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ABSTRACT
In this paper, we are concerned with the optimal time convergence rate
of the global strong solution to some constant equilibrium states for the
compressible viscoelastic fluids in the whole space. Green’s matrix method
and energy estimatemethod are used to obtain the optimal time decay rate
under the critical Besov space framework. Our result implies the optimal L2-
time decay rate and only need the initial datum to be small in some critical
Besov space which have very low regularity compared with the classical
Sobolev space.
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1. Introduction andmain results

Many fluids do not satisfy the Newtonian law. A viscoelastic fluid of the Oldroyd type is a classical
non-Newtonian fluid that exhibits elastic behavior, such as memory effects. The elastic properties of
the fluid are described by associating the fluid motions with an energy functional of the deformation
tensor U . Let us assume that the elastic energy is W(U), then the compressible viscoelastic system
can be written as follows⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,
∂t(ρv) + div(ρv ⊗ v) + ∇P(ρ) = div(2μD(v) + ∇(λdiv(v)))

+ div
(
WU (U)UT

det(U)

)
,

∂tU + v · ∇U = ∇vU .

(1.1)

Here, ρ is the density and v(x, t) is the velocity of the fluid. The pressure P(ρ) is a given state equation
with P′(ρ) > 0 for any ρ and D(v) = 1

2 (∇v + ∇vT ) is the strain tensor. The Lamé coefficients μ and
λ are assumed to satisfy

μ > 0 and λ + 2μ > 0. (1.2)

Such a condition ensures the ellipticity of the operator −∇(2μD · ) − ∇(λ∇ · ) and is satisfied in the
physical case, where λ + 2μ/N ≈ 0. Moreover,WU (U) is the Piola–Kirchhoff tensor and WU (U)UT

det(U)

is the Cauchy–Green tensor. For the special case of the Hookean linear elasticity,W(U) = |U |2.
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2 J. JIA AND J. PENG

Many important investigations on incompressible viscoelastic fluids have been conducted recently.
In [1], authors obtain the well posedness of incompressible viscoelastic fluids and found the relation

∇kFij − ∇jFik = Flj∇lFik − Flk∇lFij,

with F = U − I . This relation indicates that the linear term∇ ×F is actually a higher order term. Lin
et al. [2,3] provide the local well posedness in Hilbert space Hs, and obtain the global well posedness
for small initial data. To prove the global part, they capture the damping mechanism on F through
very subtle energy estimates. Tang and Fang [4] prove the global well posedness of the incompressible
version of the system (1.1) in the critical Lp framework, thereby allowing the construction of a unique
global solution with highly oscillating initial velocity.

For compressible viscoelastic fluids, the author of [5,6] prove the local and global well-posedness
in the L2 based critical Besov type space. They deeply use the properties of the viscoelastic fluids and
their results indicate that the role of the deformation tensor U is similar to that of the density ρ. It
should be mentioned that the global existence of a smooth solution is still an open problem, even
for incompressible viscoelastic fluids. Lions and Masmoudi [7] obtain the global existence of a weak
solution with general initial data in the case the contribution of the strain rate in the constitutive
equation is neglected. Recently, the global well-posedness in Lp based critical Besov spaces have been
archived in [8].

In addition to well-posedness theory, the problem of the optimal time decay rate is another
important subject. There are many papers concerned with the optimal time decay rate for the
compressible Navier–Stokes system [9–16]. However, because of the complexity of compressible
viscoelastic equations, there are few results on viscoelastic equations. Recently, Hu and Wu [17]
provide a detailed analysis on the time decay rate in Sobolev space framework. They divide the whole
system into two small systems, which in turn facilitated the analysis. In [8], the authors use estimates
in homogeneous space to provide a slow decay rate when the initial data are only small in Besov
spaces with low regularity. The main goal of this paper is to obtain the optimal time decay rate when
the initial data are only small in the framework of critical Besov spaces. Hence, we can link the results
from [17] and [8] to provide a more elaborate characterization of the optimal time decay rate for
compressible viscoelastic equations.

In [5,6], the authors provide the following proposition, which reveals some intrinsic properties of
compressible viscoelastic equations.
Proposition 1.1: The density ρ and deformation tensor U in (1.1) satisfy the following relations:

div
(

UT

detU

)
= 0, div(ρUT ) = 0, ρdetU = 1,

and Ulk∇lUij − Ulj∇lUik = 0,
(1.3)

if the initial data (ρ,U)|t=0 = (ρ0,U0) satisfies

div

(
UT
0

detU0

)
= 0, div(ρ0UT

0 ) = 0, ρ0detU0 = 1,

and Ulk
0 ∇lU

ij
0 − Ulj

0 ∇lUik
0 = 0,

(1.4)

respectively.
Using Proposition 1.1, the last term in the second equation of (1.1) can be rewritten as

∇j

(
∂W(U)

∂Uik Ujk

detU

)
= 1

detU
Ujk∇j

(
∂W(U)

∂Uik

)
= ρUjk∇j

(
∂W(U)

∂Uik

)
. (1.5)
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APPLICABLE ANALYSIS 3

