ON THE DECAY AND STABILITY OF GLOBAL SOLUTIONS
TO THE 3D INHOMOGENEOUS MHD SYSTEM

JUNXIONG JIA, JIGEN PENG, AND KEXUE LI

ABSTRACT. In this paper, we investigative the large time decay and stability
to any given global smooth solutions of the 3D incompressible inhomogeneous
MHD systems. We proved that given a solution (a,u, B) of (1.2), the velocity
field and the magnetic field decay to zero with an explicit rate, for u which
coincide with incompressible inhomogeneous Navier-Stokes equations [1]. In
particular, we give the decay rate of higher order derivatives of v and B which
are useful to prove our main stability result. For a large solution of (1.2)
denoted by (a,u, B), we proved that a small perturbation of the initial data
still generates a unique global smooth solution and the smooth solution keeps
close to the reference solution (a,u, B). At last, we should mention that the
main results in this paper are concerned with large solutions.

1. INTRODUCTION AND MAIN RESULTS

Magnetic fields influence many fluids. Magnetohydrodynamics (MHD) is con-
cerned with the interaction between fluid flow and magnetic field. The governing
equations of nonhomogeneous MHD system can be stated as follows [16],

Op +div(pu) =0, (t,z) € RT x R3,

O (pu) + div(pu ® u) — div(uM) — (B - V)B + VII = 0,
(1.1) 0B — AAB — curl(u x B) =0,

divu = div B = 0,

pli=o = po, ult=0 =uo, Bli=o = By,

where p, u = (u1, uz, uz) stand for the density and velocity of the fluid, respectively,
M = £(0iu; + Oju;), 11 is a scalar pressure function. B is the magnetic field.
1(p) > 0 denotes the viscosity of fluid, which we assume in this paper is a positive
constant. A > 0 is also a constant, which describes the relative strength of advection
and diffusion of B.

If there is no magnetic field, i.e., B = 0, MHD system turns to be nonhomo-
geneous Navier-Stokes system. Since the second equation and the third equation
of (1.1) are similar, the study about MHD system has been along with that for
Navier-Stokes system. Let us first recall some results about Navier stokes equa-
tions. When pg is bounded away from zero, the global existence of weak solutions
was established by Kazhikov [20]. Moreover, Antontsev, Kazhikov and Monakhov
[4] proved the first result on local existence and uniqueness of strong solutions. For
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the two dimensional case, they even proved that the strong solution is global. But
the global existence of strong or smooth solutions in 3D is still an open problem.

Recently, Danchin proved the global existence in the Besov space framework
[22]. His results show that the global in time existence of regular solutions to the
inhomogeneous Navier Stokes equations in R™ in the optimal Besov setting, under
suitable smallness conditions of the initial data. In particular, his results allow
the initial densities have a jump at the interface. At the same time, Abidi, Gui,
Zhang [2] proved the local well-posedness of three-dimensional incompressible in-
homogeneous Navier-Stokes equations with initial data in the critical Besov spaces,
without assumptions of small density variation. And they also proved the global
well-posedness when the initial velocity is small in B;,/f (R3). For more results in
this direction, see [10, 15, 14] and reference therein.

Now, let us come back to the MHD system (1.1). When we assume p is a constant
that is to say the fluid is homogeneous, the MHD system has been extensively
studied. Duraut and Lions [17] constructed a class of weak solutions with finite
energy and a class of local strong solutions. Recently, Cao and Wu [7] obtained
some global regularity results of the classical solutions of the MHD equations with
mixed partial dissipation and magnetic diffusion. In addition, they also provided
the global existence, conditional regularity and uniqueness of a weak solution of the
2D MHD equations with only magnetic diffusion. For more results in this direction,
see [6, 8] and reference therein.

When the fluid is nonhomogeneous. Abidi and Paicu [3] proved that the magneto-
hydrodynamic system in RY with variable density, variable viscosity and variable
conductivity has a local weak solution in suitable Besov space if the initial den-
sity approaches a constant. They also proved that the constructed solution exist
globally in time if the initial data are small enough. Huang and Wang [19] proved
the global existence of strong solutions with vacuum to the 2D nonhomogeneous
incompressible MHD system, as long as the initial data satisfies some compatibility
conditions. In this paper, we only consider non-vacuum case.

Let a := % — 1 and take u = A = 1, then the MHD system has the following
form:

da+u-Va=0, (t,z) € RT x R3,

Ou+u-Vu—(14+a)(Au—VI) — (1+a)(B-V)B=0,
(1.2) B —-AB+ (u-V)B— (B-V)u=0,

divu =div B =0,

(a,u, B)|t=0 = (ag,uo, Bo).

Let p := p%a, then (p, u, B) solves

O¢p + div(pu) = 0, (t,r) € Rt x R3,

poyu+ pu - Vu — Au — (B - V)B + VII = 0,
(1.3) 0B —-AB+ (u-V)B—(B-V)u=0,

divu =divB =0,

(p,u, B)|t=0 = (po, uo, Bo).

In what follows, we shall investigate the large time decay and stability of the
above MHD system. Compared with the classical incompressible Navier-Stokes
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system (NS), that is, in the case when ¢ = 0 and B = 0 in (1.2), the MHD sys-
tem is more complex. Given a global large solution u € L{2 ([0, 00); H*(R3)) N
L% ([0,00); H*(R?)), Ponce, Racke, Sideris and Titi [21] proved (NS) global sta-
bility under the additional assumption [ [[Vu(t)||7. dt < co. Then, Gallagher,
Iftimie and Planchon [18] removed the additional assumption. For the inhomoge-
neous Navier-Stokes equations (INS), Abidi, Gui and Zhang [1] showed its decay
and stability for large solutions.

Our first result concerns the global stability of the given solution of (1.2) when
the initial density pg is close to a positive constant. This is a simple generalization
of Theorem 1.1 in [1].

Theorem 1.1. Let ag € By /(R%), 4 € By (R®) and By € By[(R®) with
div @y = div By = 0, and let there exist two positive constants m and M so that

(1.4) m < 1+ao < M.
We assume that a € C ([0, 00); 35(12(]1@3)) and

a, B € O([0,00); By/2(R*) N L, (R*; Bi/7(R?))

loc

is a given solution of MHD with initial data (ag,uo). Then there exist positive
constants c¢1, Cy and a large enough time Ty := To(ao, o, Bo) so that if

To
(1.5 ol 200 {01 | 1wl dT} <a,
2,1 0 2

a constant co exists so that (ag,ug, Bo) := (ag + ao, o + o, Bo + BO) generates a
unique global solution with

a € Cy([0,00); By{ (R%)),

(1) u, B € Cy([0, 00); BY2(RM) 1 L1([0, 00); BY2(RY)),

provided that (ag, iy, By) satisfies
(17) ol s + ol s + 1ol s < .

In order to obtain the stability of large solutions of system (1.2), here, we need
to investigate the decay properties of the velocity field v and the magnetic field B.
Comparing with the INS case, our case is more complex and we need to use the
coupling between the equations of u and B. In order to get the desired estimates,
we need to provide the estimate of ||Va(t)||z= and in addition to get the higher
order decay properties of v and B.

Theorem 1.2. For p € (1,8), let ag € B;/f and ug, By € LP(R®) N B3 | (R?)
satisfying (1.4) and divug = 0 and div By = 0. We assume that

a € C0([0,00); ByY), e C([0,00); B2 (R%)) N L (R; B, (R?))

and B € C([0,00); B3 1 (R*)) N L, (R*; Bé{l(ﬂ@)) is a given global solution of (1.2)

with initial data (ag,ug, Bo). Then there exists a positive time to such that there
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hold
(@) rz + | BE)||2 < C (1 +t)P®),
IVu(t)| 2 + IVBE)| 2 < CA+ )" PO fort > to,

8 [" 0200 (0w amlEs + I w AR + V1113 ) dr < C.

to

[ (WOl + 18O =+ IVato)lm + IVBO]) de < €

and
sup (I72u(t)|: + [VBOIE:) + [ 10:9u)]s + 10,7 B de
(19) = Oo o
+ [ 1T + 19 BO) st < ©
" L L >0,

where B(p) = i(% —1). (1+28(p))~ denotes any positive number smaller than
1+ 26(p), and the constant C depends on the initial data.

With the above theorem in hand, we can use the estimates of transport diffusion
equations and various interpolation theorems in Besov space to obtain the estimate
of ||(u,B)||L1(R+_BS/2) < C. Then after complex calculations, we can obtain the

Doy

global estimates of the reference solution (a,, B). At last, by some complexed
calculations, we obtain the decay properties of the perturbed solution (a — @, u —
i, B — B). Using the decay properties of the reference solution and the perturbed
solution, we finally prove the following theorem.

Theorem 1.3. For p € (1,%), let Gy € 3277/12(]1%3), ug € LP(R3) N B3 (R?),
By € LP(R*)N B3 1 (R?) satisfy div g = div By = 0 and (1.4). We assume that a €
C([0, 00); B3 (R?)), 1w € C([0, 00); B3 1 (R*))NLi,o(R*; B ), B € C((0,00); B3, (R?))

loc
N LIIOC(R"’;B%J) is a given global solution of (1.2) with initial data (ao, o, Bo)-

Then there exists a constant ¢ so that if
(o, o, Bo) € B/ (RY) x (LP(R*) 1 B3 1(RY)) x (L/(R*) 1 B, (RY))
with
Ao = ||(@io, Bo) |l 1 + (70, Bo)ll e + llaoll /2 < c.

