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1. Introduction and main results

Many fluids do not satisfy the Newtonian law. A viscoelastic fluid of the Oldroyd type is a classical
non-Newtonian fluid that exhibits elastic behavior, such as memory effects. The elastic properties of
the fluid are described by associating the fluid motions with an energy functional of the deformation
tensor U. Let us assume that the elastic energy is W (U), then the compressible viscoelastic system
can be written as follows

0:p + div(pu) = 0,
0:(pv) +div(pvy ® v) + VP(p) = divuD(v) + V(Adiv(v)))

+le( (li}et(U) )

U +v-VU = VyU.

Here, p is the density and v(x;, t) is the velocity of the fluid. The pressure P(p) is a given state equation
with P’(p) > 0 for any p and D(v) = %(Vv + VvT) is the strain tensor. The Lamé coefficients 1 and
A are assumed to satisfy

w>0 and A+2u >0. (1.2)

Such a condition ensures the ellipticity of the operator —V(2uD -) — V(AV -) and is satisfied in the

physical case, where A + 2 /N ~ 0. Moreover, Wy (U) is the Piola-Kirchhoff tensor and %

is the Cauchy-Green tensor. For the special case of the Hookean linear elasticity, W (U) = |U|%.
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Many important investigations on incompressible viscoelastic fluids have been conducted recently.
In [1], authors obtain the well posedness of incompressible viscoelastic fluids and found the relation

ViFT — viF* = Fiivypik — plkw,pY,

with F = U — I. This relation indicates that the linear term V x F is actually a higher order term. Lin
etal. [2,3] provide the local well posedness in Hilbert space H*, and obtain the global well posedness
for small initial data. To prove the global part, they capture the damping mechanism on F through
very subtle energy estimates. Tang and Fang [4] prove the global well posedness of the incompressible
version of the system (1.1) in the critical L? framework, thereby allowing the construction of a unique
global solution with highly oscillating initial velocity.

For compressible viscoelastic fluids, the author of [5,6] prove the local and global well-posedness
in the L2 based critical Besov type space. They deeply use the properties of the viscoelastic fluids and
their results indicate that the role of the deformation tensor U is similar to that of the density p. It
should be mentioned that the global existence of a smooth solution is still an open problem, even
for incompressible viscoelastic fluids. Lions and Masmoudi [7] obtain the global existence of a weak
solution with general initial data in the case the contribution of the strain rate in the constitutive
equation is neglected. Recently, the global well-posedness in L? based critical Besov spaces have been
archived in [8].

In addition to well-posedness theory, the problem of the optimal time decay rate is another
important subject. There are many papers concerned with the optimal time decay rate for the
compressible Navier-Stokes system [9-16]. However, because of the complexity of compressible
viscoelastic equations, there are few results on viscoelastic equations. Recently, Hu and Wu [17]
provide a detailed analysis on the time decay rate in Sobolev space framework. They divide the whole
system into two small systems, which in turn facilitated the analysis. In [8], the authors use estimates
in homogeneous space to provide a slow decay rate when the initial data are only small in Besov
spaces with low regularity. The main goal of this paper is to obtain the optimal time decay rate when
the initial data are only small in the framework of critical Besov spaces. Hence, we can link the results
from [17] and [8] to provide a more elaborate characterization of the optimal time decay rate for
compressible viscoelastic equations.

In [5,6], the authors provide the following proposition, which reveals some intrinsic properties of
compressible viscoelastic equations.

Proposition 1.1:  The density p and deformation tensor U in (1.1) satisfy the following relations:

UT
div ( > =0, divi(pUT)=0, pdetU =1,

detU (1.3)
and U*v, U7 — UYv,U* =0,
if the initial data (p, U)|i=0 = (po, Up) satisfies
Uy T
di =0, di U,) =0, detUp = 1,
v detU v(poUy ) £o 0 (L4)

and Ukv,UJ — UIvU = o,

respectively.

Using Proposition 1.1, the last term in the second equation of (1.1) can be rewritten as

AW (U) 17k
\v2 auk v — 1 UjkV' M = pUjkV~ M . (1.5)
I\ " detu detu =\ auik T\ auk
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Asin [6], without loss of generality, the Hookean linear elasticity, W (U) = |U|* is considered in the
following parts of this paper. This usage does not reduce the essential difficulty. In view of (1.5), we
consider the following system

otp + div(pv) = 0,

pdv' + pv - Vvl — diveuD(v)) — V(adivy) + VP(p) = pUKV;U*,
U +v-VU = VvU,

(0, v, U)lt=0 = (00, vo> Up)

where the initial data satisfy (1.4).
We now state the main result of this paper which provides the optimal L>-time decay rate for the
strong solutions of (1.6) in critical Besov spaces.

