(x, t)− u(y, t))(ϕ(x, σ)− ϕ(y, σ))

|x− y|N+2β
dσdxdydt

=
cN,β

2

∫ T

0

∫
RN

∫
RN

((hm ∗ u)(x, t)− (hm ∗ u)(y, t))(ϕ(x, t)− ϕ(y, t))

|x− y|N+2β
dxdydt

=

∫ T

0

a(hm ∗ u, ϕ)dt.

Observe that g1−α,m ∗ (u − u0) ∈ 0W
1,2([0, T ];L2

e(Ω)) where 0 means vanishing
at t = 0. Therefore, combining (3.9) and the above equation, then integrating by
parts and using ϕ|t=T = 0 yields∫ T

0

∫
Ω

ϕ∂t [g1−α,m ∗ (u− u0)] dx+ a(hm ∗ u, ϕ)dt ≥
∫ T

0

∫
Ω

(hm ∗ f)ϕdxdt,(3.10)

for all m ∈ N and ϕ ∈ H1,β
e (QT ) with ϕ|t=T = 0. By means of a simple ap-

proximation argument, we obtain that (3.10) holds true for any ϕ of the form
ϕ(x, t) = χ(t1,t2)ψ(x) where χ(t1,t2) denotes the characteristic function of the time-

interval (t1, t2), 0 < t1 < t2 < T and ψ ∈ Hβ
e (Ω) is nonnegative. Appealing to the

Lebesgue’s differentiation theorem [8], the proof is complete. �

Before going further, we need an important formula which could be found in [7]
that is for a sufficiently smooth function u on (0, T ) one has for a.e. t ∈ (0, T ),

H ′(u(t))
d

dt
(k ∗ u)(t) =

d

dt
(k ∗H(u))(t) + (−H(u(t)) +H ′(u(t))u(t))k(t)

+

∫ t

0

(H(u(t− s))−H(u(t))−H ′(u(t))[u(t− s)− u(t)])

(
−dk(s)

ds

)
ds,

(3.11)

where H ∈ C1(R) and k ∈ W 1,1([0, T ]). Denote y+ = max{y, 0} and y− =
max{−y, 0}. Now, taking H(y) = 1

2 (y+)2, for any function u ∈ L2([0, T ]), there
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will be a direct corollary of the above formula

u(t)+ d

dt
(k ∗ u)(t) ≥ 1

2

d

dt
(k ∗ (u+)2), a.e. t ∈ (0, T ).(3.12)

Denote v = −u and for v, we could also obtain

v(t)+ d

dt
(k ∗ v)(t) ≥ 1

2

d

dt
(k ∗ (v+)2), a.e. t ∈ (0, T ).(3.13)

Now replacing u back into (3.13), we find that

u(t)−
d

dt
(k ∗ u)(t) ≤ −1

2

d

dt
(k ∗ (u−)2), a.e. t ∈ (0, T ).(3.14)

Now, we prove the maximum principle for the weak supersolution of (1.1).

Theorem 3.2. Let Ω ⊂ RN be a bounded domain, T > 0, and u a weak superso-
lution of problem (1.1) with u0 ≥ 0 a.e. in Ω and f ≥ 0 a.e. in Ω × [0, T ]. Then
u ≥ 0 a.e. in RN × [0, T ].

Proof. We proceed by a contradiction argument. Taking ϕ in (3.10) to be u−, the
negative part of u. Suppose u− is nonzero in a set of positive measure. We know
that ∫ T

0

∫
Ω

u−∂t [km ∗ (u− u0)] dx+a(hm ∗ u, u−) dt

≥
∫ T

0

∫
Ω

(hm ∗ f)u−dxdt.

(3.15)

Let us first analyze the second term on the left hand side of (3.15). Because

hm ∗ u → u in L2([0, T ];L2
e(Ω)) as m → ∞, we could deduce that

∫ T
0
a(hm ∗

u, u−) dt→
∫ T

0
a(u, u−) dt as m→∞. From∫ T

0

a(u, u−)dt =

∫ T

0

a(u+, u−)dt−
∫ T

0

a(u−, u−)dt,∫ T

0

a(u−, u−)dt =
cN,β

2

∫ T

0

∫
RN

∫
RN

(u−(x, t)− u−(y, t))2

|x− y|N+2β
dxdydt > 0,

we find that ∫ T

0

a(u, u−)dt <

∫ T

0

a(u+, u−)dt.

Noticing that (u+(x, t)− u+(y, t))(u−(x, t)− u−(y, t)) ≤ 0, we obtain∫ T

0

a(u, u−)dt <

∫ T

0

a(u+, u−)dt ≤ 0.(3.16)

Hence, there exists a large positive number M > 0 such that if m ≥M , we have∫ T

0

a(hm ∗ u, u−)dt < 0.(3.17)

For the first term on the left hand side of (3.15), we have∫ T

0

∫
Ω

u−∂t [g1−α,m ∗ (u− u0)] dxdt

=

∫ T

0

∫
Ω

u−∂t [g1−α,m ∗ u] dxdt−
∫ T

0

∫
Ω

u−g1−α,mu0dxdt.
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Noticing that the second term on the righthand side is bigger than or equal to zero,
we infer that∫ T

0

∫
Ω

u−∂t [g1−α,m ∗ (u− u0)] dxdt ≤
∫ T

0

∫
Ω

u−∂t [g1−α,m ∗ u] dxdt.(3.18)

Using formula (3.14), we obtain∫ T

0

∫
Ω

u−∂t [g1−α,m ∗ u] dxdt ≤ −1

2

∫
Ω

(g1−α,m ∗ (u−)2)(x, T )dx ≤ 0.(3.19)

From (3.18) and (3.19), we conclude that∫ T

0

∫
Ω

u−∂t [g1−α,m ∗ (u− u0)] dxdt ≤ 0 for m ∈ N.(3.20)

Considering (3.17) and (3.20), for sufficiently large m, we deduce that∫ T

0

∫
Ω

u−∂t [g1−α,m ∗ (u− u0)] dx+ a(hm ∗ u, u−) dt < 0(3.21)

Since f ≥ 0 a.e. on QT , u− ≥ 0 a.e. on QT and g1−α,m ≥ 0 on (0, T ), we obtain∫ T

0

∫
Ω

(hm ∗ f)u−dxdt ≥ 0,

which contradicts to (3.15) and (3.21). Therefore, u ≥ 0 a.e. in RN × [0, T ]. �
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