(ag, uo, Bo) := (o + ag, o + 1o, Bo + Bo) generates a unique global smooth solution
(a,u, B) to (1.2) that satisfies

a € Cy([0,00); B ' (R?)),

u € Gy([0,00); LP(R® N B 1 (R%))) N L' (RT3 By 4 (RY)),

B € Cy([0,00); LP(R® N B3 1 (R%))) N L' (R*; By 1 (RY)).
Moreover, there holds

5
3-

(110) Ha—c_l”I:oo(RJr;Bg:{il) < CAO

S

[N
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for any s € [, 2] and

I(w =, B = B)ll oo g3 ,) + (0 — @, B = B)| o= (10
(1.11) ’

O Wl
Wl
®

+ [[(u —u, B — B)HLl(RhB;j{?) < CA
for any s € [%,2],

Remark 1.4. The above theorems may not be obtained by regarding the term B-V B
as a source term in the velocity equation. The reason is that if we regard this term
as a source term, we will encounter terms like B-VB and B- Vi in (3.10). For the
appearance of these terms, the Bootstrap argument will not work. So we consider
the linear system (2.8) are necessary and the higher order decay estimates is also
necessary to obtain the results for the MHD system.

The paper is organized as follows. In Section 2, we will give some notations, a
brief introduction to the Besov space and some useful lemmas. In Section 3, as a
warm up, we give the proof of Theorem 1.1. Then, in Section 4, we prove Theorem
1.2 in a series of propositions. Using Theorem 1.2, we obtain the global estimates
of the reference solutions in Section 5. At last, we prove the decay properties of
the perturbed solutions and Theorem 1.3 in Section 6.

2. PRELIMINARIES

Throughout this paper we will use the following notations.

e For any tempered distribution u both @ and Fu denote the Fourier trans-

form of u.
e The norm in the mixed space-time Lebesgue space LP([0,T]; L"(R%)) is
denoted by || - [[zz .- (with the obvious generalization to | - [|1z x for any

normed space X).

e For X a Banach space and T an interval of R, we denote by C(I; X) the set
of continuous functions on I with values in X, and by Cy(I; X) the subset
of bounded functions of C(I; X).

e For any pair of operators P and @ on some Banach space X, the commu-
tator [P, Q)] is given by PQ — QP.

e ( stands for a “harmless” constant, and we sometimes use the notation
A < B as an equivalent of A < CB. The notation A = B means that
A< Band B<A.

e {¢;r}jez a generic element of the sphere of ¢"(Z), and (ci)rez (respectively,
(dj)jez) a generic element of the sphere of £?(Z) (respectively, ¢*(Z)).

e Denote 7~ be any number smaller than ~.

Then, we give a short introduction to the Besov type space. Details about Besov
type space can be found in [12] or [5]. There exist two radial positive functions
X € D(R?) and ¢ € D(R4\{0}) such that

 X(§) + 2240 P(27%) = 15 Vg > 1, suppx N suppp(277-) = ¢,
o suppp(277) Nsuppp(2~*) = ¢, if |j — k| > 2,
For every v € S’ (R%) we set
A_jv=x(D)v, VgeN, Ajv=¢27D)v and S;= Z A,

—1<m<j—1
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The homogeneous operators are defined by

Ay =27 D)yw, S;= Z Aju, VqeZ.

m<j—1
One can easily verifies that with our choice of ¢,

(2.1) AjAf =0 if [j—kl>2

(22) Aj(Se-1fArf) =0 i |j—k =5,
As in Bony’s decomposition, we split the product uv into three parts
uwv = Tyv + Tyu + R(u,v),
with
Twv = Z Si—1uljv,
J

R(u,v) = Z Ajuﬁjv
J

Where Ej = Aj,1 —+ Aj —+ A]'Jrl.

Let us now define inhomogeneous Besov spaces. For (p,r) € [1,+00]? and s € R
we define the inhomogeneous Besov space B, . as the set of tempered distributions
u such that

lullss , = (27°[|AjullLe)er < oo

The homogeneous Besov space B;yr is defined as the set of u € S (R%) up to
polynomials such that

HUHBISJW = (2j5||AjU||Lp)er < +00.

Notice that the usual Sobolev spaces H* coincide with B3, for every s € R and

that the homogeneous spaces H*® coincide with B§2
We shall need some mixed space-time spaces. Let 7' > 0 and p > 1, we denote
by L7.Bj . the space of distribution u such that

lull g, = N A ulloYerll g, < +oo.
We say that u belongs to the space E;B;, if
lullzy s = @1 Azull g o)er < +oo,

which appeared firstly in [9]. Through a direct application of the Minkowski in-
equality, the following links between these spaces is true [5]. Let € > 0, then

L4Bs, — LyBS, < L4Bs.s, ifr>p,

L4B3Ye — LABS, < L4 BS,, ifp>r.
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Lemma 2.1. [1] Let v be a divergence-free vector field with Vv € L*([0,T]; BS/Z)

1
For s € (=5, 3], given f, € B2,1, F e Ll([O,T],BQ,l), the transport equation

) - R+ 3
(2.3) {th+v Vf=F inRT xR’

f|t:0 = f07

has a unique solution f € C([0,T]; B;l) Moreover, there holds for all t € [0,T]

t
s, < Mollag, +€ [ 1)1
+ONEN Ly -

(2.4) (T )HBS/z dr

If s € (0, %], there also holds

t
1l qg < Iolla, +C / 1£()
+ ClIF Ly (Bs,)

/ /
| B;,l ‘V’U(t )HB;/lQ dt

(2.5)

Lemma 2.2. [1] Let s € (—32,2), F = (F,F, F3) € LT(le), a € L5 (H?) with
a = infy 4y, mxrs (1 +a(t,z)) >0, and I1 € LY (HTY/2), which solves

(2.6) div((1 + a)VII) = divF.

Then there holds

(2.7) Q”VHHUT(BSJ) S ”F:HL,}(BSJ) + HQHE?(H%||VH||E1T(HS—1/2)~

The following lemma could be obtained through a similar method used in the
proof of Proposition 3.6 in [1].
Lemma 2.3. For s € (=3,1), r = 1 or2. Let ug € BST, By € BST and v €
L} (BS/Q), w e L3 (B 5/2) be two divergence-free vector field. Letting f € L} (32 »)
and a € L (H?)N L2 (H*3/2) with 1 +a > ¢ > 0, we assume that u € L‘X’(Bz’,,)
LL(B3T?), B e L¥(Bs,) N LL(B3 2) and T € LL(H) solve

r

Ou—w-VB+wv-Vu—Au+ VI = f+a(Au— VII), Rt xR3
0¢B+v-VB—w-Vu—AB =g,
divu =divB =0,
(u, B)|t=0 = (ug, Bo)-
Then there holds
1, B)ll e (15 ) + (s Bl £a 35+2)

T
<exp (c | 10+ ho0l dt) {16 B,

+ 110/, Q)HE,}(B%) + ||a||L%o(Hs+3/2)||VH||L1T(L2)

(2.8)

(2.9)

+ ||a’||L§S’(H2)|uHLlT(B;t.Sﬂ)}
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Remark 2.4. It is easy to observe from the following
3
IValizy 55,y S IVallzge gl 2y ge1/2) for all s € (=5, 1),

that

T
(2.10) SXP (C/O 1Co(), B 32 dt) {I(uo,Bo)

1G9z + Nl zes oy (T g, e + ||u||L1T(B;i3/2)>}.

.S
B3 .

Remark 2.5. Note that divu = 0, taking div to the first equation of (2.8), we obtain
div((1 + a)VII) = div(f + aAu+w- VB —v - Vu).

Then, it follows from Lemma 2.2 that for s € (—2, 2), we have

||VH||L1T(B;’1) S HU”L*;S(Hs) uHL}(BSf) + ||wHL;°(Hs) B”LlT(B;/f)

(2.11) + ||a||i%c(,3§/l2)||u||E1THs+2 + HCLHi;o(m)||VH||EIT(Hs—1/2)
Uz 55 ,)-

Remark 2.6. If the parameter s = 1, then we have the following estimation

||UH£<>TO(B;,1) + ||UH£1T(B;1) + ||B||L;o(1'3;,l) + HBHDT(B;I)

T
< exp (o / e dt) (nuouB;J +11Boll s,

(2.12)
1z ) + 192y ) + ol e oz o IT s g

+ ||a|L?<Bg,1>||“||L1T<B§/f>>'

Considering the methods used in [13] and Remark 4 in [13], the above estimate
could be derived easily.

3. STABILITY OF GLOBAL SOLUTIONS WITH DENSITIES CLOSE TO 1

The aim of this section is to investigate the global stability of the given solution
of (1.2) with the initial density of which is close to 1, namely Theorem 1.1.

Proof. To deal with the global well-posedness of (1.2) with initial data (ag, uo, Bo)
given by the theorem, we need some global-in-time control of the reference solution
(@, u, B). In what follows, we shall always denote p := % By a standard energy

a
estimate to (1.3), we have

31 FIFO B + [ 1Tar). VB dr = (3o, Bl
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From ( , we deduce that

/ (). By / () 2 IVa(m) 22 + [ B2 VB2 dr

5 ||UOHL2 + ||BO||L27 for ¢ > 0.

Hence, for any € > 0, there exists Ty = Ty(e) > 0 such that
(3'2) ||1_L(T0)H31/2 <€, ||B(TO)||B1/2 < E.

On the other hand, by using similar ideas in [1], we have

To
lallzg (5372) < ||do||33(12exp{c/() IVa()ll g3/ dT},
and
(3.3) ||@|‘Z°°([Tg,t];1'3§{12) < ||6(TO)||B;/12 +C||d||Loo ([To,t]; B3/2)HVUHL1 [To,t]; B3/2)

where Lemma 2.1 and Gronwall’s inequality have been used. Note that for a small,
we can rewrite the momentum equation and magnetic field equation in (1.2) as

Oyt + (- V)u — Au+ VI = a(Au — VII) + (B -V)B +a(B - V)B,
0B+ (u-V)B—-AB = (B-V)a.