Theorem 1.2:  Assume that dimension n = 3, p be a constant and I stands for the identity vector
(1,1,1)". There exists § > 0 such that if vy € Bgy/lzfl ﬂB(l))oo, Po—p € B;)/lzﬂBO U-1I¢€ B;)/lzﬂB(l),oo

1,00’
and

(oo — p, U — I)||B;,/12m3(1),oo + ||VO||B;l,/12—1m;(1),0O <4,

then problem (1.6) has a unique global solution (p — p,v, U —I) € C(R™; B;,/lz) X (C(R+; B;"/lzfl) n

1 +. ‘7’1/2+1 n +. n/2 nxn .
L'RT; By ) ) x (CR™; ByY) . Furthermore, there exists constant Cy > 0, and we have
1o = 5,7, U = DOl a1 = Co1+ 07", (1.7)

fort > 0.
Remark 1.3: From [17], we know that the optimal L2-time decay rate for the compressible vis-
coelastic equations is

(o — p,v, U —D(®)ll ;2 < CA+ 1)~ "4, (1.8)

The convergence rate (1.7) is optimal because B;,/1271 c L%

To prove Theorem 1.2, we split the system (1.6) by Littlewood-Paley operator to low frequency
and high frequency parts. For the low frequency part, we further decompose the system into three
small systems and analyze the Green’s matrix of each small system, as in [8,17]. We can then combine
the estimates for each small system to finally obtain an estimate of the whole system because of
the fine properties of homogeneous space and singular operators. For the high frequency part, we
reformulate the system as presented in [5] and use energy estimates in critical Besov spaces to obtain
an appropriate a priori estimate.

The paper is organized as follows. In Section 2, we introduce the notations, some properties of
Besov space and some important lemmas. In Section 3, we split the system into three small systems
and provide the estimates for the low frequency part. In Section 4, we convert the system into an
equivalent form and prove an a priori estimate for the high frequency part. In Section 5, we provide
the proof for Theorem 1.2.

2. Preliminaries

In this section, we first introduce some notations to be used throughout the paper. Secondly, we
provide some basic knowledge about Besov space. Lastly, we present some useful lemmas and
theorems.



Downloaded by [University of Lincoln] at 05:28 24 June 2016

4 J.JIAAND J. PENG

2.1. Notation

Let n stands for the dimension, LP(1 < p < 00) denote the usual LP-Lebesgue space on R”. [z]
stands for the integer part of a number z € R. The inner product of L? is denoted by (-,-). If S is
any nonempty set, then the sequence space £°(S) denotes the usual ¢ sequence space on S. For any
integer £ > 0, V'f denotes all of the £th derivatives of f.

For a function f, its Fourier transform denoted by F[f] = f‘ :

FIFIE) =f&) = @m) " /R fee e dx.
The inverse of F is denoted by F~![f] = Jvf;

FUA® =f@0) = @m) ™" fRnf ()6 *de.

In the following, C stands for a ‘harmless’ constant, and we sometimes use the notation A < B as
an equivalent of A < CB. The notation A ~ B means that A < Band B < A.

2.2. Besov spaces

This section provides some basic knowledge on Besov spaces, which can be found in [19]. We first
introduce the dyadic partition of unity. We can use for instance any (¢, x) € C°, such that ¢ is
supported in {§ € R" : 3/4 < |&| < 8/3}, x is supported in {§ € R" : |&]| < 4/3} such that

XE+Y ¢pQIE) =1 EecR,

9=0

Y e =1 if £#0.

qe’
Denoting h = F~![¢] and h=F"! x> we define the dyadic blocks as follows
A_ju=yD)u= h * u,
Agu=¢ Q2 1 D)u = 27" /R” hQYy)u(x —y)dy if q>0,

Aqu = ¢ 1D)u = an/ hQYy)u(x —y)dy if qe€Z.
Rn
The low frequency cut-off operator is defined by

Squ = Z Aqu, Squz Z Aku.

—1<k<q-1 k<g—1

The following two formal decompositions

u= Z Aqu, u:ZAqu

g=—1 qe’

are called inhomogeneous and homogeneous Littlewood-Paley decomposition, respectively.
Let us give the definition of inhomogeneous Besov space as follows.
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Definition 2.1: Fors € Rand 1 < p,r < 00, and u € §'. The inhomogeneous Besov space B}
consists of distributions u in S’ such that

1/r

lullps, = > 2% Agulll < 400.
g=—1

Let us now introduce the homogeneous Besov space.

Definition 2.2:  We denote by S} the space of tempered distributions u such that

lim Squ=0 in &

q*) (0.¢]

Definition 2.3: Let s be a real number and (p, 7) be in [1, 00]?. The homogeneous Besov space B;J
consists of distributions u in S; such that

1/r

lullgs, o= | 2% NAqully, | < +oo.
qeZ

From now on, the notation BS Bj, means BS 1 and By ;, respectively. The notation B, BS means

B; | and B; |, respectively.

The study of non-stationary PDE’s usually requires spaces of type L7.(X) := L"(0, T; X) for
appropriate Banach spaces X. In our case, X is expected to be a Besov space, so that it is natural
to localize equations through Littlewood-Paley decomposition. We then obtain estimates for each
dyadic block and perform integration in time. However, in doing so, we obtain bounds in spaces that
are not of type L"(0, T’ B;) or L"(0, T; B;). This approach was initiated in [18] naturally leading to
the following definitions for the inhomogeneous Besov space.