For any ¢t > T, we denote
2() =Nl oo o,y 372) 1 B poe i, 8172) + IV Lo e 2729

+ ”(uv B)”Ll([To t); B5/2

From the product law, we get
H (B : V)B||L1([To7t];321(12) S/ ||B||Lm([TO7t];B;{12) HVBHLl([TO,t];B;/f)'

The terms (@- V)i, a(B-V)B, a(Au— VII), (a-V)B and (B- V)4 can be estimated
similarly. Then, following the procedure of the proof of Theorem 1.1 in [1], we have

2(t) < 1a(To) | 572 + (Do), BT 5372 +C 21 + C Z(1)"
Let
(34)  Te=swp {t: 2() <2 (Ja(To)l gz + 1(a(T0), BTy ) }

t>To

Without loss of generality, we can assume that
(35) [a(To)l 272 + 1T 2 + IB(To) gy < 1.
Then, if T < oo, for Ty < t < T, we have

2(t) < (Ia(T) 52 + N(@(To). BTo) | gy/2) (1+6CZ()

Taking € in (3.2) small enough so that ¢ < @7 then if ¢; in Theorem 1.1 is so

small that ¢; < we have

_1
108C>

36) 20 <5 (Ia)|sye + @(T), BE))|pye) for To <e<T.
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This contradicts with the definition of (3.4), and therefore T' = co. Moreover, there
hold

To
[l 72y < 2 ol s {c | Ivalsy df} +ie,

1@ B) e ey + 1B a sy + VI sy < C

(3.7)

With (3.7), we can solve the global well-posedness with initial data (ao, uo, Bo) =
(ao + ao,uo + g, By + BO) for (ap, o, Bo) sufficiently small. Let 4 := u — @,
B := B — B, then (a, @i, B) solves

Oa+ (@ + @)Va =0,
Oyt — A+ VIl = —(a+ 14

OB —AB=—(i+u)VB - (@-V)B+ (B+ B)Vu+ (B V)i,
divi = divB = 0,
(a,t, B)|t=0 = (ao + ao, o, Bo)-

Reformulate equation (3.8) as follows:

(39) Oyt — (B-V)B+ (- V)i — A+ VIL = f +a(Ad — VII),
‘ OB+ (u-V)B—(B-V)i—AB=4j,
with
f=—(a-V)a— (- V)ﬂ+(a—a)(Au—VH)+(a—d)(B-VB)
+(B-V)B+(B-V)B+aB-VB+aB-VB+aB-VB
Gg=—(a-V)B—(u- V>B+<B V)i + (B - V).
Let

Z(t) = ||a||i§o(33(12) + H({L’B)HZ;’O(B;?) + ”(@B)HL}/(BS’/E) + HVHHL%(B;{E)-
Similar to the methods used to obtain (4.11) in [1], we can obtain
(310) 2@ < € (o, Bo)ll 2 + ol g2 + 1l e /2, + 207 + Z(1)*)

Using similar arguments employed in proving (3.6), we can show that if ||(i, Bo) | 5272+
2,1

”dOHBS’/f + 2¢1 + 4€ < {357, there holds

(3.11)  Z(t) < 2C (||(a0,30)||3;{12 + llaoll 32 + ||a\\i?o(33512)) for all ¢ > 0.

With (3.11), we can prove that the propagation of regularity for smoother initial
data. From Lemma 2.1, inequality (3.7) and inequality (3.11), we know that a €

L (Rt Bg”/lz (R?)). Applying standard energy estimate to the second and the third
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equation of (1.2), we obtain
||(UaB)||igo(B;11) + [ (u, B)HL,}(B;f) + ||VHHLg(B;11)

< [|(uo, Bo)|

By, T ”“HLgo(Bg(f) (||U||Lg(35j2) + ||VHHLg(Bg,1)>

+C (14 lal e g / [(Vu(r), VB()llz (u(r), B(r)

ns AT
B3,

t
+ [ U0 B gyl

ns AT
B3, ’

for s € [0, %] and t > 0. Then following the proof on page 850 in [1], we can obtain
our desired results. (]

4. DEcAY IN TIME ESTIMATES FOR THE REFERENCE SOLUTIONS

In this section, we will show the decay estimates, namely Theorem 1.2. The
main ingredient of the proof will be Abidi, Gui and Zhang’s approach in [1]. The
difference is that we need to provide the decay estimates for higher order derivatives
of momentum and magnetic fields, which is required for the global in time estimates
proved in the next section.

In what follows, we shall always denote p(t, x) := 3> 8O that we can use both

1
1+a(t,z
(1.2) and (1.3) just according to our convenience. In order to make our presentation
clearly, we divided the proof of Theorem 1.2 into the following propositions:

Proposition 4.1. Under the same assumptions of Theorem 1.2, there exists o > 0
and two positive constants e; and ey such that there holds

(Vu(t), VB(t)[IZ> + erll(Qeu(t), 0:B(t)]1Z:
+ e[ (V2u(t), VZB(1))||32. <0 for all t > tg,

d
(4.1) !

or consequently

sup [|(Vu(t), VB(#))II72 + /OO e1l[(Deult), 0. B(t))|I7 dr

t>to to

+ /Oo e2[[(V2u(t), V2B(1) |1 dr < [[(Vu(to), VB(to))l|7-

to

(4.2)

Proof. Similar to the proof of Proposition 5.1 in [1], for some positive constant c,
we can obtain

%nm@),vmt))uiz + ell(V2u(t), V2B (1)) |12
W3) <o (u(), Be)IYAN(Vu(), VB L2 (V2ult), V2B(E)|2:
+C /o2,

%II(VU(t),VB(t))II%z + | (Vpdeu(t), 0. B(1)) |72

< Cll(u, B)|l 22 (Va, VB) | 2 [ (V?u, V2 B)|7.
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The above inequality (4.4) along with (4.3) ensures a positive constant e; such that

d
(45) 2V, VB)|: + el (0, 0,B) 72 + All(V?u, V*B)|[7: < 0.
where
A= — — f||< B) 32 (Vu, VB)|[} = C ll(u, B)| 2| (Y, VB)|| 2.

By (3.1), for any 7 > 0, there exists tg = to(n) > 0 such that
IVu(to)llz> + [IVB(to) > < n.
Now choosing 77 > 0 small enough such that

(4:6) 12 (wo, Bo) 1 (1+ (o, Bo)I5°n*/2) < {555

we define

(4.7) = sup {t > to ¢ [(Va(t), VB@®) |z < 20}

Then, we find that 7* = oo by using the same procedure appeared in the proof of
Proposition 5.1 in [1]. At this stage, the proof is completed. O

Proposition 4.2. Under the assumptions of Theorem 1.2, there holds u, B €
C([0,00); LP(R?)) where p € (1, 2).

Proof. Multiplying the equation of u® in (1.3) by |u’|P~!sgn(u’) for i = 1,2,3 and
integrating the resulting equation over R3, we obtain that

1d . 4(p—1 )
2o [ owrar+ 222D [ i as
pdt Jgs p? R3

s / B VB [u' " sgn(u’) de + | V1| o |7,
R3
Then, using Holder’s inequalities and considering p € (1, g), we obtain
d 1/p, P 4(1’9*1)/ 212
= 7 V|ulP/212 d
gl Pl =L | d

—-1
S (IBll2nrsIVBll Lz + (VI o) [ull7s

(4.8)

By similar calculations, we have
d 4(p—1)
GBI+ = [ olmpr i

S llull 2azs VBl 2| Bl + [1Bllzzars | Vull2 || BII% "

(4.9)

Summing up (4.8) and (4.9), we easily obtain that

t
[(u, B)[| oo (o) S Il (w0, Bo)lle + [[VIL|| L2 (1) +/ Bl L2z I Vull L2 dr
(4.10) 0

t
+/ (I1Bll2nLs + llullL2nrs) (VB L2 dr

0
On the other hand, applying the operator div to the first equation in (1.2), we
obtain

All =div(—u-Vu+ (1+a)B-VB +a(Au— VII)),
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which together with the classical elliptic estimates implies
IVI[ze S [lu- Vullze + [la(Au = VI)||r + [[(1 4+ a)B - VB|[L»
(4.11) S llulle2nrs (|Vullp2 + [lall L2nps | Au — V|| 12
+ (L llallze) [ Bl L2nLs [V B L2
Considering (4.4), we have
argy O OB S 1(Tu0 VB,
+ [, B) | e (22) [ (Vat, VB) || e (£2) | (VP V2B) |72 12y < C,
which together with (4.11) gives rise to
[Au — VH||2Lg(L2) S ||5tUH%t2(L2) + HUHL;”(LZ)||VUHL§’°(L2)||AUH%§(L2)
+ 1Bllee @) IVBlz ) |AB| 7212y < C.
Therefore, thanks to H*(R?) < L? N L3(R3), together with (4.11), we get
IVIT|| L3 Ly < O(F).

(4.13

Hence, we have
[ullLee ey + [ BllLse ey < C (1),

which together with (4.12) and the classical Aubin-Lions lemma implies the desired
results. 0

Proposition 4.3. Under the assumptions of Theorem 1.2, there holds
[u®)llz2 + 1Bz < C (1+1)7P@,
Va2 + VB2 < C(1+6)/27PP) for t > to,
[ 00250 (@, aB) 3 + (A AB)s + VT ) b < €
to
where C' depends on m, M, ||ag]| L2, [|aol| =<, ||uo|| L and ||uo||z:-
Proof. Step 1 : Rough decay estimate of ||u(t)||z2 and ||B(¢)||r2. The methods

used here follow from the Step 1 of the proof of Proposition 5.2 in [1]. We also
need to split the phase space R? into two time-dependent regions. For the velocity

u, we split the domain as Sy (t) := {{: €] < \/p/2 g(t)} and S1(t)¢, where p and
g(t) are defined as in [1]. For the magnetic field B, we split the domain as S3(t) :=
{{ DEl < y/1/2 g(t)} and S5 (t)¢. Then, we could obtain

% (IVeu@®IlZ: + 1 B®I72) +° (@) (IvVeu®I L + 1BOZ:)

< 2 (1) /ﬂ | HE D+ 0 /S BE) de.

2(t)

(4.14)

Thanks to Proposition 4.1 and (3.1), we have

t 2 t 2
< |F(aB - vB)||Lg°> < (/ lla B- VB dt’)
to

to
2

t
Sllalzg ) < / IBIILZIVBdet’> < t—to,
to
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while it is easy to see that

t 2 t t 2
([ 15581 + 1E@ ez a ) < ([ 151t + [ 18l o )
to to

to
S(t—to)?

With the above estimates, following the Step 1 of the proof of Proposition 5.2 in
[1], we find that

(4.15) / a(¢, )P de < ()W) + (t>7% hS (t)fé for t > to,
Sl(t)

and

(4.16) / 1B(E, )2 de S ()20 ()2 < ()72 for t > t.
Sa(t)

Substituting (4.15) and (4.16) into (4.14) results in

t ’
o2 (e) d! tog(r)?dr -3
el O (Jpu, B)32 < (vpulte), Blto)) 132 + / o 94T = ay
to

Taking ¢2(t) := 14 (with o > %) in the above inequality, we infer that

(Ilvpu®)lz= + IB@)72) 0% < 1+ ()2,

which gives
(4.17) u®)llzz + Bl S ()77

Step 2 : Rough decay estimate of | Vu(t)|| 2 and ||VB(t)||2. We split the phase
space R? into two time-dependent regions so that

/ a0 de + / €21Fu(e, )P de,
S(t) S(t)e

IV2u(t)7-

EPIVB(E, 1) d,

c

2 2 41 B 2
IV2B(1)[12: = /S el o as + A .

where S(t) := {f HEl < ég(t)} and g(t) < (t)~2. From Proposition 4.1, we
know that

d
— I

IV, VB)[L: + eall (@, 0 B)IIZz + * (D[ (Y, VB) 12

(4.18)

wlen

. - 1 _
<') [ IEDE+IBE DA S g 0mE S 07
t
Then, following the same procedure of the proof of Proposition 5.2 in [1], we obtain

(4.19) IVu()| 2 + [VB@®)|2 < &) % for t > to,

( / 100,512 )

g/ ) |(0pu, 8:B)) 2 dt’/t<t>(§)_dt’§ 1.

to

and
2
t

(4.20)
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Step 3 : Improved decay estimates of [[u(t)| .2, [[Vu(t)[| L2 and | B(#)[| L2, [V B(®)] 2.
Thanks to (4.17), we obtain
2

(4.21) (/t: 1F(u® B)(#)| g dt’> < ().

Using (4.17) and (4.19), we obtain
2

( @B -TB)¢) iy o

to

t 2 t
(4.22) < </ laB- VB dt’> 5(/ ||B||L2||VB||det’)
to to

2

< [:<t>i<t>i) < (In(t))?

With these new estimates and the estimates in the Step 3 of the proof of Proposition
5.2 in [1], for a small enough constant ¢ > 0, we can obtain

2

(4.23) e P ds £ @70 4 ) Ere g ) ),
S(t)

(1.21) | 1Ble ol 070 4 ()7 5 0720,
S(t)

and

w2 + | B@)|| 2 < () ~PWP,
From (4.23), (4.24) and (4.18), we infer

t ’ ’ ¢ t/
efto g(t")? dt ||(VU, VB)H%Q + e effo g()? dT”(at'Uz, atB)Hiz dt/

to
t W
< (Vuto), VB(to)) |2 + [ e 9047 (1) =2-200) gy
to

Taking ¢°(t) = 1% (with o > 1) in the above inequality, we obtain

t
[(Vu, VB)||2L2<t>a+el/ () (1(Oeu, 0:B) |7 dt’
(4.25) fo ,
< 1+/ (t"o—2=20) gy,

to

In particular, taking a > 1+ 28(p) in (4.25), we get
(4.26) IVu@)llz2 + VB2 < (8270
Taking a € (2,1 +2B(p)) in (4.25) results in
t
/ () IE2PED (1 0pu(t') |72 + 10:B(H)]72) dt' < C.

to

Considering the following facts
lu-Vull: < CllulielVulis < ClAu] 2| Vulz.,
IB-VBi> < ClIB|1~lIVB|Z: < C|AB| 12|V B||z2,
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we have

/ (Y2800 (|[(Au(t'), AB(), VII(E'))|22) df’

to
421 < / (20D (D, 8,B) |2, di’

to
+/ () 0H280)7 | (Au, AB)| 2 d < C,
to

where we used (4.26) and (4.2). O

Remark 4.4. Thanks to (4.27), it is easy to observe that
@28 [0 (180 + IABEE + (VI [:) e ()20,
to

for a € (1+28(p),2+68(p)). Moreover, without loss of generality, we may assume
that

(4.29) |Au(to)llz2 + |AB(to) 112 < 1.
Proposition 4.5. Under the assumptions of Theorem 1.2, there holds

(4.30) /too (lu@®llze +[1B@ [z~ + [Vu@)|ze + [VB(E)|1~) dt < C

and
(4.31) /t (IAu(®)|z2 + IAB@®)Z2 + IVI(®)]Z2) dt < C,
for 2 <6 <2.

Proof. Step 1 : Estimate of ||u(t)| L2, |u(t)| g2 and | Bi(t)|| L2, [|B(t)| 2. Notice
that

B, -VB-ugdz

1 1
- < gHvutHQL? + gHVBt”2L2 +C Bl 111V B,

Bt . (Bt . VU) dx

1
< gIIVBtH%z +C || Bel 721Vl 22,
R3

and

t
[ IvBltar < sw [TB@IRIVBIR 0 < C.
to

t'E€[to,t]

Using similar ideas of the proof of Proposition 5.4 in [1], we find that
(4.32)  sup (Ivpue )22 + | Be(t)lI72) +/ (IVuelZ2 + IV B 7:) dt' < C.
Zto to

Notice from the momentum equation of (1.3) that

IV2u(®)llz2 + IVI(®)l|z2 < Ivpue®)llze + [[(w- V)u@®)lzz + [1(B - V) B(#)| 12
< C(le/ﬁut(t)llm +lu(®)llz2 [ V()17

FIBOIITBOIL: ) + 5 (Tl B0
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and
IV2B(t)]| 2 <C (1Be(t)llL2 + [ (u-V)B(#)|lz2 + [[(B - V)U@)IIH)

<C

7 N 7 N

1Be(®)llz2 + llu(®)l 2l Vu®)llz: + ||B(t)||L2||VB(t)||iz)
L oo L oo
+ SV B + IV BO) 22,
which along with Proposition 4.1 and (4.32) implies that

(4.33) sup (I V2u(t) |22 + [V2B(O)] 2 + |VI(D)z2) < C.

Step 2 : Estimate of [ [|(u(t'), B(t'))||re~ dt’, and [ [|(Vu(t'), VB(#))||~dt'.
It is noticed that
IV B2 (1t0.41:19)

<C{||VBt||2L2([to,t];L2)+t,SUP IVu@)llzz sup [[V2u(t)| 21V BT (1r0,:22)

E[to,t] t’e[to,t]

+ sup ||U(t')||2th,sup Vu(t) 122 IV Bl tg.41:12)

t'€[to,t] €[to,t]
+ sup VB2 sup (V2B 21Vl 22 ((40,4.22)
t'Eto,t] t'E€to,t]

+ sup [[B(t)[Z> sup IIVB(t’)II(iz||V2U||%2qt0,t];m)}
' €[to,t] ' €[to,t]

1 1
+ ZHVzBH%?([tO,t];Lﬁ) + 1”v2u”%2([to,t];L5)

and
¢ K 1/2 1/2
/ IVB() | dt’ < / IV B |21V B ()2
to to
t
< / IAB@) L2V B (@)L i
to

t t
< [ VB3 dt’+/ HAB(t’)Hi@Sdt’.
to

to

Then, following the proof of Proposition 5.4 in [1], we obtain the desired results. O

Proposition 4.6. Under the assumptions of Theorem 1.2, there holds

(4.34) [Va(t)||lL« < C|VaolLa,
and
(4.35) la()llg= < Cllaoll g

Proof. According to the classical transport equation theory, the results in Proposi-
tion 4.6 can be obtained easily. So we omit the details for the sake of simplicity. [



18 J.X.JIA, J.G. PENG, AND K.X. LI

Proposition 4.7. Under the assumptions of Theorem 1.2, there holds

Sup (IV*u(®)llZ= + V2 B@®)I1Z:) + 01/ 10:Vu®)|[Z2 + 10V B(t)][72 dt

to

oo [ IV + IV B di < C.

to
where C depend on m, M, |lagl|z2, ||aollre=, ||(uo, Bo)|lLe, ||(vo, Bo)ll#2-

Proof. Taking spatial derivative to the momentum equation in (1.3), we have
pO0u’ + 0jp - Oyu' + 9;(pu) - Vu'
+ pu - Voju' — Adju' + 9;0,11 = 9;(B - VB'),
with ¢ = 1,2, 3. Standard energy estimates yields

2, 1d
Iv/PO:Vu(t)|| 72 + o gt

(4.36) =— | VpoudVu+ V(pu)VudVudz

R3

IVu(t)]1Z:

- / (pu - V)VuoVu— V(B -VB)o:Vudzx.
R3
Similar argument gives

1d
10.VB@)||7- + S
(4.37)

=— | V(u-VB)&,VB - V(B-Vu)d,VBdu.
RS

Summing (4.36), (4.37), Proposition 4.6 and (3.2) in [1], we obtain

%% (IV2u()llZ: + V2 B@)IZ2) + Ve Vut)lli: + 0.V B(t)|72
S N0eulZe + (IVullZ: V20l ]| VPul| 22 + [ Vul 32 V0l 2

+lull 2 [Vl 2 [VPullZs + [VBIL: V2 Bll 2]V Bl| 2

+ | Bll22lIVB| L2 [V BIIZ2 + [V BIIZ2 [ V2l L2 [ VP 2

+lull 2 [Vl 2 V2Bl L + 1Bll2 [ VB g2 [Vl 7.