Definition 2.4: Let (r,p) € [1,4+00]?, T € (0,+0c] and s € R. We set

1/r
lullgy ) = D 2% ( / 1Agu(®)] dt)

qeZ

and
~rT(B;) = {u el (BS) ”””U (B)) < +oo}

Owing to Minkowski inequality, we have L.(B ,) = L7(B,). That embedding is strict in general

if r > 1. We will denote by Cr (B;) the set of functlons u belonging to i%o (B;) N C(o, TT; B;). For
the homogeneous Besov space, we can define similarly.
Let X stands for B or B, we have the following interpolation inequality

Il oy < Nty o ol 0

with

1 6 1-90
-=—+4+ and s=0s; + (1 —0)s,,
rooon 15
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and the following embeddings
L) < Lh(Co) and  Cr(x%) < C(10, T] x R™).

Next, let us give the definition and some properties about hybrid Besov spaces.
Definition 2.5: lets,t € R. We set

Ul st 1= 29| Agu 298| Agu|| 1o
lullgee == D 2% Agullza + Y 27| Agull e
kfRO k>R0

and
By ®Y) = [u € S)®Y) : fuls < +oo},

where Ry is a fixed large enough number.
Lemma 2.6:
(1) Wehave By, = B
(2) Ifs < t then By, = B N\ By, Otherwise, By, = B} & B,
(3) The space ng, coincide with the usual inhomogeneous Besov space.
(4) Ifs; <syandt, >t then By)' < B2,
(5) Interpolation: For s1,s3,01,02 € Rand 6 € [0, 1], we have

% 1-6
”f”3951+(179)52»9“1+<170)02 =< ”f”BSlle ”f”BSZ,«rz-
2,p 2,p 2,p

From now on, the notations B, B means By, and B3, respectively. For more information on
Besov spaces and hybrid Besov spaces, we give references [19-22].

For the reader’s convenience, we list here an important lemma [5,21] which will be used in the
following.

Lemma 2.7: Let F be a homogeneous smooth function of degree m. Suppose 1 —n/2 < p <1+ n/2
and —1/n < p’ < n/2 + 1. Then the following inequialities hold:

[(F(D)Ag(v - VO)|F(D)Ago)|
< Cag2 1 il guznllel g IFD) Agellp2,
|(F(D)Agv - Vc|F(D)Ago)|
< Cog2™ 1~ min 2%, DIVl gz llcl go-1o | F(D) Agell 2,
[(F(D)Ag(v - VO A + [(Ag(v - d)[F(D)Ag0)]
< Cog2” 1™ min @4, D[Vl guaer (Il g1 | Agdll 2 + Nl o1 | Agell2),
[(F(D)Aq(v - )| Agd)| + |(Aq(v - V) [F(D)Ag0)]
< Caglvlignae1 @ IF(D) Agel 2 1 dll
+271°7 min 29, 1) [1d || go-10 | Agd 2.

2.3. Useful theorems

In this part, we will list two theorems for (1.6) which are essential for our proof of Theorem 1.2. We
denote

Ep(T) := {v € C([0, T1; B;/P), 3v, V2 e L! (0, T BZ/P)] ‘
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For v € Ep(T) will be endowed with the norm
o 2
1Vl = ¥l e oo, + 1360, V2¥I i,

Employing similar methods used in [8] or by simple changing the low frequency estimates in [5], we
obtain Theorem 2.8. We omit the proof because it has no new features.

Theorem 2.8: Let 1 < p < 2n and n > 2. Let vy be vector field in B;/p_l. Assume pg satisfies
ay:=po—1¢€ Bz/p, Uy satisfies Fp := Uy — I € Bz/p and

inf pg(x) > 0. (2.1)

Then system (1.6) has a unique local solution (p,v, U) with v € E,(T), U — I € C([0, T]; BZ/P)’ P
bounded away from 0 and p — 1 € C([0, T]; B;/p),
Denote:

spt1s sp 1,s

) N L*(0, 00; B,
sp—H s+1

)

sp 1,5—1

—{(auF)e(L(OOoB

x (L'(0, 00 ) N L>®(0, o0; B, N"

SP+ s)mLOO(O 00; BP 15))n><n}’

><(L (0, 005 B,
wherespzs—ﬂ—i—g.

The following Theorem 2.9 shows that system (1.6) has a unique global solution in critical Besov
spaces.