On the other hand, taking partial derivative to the momentum equation in (1.3)
and multiplying %AVu on both sides, we obtain

IV2B(®)II7

(4.38)

1d, _o 9 1 9 / 1
—— —A = -A
5 dtHv u(®)]|f2 + ”\/ﬁ Vul|7: . Vporu P Vudz
1 1
(4.39) + V(pu) Vu — AVudx + V(VII) - AVudx
R3 P R3 P
— | V(B-VB) 1AVudac—i—/ u-V(Vu) AVudz.
R3 P R3
Through similar estimate, we obtain
1d
53 IV?Bliz +IV? B

(4.40)

= V(u-VB) AVdef/ V(B -Vu) AVBdz.
R3 R3
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Combining (4.39) and (4.40), we have

1d 1
5o (IV2ul3: + [92BI2) + |\7pv3u||%2 + VBl

/Vp@tu AVuder/ (pu)Au AVudz
R3

(4.41) V(Vu) AVudzx + / (14 a)V(VII) AVudx

R3

V(B -Vu) AVBdzx.
R3

“f
/ AVu dx + / V(u-VB)AVB dz
-

Next, we provide the estimation of each term on the right hand side of (4.41),

1
Voo 5 AVudz < |14 al|p=||Val pee ||0sul| 2 || V3u) 2,
R3

/ Vi) Vu - AVudz 5 1+ ol o [ Vall ol 2P0l 2Vl 2|V
R

+ (IV2ullz2 + 1 V2ul L2) IVl 2 [ V20l 2,

/RJU V)VuAVuds S ol 2 Vul 1Vl

/ V(B-VB)~ - AVudz 5 |1+ ol e | BIYZ VBNV Bl a9 ull e
R

19

11+ all= (I92Bllg + IV*Bllz2) VB 2Vl 2,

/R V(uVB) AVBdx < ||ul 2| Vul 2V B

+ (IV2ull L2 + [VPul|£2) VBl 12|V Bl 2,

/ (1+a)V(VID) AVudz < |1+ al g | V2T 22 || V30| 2.
R3

Moreover, using divu = 0, we obtain
IAVu(t)]| 2 + |V (VID))]|z2 < V2| AVU — V(VID)] 12
< V2p8,Vu + Vp dyu + V(pu) Vu+ pu - V(Vu) — V(B - VB)|| 2
< [P0Vl 2 + 10wl 22 + [[ull 2| Vull 57| Al 2
+IBIIVBIL IV Bl 2 + [lull 2 IVl 221V 2
+ IV ull g2 V2l V3|, + [V Bll2 V> BIIZ. V2 B2,
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Summing up all the above estimations in (4.41), then after a long and tedious
calculations, we have

1
Z— (||IV2u(t)])? V2B()|? —V3u()|? V3B()|?
5 &t (IIV2u(t)[|72 + | ()HL2)+”\/E u(t) |72 + || ()72

S N0vull22 + [[ull 2 | Vul 2 | V2l 32 + V232 ]|Vl 22
+ | V2B|[22 | VB[22 + VB 22| V2ull22 + ||Vl 4 | Vul[22
(4.42) +IVB|[£2lIV2B12: + [|Vp0: Vaul22 + | Va2 | V3ul 2

1/2 1/2
|l 2Vl V3l 2e + (1B 12 | VB 12| V2 B[22

1/2 1/2 2
FIVB)2:V3B|12: + [l (2 Vul 21|V Bl|2

+ llull 2 |Vl 2 [ VEul|7-.

Performing (4.38) + 5(4.42), we have

1
2

y
dt
Slowll3z + (1Vullfz + VBI1:) (IV2ull?: + IV2B]32)
(443) 4 | Vulla V2l 22 + Jul g2 | Va2 V2] 22 + [V2u]| 2| Vul 2
+ V2Bl VB3 + [V2ull3: VB3 + (lull 2 | Vul 2 + | Vul| 2
+ 1Bl 2IVBl|z2 + IVBI32 + [ull 221Vl 12 (IVull3 + V2 B13:).

1
(V?u, V2B)|L2 + [|(vp0: Vu, B, VB)|[72 + II(%V?’%WB)IIZB

Note that we can take > 0 in the proof of Proposition 4.1 smaller so that

/2 1/2 | 2 ¢
luollz2m + |Boll2m + l[uoll 2 n'/? +n* < T6C2

where C' is the constant on the right hand side of (4.43), ¢ satisfies

1
c(IV?ulZ + IV°BJZ.) < II%V?’UHiz +IV2B|Z..

From the proof of Proposition 4.1, we know that 7" = oo as in Proposition 4.1.
Hence, there exists two constants ¢; and ¢ such that

Sl + I92BI:) + a (10:Vulfs + [0, BI:)
o (Il + IV*BI3)
<8uls + (1Vullds + 1V BIL:) (I9%uls + 1V2BI%:)
IVl 192l + 2 |Vl 2 V0l + 92l 2 [l
IV BIZIVBI: + I9°ul3 1V B,
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for t > to. Integrating the above inequality from ¢ to co, we obtain

Sup (IV*u®z> + IV B®)l[72) + 01/ 10:Vull72 + 10,V B(t)||7 dt

to

e / IV3ul2, + V3B |2, dt

to

SIVulto)llZ: + IV?B(to) |17 +/ 10¢ull- dt

to

+ sup ](HVUHiz +||VB||i2)/ IV2ullZ2 +[IV*B||72 dt
to

te[to,oo

oo (o)
b [Vl [ IVl des s @l Tu0)le |19l d
t() t()

te(to,00 tE€(to,00
+ sup (I\Vu\|%2+IIVB(t)Il2L2)/ IV2ul72 + [IV?B||72 dt
te[to,00] to

At last, by Proposition 4.3, the proof is completed. (]

5. GLOBAL IN TIME ESTIMATES FOR REFERENCE SOLUTIONS

In this section, we prove the global in time estimates for the reference solution
of (1.3). The proof will be based mainly on Theorem 1.2.

Proposition 5.1. Under the assumptions of Theorem 1.3, there holds
(5‘1) ”(ﬂv B)Hioo(ﬂgﬁBé{f) + ”(ﬁv B)||L1(R+;B§{12) <C,
for a constant C' depending on the initial data.

Proof. For the velocity equation, it can be estimated as in the proof of Proposition
6.1 in [1]. For the magnetic field equation, we use the standard estimates of heat
equation [5]. Here, we omit the details for simplicity and only provide estimates of
lla(B - V)BHLI(R+;B;/12)’ which are not appeared in the proof of Proposition 6.1 in

[1]. Considering Proposition 4.1 to Proposition 4.7, we know that
(5.2) lall oo g+ B2 S S lall Lo g2y + 1@l oo g+ 2y < 00
Using product rules in Besov space, we find that

(53) 1B+ VBl s g1y S 1Bl ey IV Bl e 202,

Since
_ _ o 1/3 2/3
||VB||L1(]R+;B';{12) S ||B|‘L1(R+;Bg(12) 5/0 |B( )| 1/2‘B( )| 'ggdt

1/3 >~ 2/3
SIS gy [ 1B dt <+,

we easily know that
(5.4) | B - VB‘|L1(R+;B;/12) < 0.
Combining (5.2), (5.4) and the following estimate

H&(B . V)BHLl(RﬁB;ff) S ||a||Loc(R+;Bg{12)‘|B : VB||L1(R+;B;{12)7
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we obtain the boundedness of ||a(B - V)B||L1(R+_Bl/2). For other new terms || 5 -
_ _ = B2
VB”Ll(RﬁB;/f)’ ”ﬁ ’ VB||L1(R+;B;{12) and ”B ’ V/Z_I’HLI(RJQB;GZ))

obtained by using similar estimates. O

boundedness can be

Proposition 5.2. Under the assumptions of Theorem 1.3, there hold
(5.5) H&HEOO(IR‘*';BSGZ) <C
and

(5.6)  llall oo rrszr) + Nl poe ez ) + N8l e ) + IV 21 @emz,) < C,
(5.7) 1Bl s o) + 1Bl i ooy + 1Bl oy ) < C.

Proof. Thanks to Proposition 5.1, we get by applying (2.1) to the transport equa-
tion in (1.2) that

T
63l e < ol pyaexp {c | sy dT} <
Next, let us turn to the estimates of @ and B. Indeed, from (4.10), we know that

T
lallzge Loy + ([ Bllzge ey < |[(wo, Bo)ll e +/ (| (w, B)|| 28 | (Vu, VB)|| 2 dt’
0
+ VI 21 (zr)-

Then by (4.11), Proposition 4.6, Theorem 1.2 and the above inequality, we deduce
that

(5.9) 1]l oo +:0) + ||B||L°°(R+;LP) < C.

On the other hand, applying Proposition 2.3 to the momentum and magnetic field
equation of (1.2) ensures that

lall 2 mg ) + 10l s (52 ) + Bl sy ) + I1Bllzs 2 )
T
S exp (C/O 1all ggrz + 1Bl g2 dt) <|U0|Bg71 +[Bollgg, +laB- VBl )

eIV )+ Dl Nl s )

We know that
T

a8 VBlyy s, 5 [ lallsy, 15 VBl sy e
T — —
S [ 1Bl VBl e < .
Combining the above estimation, (5.8) and Proposition 4.5, we obtain
(5.10) 1@l foe (g ) + ||B||i;s(3311) < C
By a minor change of the proof in [1], we obtain the following estimation:
IVallzs sy HIV Bl zg myz) + 1Vl )

(5.11) ! .
HIVBI Ly sz + IV Ly ) < €
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Differentiating the momentum equation and magnetic field equation of (1.2) with
respect to the spatial variables give rise to

0:0;u+1u-Voju— B-VoB — (1+a)Adu+ (1+a)Vo,Il
= —0ju-Vu+ 0;aAu— 0;aVIL+ 0;B-VB
+0,aB-VB+a0;B-VB+aB Vo,B,
00;B — ANO;B+1-V0;B—B-Vo;u=0,B-Vi—0;u-VB.

(5.12)

Using Remark 2.6 and Gronwall’s inequality, we will obtain
198l 2 1 ) + 198l 23 55 ) + 1Bl ey + 1Vl g

S exp {C/OT lall g7 + HB||B§’,/12 dt}{HVUoLﬁ;;1 + VBl ,
e o (1l oy + 00y cgarmy + 1B e gsormy 1By s

+ ||d||i§°(13§71)HB”ifo(B:;{f)||B||Lt1(33(12) + ||5HE;O(B;,1)||B\|i%c(gg(12)HVBHLlT(B;(f)

—

Using Proposition 5.1, (5.8), (5.11) and product laws in Besov space, we get

||Vﬂ||£gs(35,l) + ||Vﬂ”ZIT(Bg,1) + HVBHE?(B;J) + ||VB||L1T(B;1)
sC+C (”f‘”L;w;{ﬁ By 772y + ||H”L1T<B§/f>)

5.13 _ _ _
G <oh o (I8ulyn + 1ABl Ly + IV Ty o)

wn(Wluy g+ 1Bl o, + 1y o3, )
Notice that diva = 0, we get by taking div to (5.12) that

div ((1 + d)V@sz) =—div o, [(7 . V)’a] + div 0; [(l Aﬁ] —div [aid Vﬁ]
+ div 0; ( B . VB) + div (&ELB . VB)
+div (a9;B - VB) +div (a B - V9, B)

From this and (2.2), we deduce that
IV 1 ) SN0 (@ V) [y 5y )+ 10: (@AD) Iy g
+110:a VI 11 1 )+ 10: (B VB) Il s 3
+10:aB VB gy )+ 1@$0:B- VBl 1
+1aB-VoiBlly gy +lallzee i) V2T 23 (17172



24 J.X.JIA, J.G. PENG, AND K.X. LI

Applying the product laws in Besov space yields that for any e > 0

IV s 1)

SIVall e gy IVall Ly 532) + |‘a||L%o(]'3§{12)”VQQHL;(B%J)

+ VBl g 8y )IVBIl Ly 22y + 1B e 22y VBl sy
.14) + ||VC:L||L%O(]'33{12)”_AQHL;(B%’I) + UdHL%o(@f)||V3ﬁ||L1T(B;,1)
+ ||Va||i39(35’1)||B||L%o(gg(12)||VB||L1T(B§(12)
+ ||@Hioo(33/2)|WB||Loo(Bl 1)||VB||L1 (B22)
+ ||GHLoo(BS/2)HB||Loe 3/2)||V Bl a1,
tlallzz sz, (Vg 53, + O IV )

Combining (5.11), Proposition 5.1 and taking ¢ > 0 in (5.14) small enough, we

will have
o) VIl s 52 ) SC L+ IVl g iy ) + VBl g3 )
: +llall Ly g ) + 1Bl es )

Finally, taking n in (5.13) small enough and substituting (5.15) into (5.13), we
obtain

IVall oo g1 ) + IVl Ly g3 ) + IVBllEze sy ,) + IVBlzssg,) < C-
This along with (5.9) and (5.10) completes the proof of the proposition. O

6. STABILITY OF THE GLOBAL LARGE SOLUTIONS

In this section, we will give the proof of Theorem 1.3. Denoting u := u — 4,
B:=B— B and a:=a— a, we have

O+ (u+W)Va = —ai - Va,

Ou+u-Va+a- Vu—I—u Vu—(l )(Au—VH)
—(1+a+a)(B-VB)—(1+a+a)(B-VB+B-VDB)
(6.1) a(Au— VII)+a(B-VB),

aB—AB+a-vB—B-va=B.Va+Bvu—uVB—u-VB,

2
=

[~
Il

C“.
U:z
O

(~ u B)\t 0= (aoaUOaBO)

Then the proof of Theorem 1.3 is equivalent to the proof of the global well
posedness of (6.1) with small enough initial data (ag,@). Indeed, according to the
coupled parabglic—hyperbolic theory [11], it is standard to prove that there;‘ exists a
positive time T such that (1.2) with initial data (g + do, tip + o, Bo + Bo) has a
unique solution (a,u, B) with

Tk 7/2
a € O([0,17); By (RY),
u € C([O7 T*)ﬂ B%,l) N Llloc((ov T*)v Bg,l(R?)))a
B e C([Ov T*)v B%,l) N Llloc((oa T*)7 Bg,l(Rg))
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Then (@, i, B) with
a € C([0,7%); By (R?)),
i€ C([0,T%); B3 1) N Lino((0,77); By 1 (RY)),
B e C([0,T%); B3 1) N Lin ((0,7%); By 1 (R?)).

solves (6.1) on [0,7*). Without loss of generality, we may assume that T* is the
maximal time of the existence to this solution. The aim of what follows is to prove
that T* = oo and (a, @, B) remains small for all ¢ > 0.

Lemma 6.1. Let
t
V() =2 / (IVa() |~ + [VB() | o) dr.

Then under the assumption of Theorem 1.3, we have

L Tevo (J(ypao)l + 1BOIE)]

+aog? eV (I/pa(t) 132 + 1BOI: )
scev 0l [ e+ [ e Boe)Pag
S1(t) Sa(t)
+ 16113 A7 — VT2, + (1313118 - VB
©2)  + 907 (1122000 + 1812200 ) (10300) + 1Bz 1))
o) (1B 0 + 10202))
+ 901 B1Z oy (IV B2 12 + IV B I 1))
+g(t)° (HAQHQLg(LZ’) + ||Vﬁ||2Lg(L2) + ||5||2L§°(L2)||Aa - Vﬁ||2Lg(L2)>
# 9O 1B VB

for t < T*, where the time dependent phase space region S1(t), Sa(t) is given as in
the proof of Proposition 4.3. Here and in what follows, we shall always denote

1 _ 1
F=1a

. p=p—p

P = 1Yaxta

Proof. Thanks to (6.1), (p, i, B) solves
Op + div (pu) =0,
pdyii+ pu-Vi— B-VB+pi-Vi—B-VB—At+ VI
(6.3) =—L(Aa—VII) - £B - VB,
OB—-AB+u-VB—-B-Va=B-Vu—1u-VB,
divu =divB = 0.
By a standard energy estimate, we obtain

& (VO (pat), B ) + eV O(Val), V)3

(6.4) dt ) o
< Ce™"W g7 AU = V|72 + Ce™ D513 B - VB 22,
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which along with a similar derivation of (4.14) ensures

jt (v (Ilvpat)3: + 1B@)3:) )

+cog? e (Ivpa(t) 3 + 1BO): )
< CeVO5|3a (| Aa - VI3 +||B - VBI2)

Ce VO g2(t HORd B(e)2de |,
+ “(L(t)' ©)| €+/52(t)| ©)| e)

with ¢ < min (%, 1) and the time dependent phase space region S;(t), S2(t) being
the same as the one in (4.14).

Now, we need to give the estimate of fsl(t) [u(€)[? d¢ and f32 B(&)|? d¢. Since

the estimates of fsl(t) |a(€)|? d¢ are similar to the estimate (7.6) in [1], we only

provide the following necessary new estimates:

/Ot }'(iV(B’@B)) - dT<C/Ot|/1)V.(B®B) s dr

SC(AWBWH@d0é<AWVBhM§d0;,
o dr=¢ (/Ot 1B(7)Z- df)% (/Ot IVB(7)|2. dT) ,

Y BvB
pp

[ME

N

B@B))
/Ot

Then, we rewrite the third equation in (6.3) as

[

1
]-‘(V
p

t
dr < Clplliru | 1B VB|sadr
0

L1

B(t)zeméo+ [ +Bou—-u® B
(6.6)
—a®1§+1§’ — )]dr.

Taking the Fourier transformation with respect to the x variables and integrating
the resulting equation over S3(t), we obtain

/ Be)? de < / 2R By 2 de
Sz(t) So

gt (/ IFB @)l + 7B @ D)

+|F@® Bl + |1 F@e Bl

(6.7)

2
FIFB oD+ |1F@Ee B)HLgo) .
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Using similar estimates employed before (6.6), we obtain

/ B(e)[ de < / 2 | By (o)]? de
SQ(t)

Sg(t)
(6.8) + 9 (N0 + 181200 ) (1300 + 1Bz 12))
- 2
+ 9" (1B 22 + 13512

Based on the above considerations, the detailed proof can be easily reconstructed.
|

Lemma 6.2. Let

U = C [ (185011712 + )
FIAB@ VB o + B3 ) dr.
If

(6.9) sup |[|a(t)]| 2| Va(t)l| 2 + | B2 VB ()| 2| < v
t€[0,T)

for some T < T* and some sufficiently small positive constant v, then under the
assumptions of Theorem 1.3, we have

d - .
= (7 ONVa, VB ) + e O (Vpori, 0 B) 3

(6.10) +eoe VD) (AT, AB)||2
<Ce VO (|2 At - VIT22 + |33 | B- VB|32)  fort<T.