Theorem 2.9: [8] Let p > 0 be a constant such that P'(p) > 0. Suppose that n = 3. There exist two
positive constants cg and C such that for all (po, vo, Up) with pg — p € B"/2 Ln/p ,Up—1I € B"/2 ! n/p

Y0 eBn/2 Ln/p=1 , and

oo — Pl gnz—1aie + Vol grz-1ap—1 + [ Uo — Il gjz—1pp < 0, (22)
2,p 2,p 2,p
then if 2 < p < n, system (1.6) has a unique global solution (o — p,v, U —I) € E"P with
1o = 5%, U = Dllgns = (1190 = pll - + Iv0ll -t
2,p 2p
+ 11U = Ul -y )-
2p

Remark 2.10: Taking p = 2in Theorem 2.9, we gain global well-posedness in critical homogeneous
Besov spaces. Assume

lGoo — 0, U = Dlignnpe  + Ivollgra-1pnp0 =8,
as in our main Theorem 1.2. If § > 0 is taken to be small enough, then the above-mentioned

assumption implies (2.2) for p = 2. Hence, we obtain the results in Theorem 2.9. In particular, we
know that

00
/ IVl gn2ridt < C6. (2.3)
0

In the following sections, this estimate plays an essential role.
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3. Analysis of low frequency part

In this section, we first decompose the system into three small systems and then carefully analyze the
semigroup of the low frequency part. Without losing generality, we assume P’(1) = 1, p = 1 and set
v=A+2u, A= uA+ (A + pn)Vdiv. Define

P'(1
K@:%—

Q= A"'curlv with (curlv);; = ijvi — Oy
&ij = A_laxiA_laxj(F’j + i,
W = A~ Yo, (FRVFT — FliviFky — A=Y, (F* v P — Fiiv %),

1, d= A"'divv,
Vj)

where
Nf = ]-'_1(|§|5f) fors e R.
We adopt decompositions used in [6] to obtain the following equations

dia+Ad=L—v-Va,

0rd — nAd —2Aa =G —v-Vd,

E+2Ad=] —v-VE, (3.1)
WFT —F)+AQ=1—-v-VFT —F),

Q2 —pnAQ—A(FT—F)=H—v-VQ.

In addition, equation of d has the following equivalent form
9d—vAd—AE=K—v-Vd, (3.2)
where

L = —adivv,
a
1+a

G=v-Vd+ A div (—v Vv + FVF — K(a)Va — Av — div(aF)) ,

H=v-VQ+ A curl (—v -Vv+ FVF — K(a)Va — 1 _T_ .AV) + W,
a
1= (VvE)T — VvF,
J = —[A" 0, A 0y, M0y (FY + F)
+ AT AT 0 (VVF)T 4 (VvFYY),
K=v-Vd+ A 'div(=v- Vv+FVF —K(@Va - - i Av + div(aF)).
a

Here, we denote

Mi(t) == sup (1+0)"* (la(@)llgwa-102 + 1@ | gn21) 5

o<t<t
My(t) = sup (1+0)"* (IE@)lIgwa-12 + 1) I gn2-1) 5

o<t<t

M3(t) := sup (1+ t)”/4 (||(FT — F)() |l gn2—1m72 + ”Q(T)“Bn/Zfl) )

o<t<t
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My(t) == sup (1+)"* (llallpz + IFll2 + IVl 12)

0o<tr<t

and

M(t) := sup (1+0)"* (llallgwa + IFllgwe + [Vlgna) .

o<tr<t
From basic properties of Besov spaces, we easily know
M(t) = My (1) + Ma(t) + M3(t) + My(1),

under smallness conditions of the initial data, where we used (5.13) to (5.15) in [8]. Here, we also
need to denote

- (L—v-Va - (J=v-V¢&
Ml_(G—v-Vs)’ Mz_(K—v~Vd>’ (3.3)
and
- (I—-v-VEFT-F)
= (17 7). "

Now, we need to introduce the following linearized system with convection terms.

dia+Ad=L—v-Va,

0rd — nAd —2Aa =G —v - Vd,

3E+2Ad =] —v-VE, (3.5)
WFT —F)+AQ=1—v-VFT —F),

Q2 —pnAQ— A(FT—F)=H —v-VQ.

We can decompose the above system into three subsystems.

ora+ Ad=L—v-Va, (3.6)
0:d — uAd —2Aa =G —v-Vd. '
W E+2Ad =] —v-VE, (3.7)
3d —vAd — AE =K —v-Vd. '
W ET —F)+AQ=1—v-V(FET —F), (3.8)
Q2 —nAQ—AFT—F)=H —v-VQ. '

The above three systems have similar mathematical structures, so that we only need to study the
following linear system, which captures the main structures of the systems (3.6)-(3.8).

ad Au=0,
{ iC+aAu (3.9)

ou—kAu— BAc =0,
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where ¢, u are scalar functions and «, 8, k are positive constants. We first provide some important
properties of the Green’s matrix of the above system (3.9).

Lemma 3.1: Let G be the Green matrix of system (3.9). Then we have the following explicit expression

ofé:

Aper—tp_ett Pl _ht
G 1) = P —a (=) I8l
(E! )_ _ e)Lth_e)L,t |$| )\+el+t,)\75)»—t
P\ o

where
1 SN S yyav) 2
ki=—zK|$| :EE k*&* — 4aplE]>.

Lemma 3.2: Given R > 0, there is a positive number C depends on R such that, for any multi-indices
y and |§] < R,

ID{G(&. D = Cem S @+ g+ )]

where C = C(R, |y)).

The proof of the above two lemmas follows those of Lemma 3.1 and Theorem 3.2 in [23], so that
we omit the proof for simplicity. Next, we prove an important lemma that has a key role in the low
frequency analysis.

Lemma 3.3: Let G be the Green matrix of system (3.9), dimension n = 3. Denote Uy = (co, o), then
G(t) satisfies the estimate

Y IGMHAUolle < CA+ 07| Uollgo
q=R '

fort > 0andR > 0is a large positive constant.

Proof: Using Placherel’s theorem and Lemma 3.2, we have

) , 172
999,60 ds)

IG(HAUpll> < /
324<|g|<824

5 1/2
< (] e gy (6) 0| dt
324<|g|<824

1/2
. a2 (3.10)
Sl | [ eVIEPt g
324<|g|<824

1/2
St A Uollp / S50 g,
Vi321<|g|<y/t821

2 20 1/2
S tfn/4||U0||BO e*§4qt9 (1 _ 37?4‘“0)
1,00
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2 20 1/2
Now, we perform some calculations about Zq<R e~ 9410 (1 — 6—74%9) . Let k = —q, then we
have

/
T <1 _ e—?me)l/z _ i e—%(i)kw (1 _ e—?(i)k”)l 2

q=<R k=—
=1+1I+ 111,
where
1/2
I= 20: e_%(%)k“’ (1 — e_%o(‘l*)k“)) :
k=—R
log, 210 1/2
H=[ 423: }e_g i)k“) (1 —5_230(1)%)
k=1
and

12
I = i e‘%(%)k” (1 — e‘?(}*)k”) .
k=[log4 %t0}+1

For I, wehave ] < R-1 < C < oo. For an arbitrary t > 0, there exists a positive integer N > 0 such
that t6 < %42\] . Hence, without loss of generality, we can choose t0 = %41\] . For II, we have

Using Taylor’s formula, we have
w(1)e 20 (1\F > (—pmtt (20 f1VF O\
e e 2 (1) s (DT (20 (10,
¢ 3 \4 * Z n! 3 \4
n=2
When k > log, %t@, we have ? (i)k t6 < 1. Through properties of alternating series, we know
20 k k
I O L % (i) 0. (3.11)
Substituting (3.11) into III, we obtain
0 21 k 1 k/2
m<c Y e 5(3) (—) N

4
k=[log, 216 ]+1
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00 1 k
<CV1he 51 Z (—)
k=[log4 27301‘(9]+1

<C<oo.

Summing up the estimates for I, II, III, we finally get

1/2
Y i (1 - e*?‘“t@) < C< oo, (3.12)
q=R

where C does not depend on t.
Through estimates (3.10) and (3.12), we obtain

. 2 20 1/2
D IGOAUollz < Co Ul D0 T8 (1 - )
q=<R " g<R (3.13)

< —n/4 .
<G Ul

Similarly, we also find that

1/2
. . 1 _ps2
D IGWAUoll <C Y IA Ul / et dr
32a<r<824

=t A=k (3.14)
<ClUollgy Y (V8)1<C<oe.
~ =
Through estimates (3.13) and (3.14), we finally obtain our desired results. O

Remark 3.4: LetGj, §; and G stand for the Green matrix of system (3.6)—(3.8), respectively. Denote
V(} = (ao, do), Vg = (&, dp) and Vg’ = (FOT — Fy, Q). By similar methods used to prove Lemma 3.3,
we will have

D NGiOAVEl < CO+ 07 Vil
q=R

fori =1,2,3.

Next, we need to consider estimates for My, M, M3 defined in (3.3) and (3.4).

Lemma 3.5:  There exists a constant § > 0 such that if
llaollgn/2 + Ivollgn2-1 + IFollgn2 <6,
then there exists a constant C > 0 independent of time T such that
|8y, 8, Ms o < CA+ DM@ () + CA+ 07" 2M* (1)

fort € [0, T], where f(t) = ||v(£) || gn2+1 € L1(0, 00).
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Proof: Now, we start with M. For the term v - Va, we have

Iv-Valp <Cllv-Valp < Clivil2lIVall 2

<C 1+t "*My(t)l|all gro-1ns2
<C1+ "M @).

For the term adivv, we have

ladivvlizo < Clladivvlip < Cllall2 Vvl
,00

SCA+OTAMO | D NAIVI + Y 1AVl
q<R q>R

<CA+ 7" My(®) (IVllz2 + VIl o)
<CA+)7"2My(t) (Ma(t) + £ (1))
<SCA+HT"AMA )+ C A+ ) AMBf(8).

For the term v - Vd, we have

Ilv-Vdlg <Clv-Vdip < Clivii Vil

<Clvllzz (Ivllzz + vl g1
<CA+""2M*(t)+C A+ ) IM@Bf (D).