Proof. For the velocity equation, following the procedure of the proof of Lemma
7.2 in [1], we obtain

%IIWLIIiz +IIVpdeal7z + (co = Cllill 2|Vl 2) | A7
SVl (1Aa g [ Vallze + [alf<) + 1Al | Aa - VII|Z,

+ VB2 (IAB IV Bl 2 + | BlIZ~) + 1517 | B - VB2

+ 1 Bllz2 |V Bllzz [ AB]2

(6.11)

for t < T*.
Then, we consider the estimates of the magnetic field. Taking the L? inner
product between the third equation of (6.3) and 9;B, we have

1d, _ - N - -
5o IVBIE + 10:BI3s < 1 - VBIZ: + la- VB2

+ |B - Vil + | B-Va|2. + || B - Va2, + ||a- VB||2..
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Noticing that
|3 VB 2+ |a- VB2 +||d- VB .
+ B - Vil + | B- Vil 2 + | B - Vil| .2
SNl & IVallZ I AB 2 + [Vl 2 |V BI LI AB) L,
+IBIZIVBIZ | Al 2 + VB 12|Vl 2. Aal| 2,
+ IVBlzellal s + Vil 2] Bl o,
which ensures
%nvéniz + 10822 S llall 21Vl 2| A B 2
(6.12) + |Vl IV Bl 22| ABl| g2 + 1Bl 2|V Bl 2 | Ad| 2
+ VB2 IVall 2 [ Aal 2 + IV BI 221l + Va2 B3
By taking the L? inner product between (6.3) and AB, we get

S IV B + IABI3: <1AB|gs (- VBl s +la - VBss
1B Vil + B - Vil
+ 1B - Vall gz + i VB z2).
Combining this with (6.12), we arrive at

d, = - ) . .
VB2 + 10:Bl7> + (1 = Clalla || Vi) | AB|
(6.13) SNVl VBl 2| AB | 2 + VB[22 all3 ~ + V)32 B3
+ 1B 2 IV Bl 2 |A@ |32 + |V BI2: |V 2] Al 2.
Hence, by (6.11) and (6.13), we obtain that
d 5 ~ 5 ~
= IVl + VB3 + [ Vporil: + 9.8
+ (co — Cllitll 2| Vil 2= — C||Bl| 2|V Bl =) i) 3
+ (1~ COllall 2| Vil 2 — Cl1Bll 2 [V B =) |AB3
S (Ivalls + IV BI3:) (Iaal 2 Valls + | ABl| 22V Bl
Nl + 1BI ) + 713 A0 = VT2 + 11503~ 1B - VB3

for t < T*. Choosing v small enough, then simple calculations lead to

d B _ ~ B _ ~
= (77 (IVale + IVBIZ: ) ) + e (I vVavril: + |0.BI- )
+ eV (col|Adilz + [ ABI: )
< Ce VO3 (I1aa - VI + 1B - VB )

fort <T.
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Proposition 6.3. Under the assumptions in Theorem 1.3, there exist constants C'
and c¢ so that if

60 = ||tollar + ll@ollze + | Bolla + || Bollze + lhollz2 + llfoll~ < ¢,
then there hold
a(t)|| 2 + | B()|| L2 < Cdo(t) 2@,
Ve + VB2 < Coo(t)~ 5 2@ for t < T*

T*
(6.14) / [AG]| > + |AB| g2 + VI 2 dt < Cdo,
0

j—'vx
/ il + | Bl dt < 6o,
0

Proof. Let &(t) 1= SUPyefo (p®lrz + 11p#®)|lL=)- Integrating (6.4) and (6.10)
over [0,¢] for t < T that

VO (Jall3e + 18132 ) Slloll3 + 1 Boll2:

t
+ [ eVl 80 - V. dr
0

t
T / V|52, 1B - VB2 dt’
0

and

t
e "V)(Va, VB)|z: +/ e " (Vportt, 0, B)||72 + coeV|(Ad, AB)|72 dt’
0

t t
,SH(VQO,VBO)H%Q—&-/ e V)| Aa — vIT||2, dt’+/ e V)| B- VB2, dt,
0 0

where V(t) and U(t) defined as in Lemma 6.1 and Lemma 6.2 respectively. From
the decay properties of the reference solution, we have

@)z +I1B®)z2 + IVall 222y + IVBll2(2)

S (o, Bo)llzz + sup [|p(¢)llzs < C (J0 +£(1)),
(6.16) el
[Va(t)||2 + IVB@)|[z2 + [|v/pOillpz 2y + [|0:Bl L2 (L2
+ |Adl p2(z2y + |AB|[L2(z2) < C (50 +&(1)) -
Now, we use Schonbek’s strategy in [23] to prove (6.14) and (6.15). .
Step 1: Rough decay estimates of ||a(t)|| Lz, ||V@(t)|| L2 and || B(¢) ||z, IVB(®)||L2-
Let Si(t) = {¢: 16 < \/29()}. Sa2(t) == {€: |¢l < V2g(t)} with g(t) satisfying
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g(t) < (t)~2. Then, following the Step 1 of the proof of Proposition 7.3 in [1], we
can prove that

=

(6.17) [a(®)llz2 + 1Bz < C +EW)H) T,

t
@ (IVals + IVBI3:) + [ 07 (1ol + 10512 )
t
(6.18) 5ag+g(t)2/ ()| Aa — V|2, dt’
0

t _ _ 2 t
+e(®? [ 1B-VBIRar + (5 0) [ @) ar,
0 0
and
(6.19) Vi) + VB2 S (J0+ (1)) (8) 73,
where the magnetic field B can be estimated similar to the velocity u.

Step 2 : Improved decay estimates of ||@(t)|| .2, | Va(t)| .2 and | B(t)|| 12, ||V B(t)]| 12
We provide an estimate as follows:

t
| 1B Bl |B- VBlsa + | B VB2 e
0
to_ 1 - -1 -1
< / |BI|% VB L |ABI| 2 + | BI L VB L]l Adl 12

+11Blz VBl zl|AB] 2 dt’
< (80 +€()) ).

With this estimate, following the proof of the Step 2 of Proposition 7.3 in [1], we
arrive at

2

(6.20) ([ 18l + 1911 ar) < € (04 €0) w0
(6.21) [ Wl + 1813 a5 (0 + €0) (02,
(6.22) IVa(®)llz2 + IVB@lee < (60 + (1)) 1) 727
fort < T,

t

©23) [ (00O (10l + |0BIE) dt S 6o+ @) for ¢ < T,
0

and

(6.24) la@llze + 1B®Ile S (5 +€®) ()77,



DECAY AND STABILITY OF INHOMOGENEOUS MHD SYSTEMS 31

Step 3 : Time integral estimates of |VIL|| 22, ||A(t)|| > and ||AB(t)|| 2. From
the equation of B, we have

IAB 22 SHOBllz2 + VBl 1] L + [Vl 2] Bl
1 2 - _ 1 ~ 1 .
+ @l a1Vl L[| ABl 2 + [ BII 22 IV BII L. [ Atl| 2
_ 1 _1 - 1 1
H Va2 IVBI = ABll 2 + VBl 2l Val 2. [ Aull 2.

Then, we notice that the magnetic field B can be estimated similar to u. Hence,
we just need to repeat the proof of the Step 3 of Proposition 7.3 in [1] to obtain

t
©25) [ @000 (Jaul + 1B + IVAIE:) af < C o+ £(0)°.
which leads to
t ~ ~
(6.26) [ 1800 + 8B 22 + [ de < € 6o+ €(6)
0

fort <T.

Step 4 : Estimate of [ [|a(t')]|dt’ and [} |B(#')||p= dt’. In this part, the esti-
mates of B are all similar to the estimates of @, which already illustrated in [1].
Hence, we omit all the details of this step. ([

Proposition 6.4. Under the assumptions of Theorem 1.3, there exist constants C'
and c¢ so that if

Ag = |0l + lldollze + 1 Boll e + | Bollze + llaoll sz < e,

then we have

o Vo e + 1l
+1Bllge 2oy + 1Bl (g272 + 1Bll 572, < Co

for all t < T*.
Proof. Firstly, we need to prove the following facts:

(6.25) il zee iy + Ml 2 gy + Wl gy
Bz sy T 1Bl g2y < CAo

for any ¢t < T*. This estimate can be deduced by using similar methods of the proof
of Proposition 7.4 in [1], so we only list some estimates used to estimate terms with



32 J.X.JIA, J.G. PENG, AND K.X. LI

B and B as follows:
(1 +a)B - VBHL%(B%Q) <1+ |\a||L?o(Bg(12))||B\|Ltoc(321{12)HBHLg(B';?fy
1BVl gz S 1Bl e i 1By sy
- VBl gy spry S Nl g Bl sz
0 B - VBl py72) S loll e ooy 1Bl sy o 1 Blly o
1+ @) B VBl g2y S U+ lal e gz IBl e 272y | Blly 5372y
1@ B - VBl s p172) S Nally 532 1Bl e 172 1Bl s 372y
- VBl s spry S Nl g Bl sz

Secondly, we need to prove that
(6.29) il Lo ey + 1 BllLe= ey S Ao

This along with (6.28) complete the proof. Inequality (6.29) can also be obtained
by following the proof of Proposition 7.4 in [1], so as before we only provide some
estimates of the magnetic field as follows:

|B - VB”L,%(LP) +B- VB”L}(LP) < Ao,
@ VBl ey + 18- VB Li(zr) S Ao,
IB - Vil Ly ey + 1B - Val| ey S Ao,

I(1+a@+a)B- VB ey + (1 +a+a)B-VB| L L
S (Ut lallpge ey + llall g re)) (HB : VBHL%(M) +B- VB”Lg(LP)) < Ao,

and
|B - VB”L}(LP) +1B- Vi g oy + lla- VB”LHLP) < Ao,
I(1+a@+a)B-VBlLiwr S 1+ llall Lz
+ @l Lge (o) 1Bl e (/) I VBl 13 (12) S Ao-
With these estimates, the complete proof can be easily reconstructed. ([

Proposition 6.5. Under the assumption of Theorem 1.3, there holds

(6.30) |a(t)|| L= < CAg
and
(6.31) [Va(t)|l~ < Cl|Vaol e,

where Ay defined as before.
Proof. Firstly, let us give the equation of a
Ota+u-Va=—u-Va.