For the term A~ 'div(v - Vv), we have

IAT div(v- V)l <Cllv- Vvl < Cllv-Vv|p

<Clvligz (Ivllz2 + 1Vl gosz1)
<SCA+HT"PMA )+ C A+ 0 MBS ().

For the term A~ 'div(FVF), similar to (3.18) and (3.15), we can obtain
||A_1div(FVF)||B? < C(A+ "M (1).

Using composition rules (for example: Theorem 2.61 in [19]), we could obtain

HA—ldiV( “ AV)
14+a

<C H ¢ Av
14+a

<Cllall21V?vll;2

<Cllallzz (vl + vl g1

<C+ 1) "M (1)
+C+IM@bf (1),

RO 1
B) L

where we used 7/2 4+ 1 > 2. Summing up estimates from (3.15) to (3.20), we could get

IMillg < CA+07"2M () +C A+ 0" MDf (1)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Next, let us estimate M,. The terms v - VE, v - Vd and K can all be estimated similar to the terms
appeared in M, so we just need to give the following estimates about J. Since

|a710, 0719 [(vF)” + (Vvr)']

o = CIVYILIFL
1,00

< CA+ 07 PMA0) +C U+~ MO (), o
and
I [A‘laxiA_laxj,vk] 0 (7 + F)lg
< AT 0 A9 (V6B (FY + P) 1o
IV AT B AT 0 (B (FT + F) 0 (3.23)
< CU+DTMA0) + Clvli AT 0, AT 8y (0, (FT + F) o
< CA+ "M ®) + C Wiz (IF N2 + IF | pwa-var2)
<CQA+0" M 1),
we have
IMallz < CA+DT"2MA(0) +C A+ MOf ). (3.24)

Since all terms appeared in M3 can be estimated similar to the terms appeared in M; and M, here,
we just give the estimates as follows

IMsllz < CA+07"2MA(0) +C 1+ 07 MOF ). (3.25)

At this stage, we easily finished the proof by just summing up (3.21), (3.24) and (3.25). O

Denote V = (a,v,F), V1 = (a,d), Vo = (£,d), V3 = (FT — F, Q) and define Arf == A f +
2 0< q=<r Aqf for a tempered distribution f. Now, we can prove the following proposition which is
the main result for the low frequency part.

Proposition 3.6: Let n = 3, there exists a constant § > 0 such that if
llaollgn/2 + Ivollgn2-1 + IFollgn2 <6,
then there exists a constant C > 0 independent of time T such that

sup (14 7)"4|ArV(D)|l;2 < C IVollgy + CoM(t) + CM*(1)

o<t<t

fort €10, T].

Proof: Through the properties of the Littlewood-Paley operator and (5.13), (5.14), (5.15) in [8], we
have

IRVl <Y 1408V S Y 1AV @l

q<R q=<R
<Y AVl + Y 1A Va ()2 (3.26)
g<R g=R

+ ) 1AVl + Y 1A AT FVR) (@)
q=<R q=<R
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For the last term appearing in the above inequality (3.26), we have

Y IAgAT EVE@)z < CIFllg, IF] e
g<R ' (3.27)
<Ca+n"MA D),

where we used Lemma A.4 in [8](takef = s = 0,5 =t = %,p =2and y = 0). From (3.1) and (3.2),
we easily obtain

t
AgVi(t) = Gu(yA Vi + / Gi(t — ) A iy (5)ds,
0
t
AgVa(t) = Ga(B)A Vo + f Go(t — ) A gy (s)ds, (3.28)
0
t
AgVs(t) = Gs()A Vo + f Ga(t — ) A g3 (5)ds.
0

By using Remark 3.4 and Lemma 3.5, we will obtain

IARV@lz £ D MA@z + D 1AgVa(D) g2

9=R q<R
+ 3 1A V3@l + 1+ 0 2MA(x) (3.29)
q=<R

ST+114 (14 1) "2M% (1),

where
1= {IGi()AViollz2 + 1G2(1) AgVaoll 2 + 1G3() A Vol 2}
q=<R
<C+0)™"* {||Vlo||3<;oo + 1 Vaollg  + ||V30||B?w} (3.30)
<C(1+ 1:)_”/4||V0||B(1)oo,
and
‘ A » . -
II= Z/ {”gl(T — ) AGMI ()12 + 1G2(x — ) AgMa(s) I 2
q=<r”°
+1G3(z = ) Ag M3 (9|2 Jds
(3.31)

<cC /0 -9 i+ Il + Il ) ds
<CA+1)"*M(t) /Tf(s)ds +CA+1) "M ()
<CA+1)"*M(1)s (—)r C(+ 1) "*M*(v),

where we used Lemma 3.5 in the above estimates. Summing up (3.29)-(3.31), we finally obtain

sup (1+ 0" ARV(@) 2 < ClIVollg  + CIM() + CM (). (3.32)

o<t<t

O
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4. Analysis of high frequency part

In this part, we need to convert the system into another form and obtain the estimates in the high
frequency domain which is completely different from the low frequency domain.