Using basic estimates about transport equations, we have

t
0= < 0170 (ol + - Vot
0
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Moreover, we obtain
la®ll= < llaolle + IVl . 5372)Ao-
By the definition of Ay and Proposition 5.2, we get
la(t)]|L < CA,.
Similarly, we give the equation of Va as follows:
wVa+ (u-V)Va=—(Vu-V)a.

Then, classical estimates about transport equations yield

33

¢ ¢
IVa(t)||p= < Cexp (C’/ ||Vu||Loodt’> <||VEL0||Loo —|—/ ||VU||L0®||V&||L0¢dt/>
0 0

Using Proposition 4.5 and Gronwall’s inequality, we obtain

[Va(t)||= < C|[Vao| L~

Proposition 6.6. Under the assumptions of Theorem 1.3, there holds
sup (IV2a(0)[ 3 + IV2BOIE:) + [ 10:Va0)|: + 109 B de
Zto to

+/|W%wﬁﬁwwmw@ﬁsa

to
where C depends on the initial data.

Proof. Taking derivative to the second and third equation of (6.3), we obtain

p0:0;0' — A’ + 0;0,11 = —0;p i’ — djpu - Vi — pdyu - V!

—pu-Vo;i' +8;B-VB'+ B-V0;B" — 0;pi- V' — pd;ii- V'

—pii- Vi +0,B-VB + B-V;B — g(Aaﬂ-ﬂ — 8;0,1)

(6.32) i i i
— 9 <’f) (Aw — o0 — 20,8 VB - LB .vo,B
p p p
— 9, <p> B VB
P
and
8,0,B" — A§;B* = —9:u- VB —u-V3,B'+8,B-Vi' + B-Vo.i'
(6 33) J J J J J

— 833 . V’L_Li — B . Vﬁjﬂi + 3jﬂ . VBZ + - V@BZ
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Multiplying (6.32) with 9;0;a’ and integrating over R?, we obtain

1d
/PO Va(t)|32 + §£||V2ﬂ(t)||2p = —/ Vp 0yt 0; Vi dx
R3
— | Vpu-Vad,Viadr— | Vpu-Vad;Vidr
R3 R3

—/ pVﬂ-Vﬂ@tVﬂdaj—/ p Vi - Vid,Viidz

R3 R3

—/RBpu-VVﬂatVﬂdx—l— VB VB, Vidz
R3

+ VB-VB@tVﬂder/ B-VVB§,Vidx
R3 R3

(6.34) +/ B-vaatvad:cf/ Vpi- VadVid
R3 R3

f/ pVﬂ-Vﬂ@tVﬂdxf/ pu-VViudx
R3 R3

+ vB.vBatvader/ B-VVBO,Vidx
R3 R3

—/ @(Aajai—ajaiﬁ)atvada:—/ 9; (3) (AT — 8,11) 8,V dx
R3 P R3 P
f/ @vé-dezf/ P B.VVB&,Vids

R3 P R3 P

—/ 0; (’f) B-VBda.
R3 p

For B, using same methods, we have
1d

O,V B(t)|?
10:VB(t)||72 + 5 7

IV2B(t)||2. = —/ Vu-VB,Bdx
]RS
f/ w-VVB&VBdr+ | VB -Vad,VBdx
R3 R3

(6.35) +/ B-VVud,VBdx — | VB -Vud,VBdx
R3 R3

f/ B-VVﬂc‘)tVde+/ Vi -VBo,VBdx
]R3

R3

+/ @-VVBO,VBdz.
R3

Combining (6.34) and (6.35), we obtain
1d
2 dt
<|0hiil| 32 + (i - Viill 2 + ||a - Vil g2 + || - V] r2)?
FIVall32 V2@l 2| V3@l L2 + V@l 32l V2al 2| V34 12
+lall 2 [Vl L2 V3l 2 + 1Vl L2 || V2] 2 | V2 7
+ VB3IV B2 V?Bll 2 + | VB|7:(IV?B| 2|V B >

(IV2a®) 13 + IV2BOIE:) + VAo Villi: + 0.7 B
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+ B2 VB 2 IV B3 + VBl 2| V2B 12| V* B 7 2
Va3 V2@ 2 |V 22 + ||l 22 || V]| 2] Va7 2

+ VB3V B2 V?Bllz2 + || Bl 2| VB| 2| V* B 7 »
+16ll7 < IV(AT = VID)[72 + [|Vall7 | Au — VT 7.
+|plI7< VB - VB|72 + |57 B - VVB|72
+[IVal[i=[IB - VB2 + [Vl 12| V?al| 12 | VB 7 2

+ [ Val|7: V2Bl 2 I V2Bl 2 + |l 2| V]| 2] VEBI|7 -

+ IV 2|V 2|V B 72 + IV? Bl 2 | VP Bl 12 || V|7 2
+ VB3 (V2il 12|Vl 2 + | Bl 12]|V Bl 2 || V3413 -

+ VB L2V Bl 2 VZall72 + [ Vall72]| VB 2|V B| 2
+1Bll2 VBl 2 V20l 72 + IV Bl[72 V24| 22 | V34| 2

+ il L2 | VB 2|V Bl 7.

Multiplying %Aﬁ and Aa to (6.32) and (6.33) separately and doing some basic
energy estimates, we obtain

1d

2 dt
<|0:Viill32 + (it - Viil| 2 + || - Vill| 2 + || - V]| g2)?

+ IVl 2 | V20l 2|Vl 72 + 1|Vl 2] V2| 2] Va7 2

+ [l o2 | Vall 2| V2all72 + [ Vall 2]Vl 2| V) 7 2

+IV?Bl 2 V2B 2 | VB 72 + VBl 2| V* Bl 2 | VB 72

+ 1Bl 2 IVB 2 IV* B} + VBl 2] V? B 2| V* Bl 7 »

+ IV2al| 2| V30l s |Vl 72 + ||l 22 || V]| 2 ]| Va7 2

+ V2B 2lIV? B 2 |V B|72 + | Bl 2 [ VB 2|V B| 7 2

+16ll7 V(AT = VID)[[72 + (| Val|7 | Au — VII||7

+|pI7= VB - VB2 + (|5 7~11B - VVB|72

+IVall7< 1B - VB2 + [IV?@ 2 | V3al| 2]V B|72

+ V2B 2| V2B 2|Vl 72 + il 2|V 2| VP Bl -

+ IV 2|V 2|V B 72 + IV? Bl 2| VP Bl 12| V|72

+ IV2al| 2| V2al| 2 VB 72 + 1B 21V Bll 22| V34l 72

+ VB2V Bl 2| V2 Bl[72 + [V Bl| 12| V? Bl| 2| Va7 2

+ 1Blle2 VB 2 |V a 72 + IVl 2| V2| 2]V B 72

+ il g2 | V]| 2] V2B 2.

(1923 + I92BI3: ) + ol 2 IV°al3: + [ V° B3

At this point, we got two completed inequalities. The second inequality times a
small number then plus the first inequality yieds

d B ~ 5 -
= (IV2a®) 122 + IV2B@)I32) + I Vpo:Vallf + 0.V B
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+ (3 = Clall 2Vl 2 = ClBI=IVBlz2) (V%32 + I9° B3 )
< (IVallzl|V2allzz + IV B2 V2 Bllz2) (I1V2ll3: + 92 B3 )
+ (Ivalle + IV BlL: + I Vallt: + IVBIIL: ) (IV2al3: + 192513
+ IV2ale + IV2BI3: ) + l0cal3e + a2 1Vl 2 V23
+ Va3 |V alz1V2alze + (Il 9al e + 1BV B2 ) (11l
+IV*B|22 ) + 1613~ 1V (A = VI |32 + | Val[} | A7 — VT3
+ 113~ IV B - VBIZ: + 16l 1B - VVB|3: + | Val}~ | B - VB
Taking ¢ in Theorem 1.3 small enough, we have
& (1920013 + IV2BWIZ:) + V6o Vals + 0.9 3]
+ V¥l + IV* B3
< (IValle 92l 2 + VBl 1V Blz2) (192032 + V2 BII3: )
+ (IVallis + IVBIL: + IVal: + VBl ) (IV2all3: + 1V2 513
+IV2all3s + IV2BI3: ) + 10ual3s + a2l Va2 V23
+ Va3 Va2 1V2ale + (Il e 9all 2 + 1BV B2 ) (112l
+IV*BI2 ) + 113~ IV (A — VI 32 + | Val3~ | Aa — VT3

+0llL< VB - VB|L: + 1517 1B - VVB|L2 + [IVal i< | B - VBI[7-.

Integrating the above inequality, using decay estimates about reference solution
and perturbed solution, we obtain

sup (I + IV*B0I%) + [ IVaovalt + [0V Bl
0

t>to

+/ V3|2, + | V3BJ|2, dt < C.
to

Hence, the proof of Proposition 6.6 is completed. (]
Now, we can complete the proof of Theorem 1.3 as following.

Proof. According to the statement at the beginning of this section, given initial
data (@ + ag, 4o + o, Bo + Bo), (1.2) has a unique solution (a,u, B) on [0, T*) such
that

a e C([0,T%); B (R%),
ue C([0,T7); B2;) N LL((0,T%); B, (R%)),
B e C([07 T*)v BS,I) N Llloc((oa T*)v Bg,l(Rg))

We need only prove the maximal existence time T* = co. Indeed, according to all
the decay estimates for reference solution and perturbed solution, we repeat the
argument used in the proof of Proposition 5.1 and Proposition 5.2 to prove that
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T* = co. Then a standard interpolation argument gives (1.10) and (1.11). This
completes the proof of Theorem 1.3. (]
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