Without loss of generality, assume p = 1 and y = «/P’(p) — 1. Denotea = p — 1,F = U — 1,
A= (- MY d= A"1divy, el = A71Vjv'. From U%V,UY — UYV,U* = 0, we easily know

ANV VER) = —AFT — AT, (FZJ'WF”‘ - FU‘WF"f) .
Hence, we can convert the system (1.6) into the following new form.

dha+v-Va+ Ad = Gy,
8teij Ly. Vel — MAeij — (A + M)Vivjd

+ A7'ViVja+ AFT = G (.1
OF +v.VFI — Aél = G,
where
G; = adivy, G;j = Vkvi ij,
and
Gl =v. Vel — A—lvj[v Vv + Cla) Av + Ff"‘ij""]
+ ATV (FYVF* — Fthy,Fly
with C(a) = ﬁ, K(a) = W — 1. Moreover, we have
ViFi = —Vja+ G}, G) = —V(aFY), (4.2)

Now, we provide the main estimate for the high frequency part in the following proposition.
Proposition 4.1:  There exists a constant § > 0 such that if

llaollgns2 + llvollgn2-1 + | Follgn2 <6,

then there holds

d
a%@+m%m§ChﬂH%YmM®ﬂﬂ

+ agllGu, Gall -1z + tgll Gos Gl -t |

fort €[0,Tlandq > R, where }_ . g <1,

/fm&=/IMMMM&§®
0 0
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and cy does not depend on q. Here, Ey(t) is equivalent to 2%q|| AanLz +224 I AqFHLz +2(5-1)a I Aqe||Lz
defined as

Eg(0) = 267091 Agel, + §0.+ 20 AdgallZ, + Enll AAGFIZ,
+EQ A WIATViVIAGFI|IT, — 25(AAgalAgd) + 25(AAqF|Aqe))

with & > 0 is a small enough positive constant. That is, there exists a constant Dy such that

—E <E, < DB,
D,

where
By =231 440, AgF 2 + 267V Agell 2
Proof: Applying the operator Aq to the system (4.1), we find that (g, e, F) satisfies

Agdra+ AAgd = AyGy — Ag(v- Va),
Agdre’ — pAAGe" — (L + w)ViViAgd + A7V, ViAga
+ AAFT = A, GY — Agv-vVeD),
AgdFi — AAgel = AGY — Ay(v - VF),

(4.3)

where i,j = 1,2, 3. Taking the Lz-product of the second equation of (4.3) with Aqe’j, then summing
up the resulting equation with respect to indexes i, j, we can get

4 AelPs + il AAoelPs + Ot IAAIP — (AsalAAsd
S NAgels + mllA A el + G I AAGdIZ: = (AgalAdd) "

+ (AAGFIAge) = (AGolAge) — (Ag(v- Ve)|Age),

where we used the fact d = —A72V;V,e!l. We apply the operator A to the first equation of (4.3)
and take the L2-product of the resultlng equation with — A d and take the L>-product of the second
equation of (4.3) with A~1V,V; Aqa Then, summing up the resulting equations yields that

d . . . . .
= 7 (MAgalAgd) — 1A AgdIf + A Agallfs = (& + 20 (A% Agd| A Aga)

+ (AGFT|ViViA ) = —(AA LG Agd) + (AyGY ATV, VA ya) (45)

+ (AAG(v - Va)|Agd) — (Ag(v - V)| ATV ViA a).
We apply the operator A to the third equation of (4.3) and take the L?-product of the resulting

equation with Aqeij and take the L2-product of the second equation of (4.3) with AAquj. Then,
summing up the resulting equations yields

%(AAqﬂAqe) — 1AAgel?, + IAAGFI2, + 1(A*Agel AAF)
+ (A + 1) (ViViAgd|AAGFY) + (ViVjAga| AgFY) (4.6)
= (AgGa|AAGF) + (AA,G3|Age) — (AAy(v - Ve)|AgF)
— (AAy(v- VF)|Age).
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Now, applying the operator A to the first and the third equations of (4.3), then taking the L? product
of the resulting equations with A Aza and A A;FY, we will obtain

d . . .
——|lAAal? A?A dIAA
2dtII qa”]jz +( ' pel qa.) ' 47)
= (AA,Gi|AAa) — (AAg(v- Va)|AAga),
and
Ld IAALF|%, — (A*Age| AA,F)
2dt e 91282 (4.8)

= (AAJG3|AAGF) — (Ag(v - VE)|AAF).

We apply the operator A~!V;V; to the third equation of (4.3) and take the summation with respect
to i, j, then we take the L? times the resulting equation with A~'V;V; A F to get

1d

3 IATIViViAGFT |12, + (A Agd|V;V;AgFY)

= (AilV,‘VquGg|A71VkV€Aqu’Z) (4.9)

— (AT VA (v - VEI) ATV Ve A FRY).
For small £ > 0, performing the following calculation
(4.4) + E(4.5) 4+ £(4.6) + EO 4 2)(4.7) + En(4.8) + EL + w)(4.9)

yields that

1d N L ) ) . . .
Eﬁfqz + 17+ 2(AF1ViVjAga) = (AyGa|Age) — E(AA,G1|Agd)
— E(AJGIIATIViViAga) + E(AgGa| AAGF) + E(AA,Gs|Age) (4.10)
FEG A+ 2 (AALGIIAAa) + EU(AALG3|AAF)

FEG A W(ATVVA LG ATV VAR + Fy,
where

I3 = 1Agell}, + G+ 2w A Aqall7, + Epll AAGFI7,

FEC A+ WIATIViVIAGFI 1], — 25(AAgalAgd) + 25(AAGF|Age),
f=(u—6NAAgel], + O+ p—EIAAMIL, +EIAAal?, + EIIAAF|?,

— (AgalAAgd) + (AAGF|Age),
Fy= — (Ag(v-Ve)|Age) + s((AAq(V Va)|Agd) + (Ag(v- Ve"f')|A*1v,-v,-Aqa))

+& ((AAq(V -Ve)|AgF) — (AAy(v - VF)|Aqe)) —Eu(AAG(v- VE)|AA,F)

—EO 4+ W(ATIVVA (v - VB ATV VA FFY
—E 23 (AAG(v - Va)|[VA4a)
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Here, we can choose £ small enough and R to be a large enough fixed constant. For g > R, we can

easily obtain

fg = 22U Agal}, + 1Agells + 2 AgF 11,
and

22| AgallZ, + | Agell, + 221 AgFI1 < f2.
Using the identity (4.2), we find that

(AgFYIViVia) = (V;V;AGF7|Aga)
= [AAqall}, + (AAgal AT'V;GY).

Let E4(t) = 2(§*1)‘1fq, we have
Eq(t) ~ 259 Agall2 + 20379 Agell 2 + 239 A Fll 2

By (4.10)-(4.14) and Lemma 2.7, we finally obtain

d
37 Ea(®) + coBq (1) = Cag(1 + H M) (1) + CagllGr, Gs ll gnz-1r2

+ Caq”GO, Gzl gn/a-1-

5. Derivation of the optimal time decay rate

(4.11)

(4.12)

(4.13)

(4.14)

Given the analysis on the low and high frequency parts, we now provide the proof of Theorem 1.2.

From Proposition 4.1, we know that

t
Eq(t) < e 'Eg(0) + C / e 0T (aq(l + 1) M(0)f (1)
0

+ag |G1, G3l| gr/2—1.m2 + o [1Go, G2 ||Bn/2—1)df-
Through homogeneous para-differential calculus, we could get

G1llgn2-12 < Cllallgnz-1np2|divy | gus2
<CA+ 1) "*M(0)f (v),
1G5l gr/z-—rmz < C||Fll grrz—1n2 [ VY| gnj2
<CU+0)"*M)f (1),
1Goll gnz-1 = CllaF| gn2 = Cllall gnz I1F |l gns2
<C1+ 1) "*M* ().

For the term G,, we need to estimate term by term carefully as follows

v Vellgiz-1 4 [1v - Vlignz-1 < ClIvllgna-1 VY2

<C+ 1) *M()f (7).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
(5.6)
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Since C(0) = K(0) = 0, we get using Lemma 3 and Remark 6 in [5] that

IC@ AV |lgn2-1 < CIVH g1 IC@ lIgn2 < C(L+T) ™ M (0)f (1),
IK@Vallgnp1 < CIK@) g2l Vallgwas < CA+ 1) "M (1),
IEVE| g1 < ClF a2 IVF| gnz1 < C(1 4 7)""2M?(2).

From the above estimates (5.5)-(5.9), we obtain
IG2llgnz-1 < C(L+ )2 M*(1) + C (1 + ) /*M()f (2).

Substitute (5.2)-(5.4) and (5.10) into (5.1), we will have

t
S B e Y EO+C [ e (a k0w
0

q=R q=R

T+ r)_"/4M(t)f(t))dr

t
< e Y E 0) + M() / e =01 + )4 (r)dr
0

9=R

t
+M2(t)f e~ U= (1 4 )24
0

< e 3 Eg(0) + C(L+ ) "ASM(1) + C(L+ 1) "2MA(1).

9=R

So we obtain

A+ 8" " Eg(r) < C(Il(ao, Fo)llgnz + Ivollgwa—1) + CEM(£) + CM(2).

q=R

(5.7)
(5.8)
(5.9)

(5.10)

Combining the above inequality, Remark 3.4 and using properties of homogeneous Besov space, we

could obtain
M(t) = C(ll(ao, Fo)llgosz + lIvoll gwa-1) + CEM(t) + CM?(1).
By taking § > 0 suitably small, we finally have

M(t) < C(|l(ao, Fo)llgn2 + lIvollgr2-1)

(5.11)

(5.12)

forall 0 < t < T. It follows from local well-posedness Theorem 2.8 and the above estimate (5.12)

that
M(t) <C< o0

for all t > 0. Hence, we obtain the desired decay estimates in Theorem 1.2.
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