As in [6], without loss of generality, the Hookean linear elasticity,W(U) = |U |2 is considered in the
following parts of this paper. This usage does not reduce the essential difficulty. In view of (1.5), we
consider the following system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ + div(ρv) = 0,
ρ∂tvi + ρv · ∇vi − div(2μD(v)) − ∇(λdivv) + ∇P(ρ) = ρUjk∇jUik,
∂tU + v · ∇U = ∇vU ,
(ρ, v,U)|t=0 = (ρ0, v0,U0)

(1.6)

where the initial data satisfy (1.4).
We now state the main result of this paper which provides the optimal L2-time decay rate for the

strong solutions of (1.6) in critical Besov spaces.
Theorem 1.2: Assume that dimension n = 3, ρ̄ be a constant and I stands for the identity vector
(1, 1, 1)t . There exists δ > 0 such that if v0 ∈ Bn/2−1

2,1 ∩ Ḃ01,∞, ρ0− ρ̄ ∈ Bn/22,1 ∩ Ḃ01,∞, U− I ∈ Bn/22,1 ∩ Ḃ01,∞
and

‖(ρ0 − ρ̄,U − I)‖Bn/22,1 ∩Ḃ01,∞ + ‖v0‖Bn/2−1
2,1 ∩Ḃ01,∞ ≤ δ,

then problem (1.6) has a unique global solution (ρ − ρ̄, v,U − I) ∈ C(R+;Bn/22,1 )×
(
C(R+;Bn/2−1

2,1 )∩
L1(R+; Ḃn/2+1

2,1 )
)n ×

(
C(R+;Bn/22,1 )

)n×n
. Furthermore, there exists constant C0 > 0, and we have

‖(ρ − ρ̄, v,U − I)(t)‖Bn/2−1
2,1

≤ C0(1 + t)−n/4, (1.7)

for t ≥ 0.
Remark 1.3: From [17], we know that the optimal L2-time decay rate for the compressible vis-
coelastic equations is

‖(ρ − ρ̄, v,U − I)(t)‖L2 ≤ C(1 + t)−n/4. (1.8)

The convergence rate (1.7) is optimal because Bn/2−1
2,1 ⊂ L2.

To prove Theorem 1.2, we split the system (1.6) by Littlewood–Paley operator to low frequency
and high frequency parts. For the low frequency part, we further decompose the system into three
small systems and analyze the Green’s matrix of each small system, as in [8,17].We can then combine
the estimates for each small system to finally obtain an estimate of the whole system because of
the fine properties of homogeneous space and singular operators. For the high frequency part, we
reformulate the system as presented in [5] and use energy estimates in critical Besov spaces to obtain
an appropriate a priori estimate.

The paper is organized as follows. In Section 2, we introduce the notations, some properties of
Besov space and some important lemmas. In Section 3, we split the system into three small systems
and provide the estimates for the low frequency part. In Section 4, we convert the system into an
equivalent form and prove an a priori estimate for the high frequency part. In Section 5, we provide
the proof for Theorem 1.2.

2. Preliminaries

In this section, we first introduce some notations to be used throughout the paper. Secondly, we
provide some basic knowledge about Besov space. Lastly, we present some useful lemmas and
theorems.
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4 J. JIA AND J. PENG

2.1. Notation

Let n stands for the dimension, Lp(1 ≤ p ≤ ∞) denote the usual Lp-Lebesgue space on R
n. [z]

stands for the integer part of a number z ∈ R. The inner product of L2 is denoted by (·, ·). If S is
any nonempty set, then the sequence space �p(S) denotes the usual �p sequence space on S. For any
integer � ≥ 0, ∇�f denotes all of the �th derivatives of f .

For a function f , its Fourier transform denoted by F[f ] = f̂ :

F[f ](ξ) = f̂ (ξ) = (2π)−n/2
∫

Rn
f (x)e−ix·ξdx.

The inverse of F is denoted by F−1[f ] = f̌ :

F−1[f ](x) = f̌ (x) = (2π)−n/2
∫

Rn
f (ξ)eiξ ·xdξ.

In the following, C stands for a ‘harmless’ constant, and we sometimes use the notation A � B as
an equivalent of A ≤ CB. The notation A ≈ Bmeans that A � B and B � A.

2.2. Besov spaces

This section provides some basic knowledge on Besov spaces, which can be found in [19]. We first
introduce the dyadic partition of unity. We can use for instance any (φ,χ) ∈ C∞, such that φ is
supported in {ξ ∈ R

n : 3/4 ≤ |ξ | ≤ 8/3}, χ is supported in {ξ ∈ R
n : |ξ | ≤ 4/3} such that

χ(ξ) +
∑
q≥0

φ(2−qξ) = 1 ξ ∈ R
n,

∑
q∈Z

φ(2−qξ) = 1 if ξ = 0.

Denoting h = F−1[φ] and h̃ = F−1χ , we define the dyadic blocks as follows

�−1u = χ(D)u = h̃ ∗ u,

�qu = φ(2−qD)u = 2qn
∫

Rn
h(2qy)u(x − y)dy if q ≥ 0,

�̇qu = φ(2−qD)u = 2qn
∫

Rn
h(2qy)u(x − y)dy if q ∈ Z.

The low frequency cut-off operator is defined by

Squ =
∑

−1≤k≤q−1

�qu, Ṡqu =
∑

k≤q−1

�̇ku.

The following two formal decompositions

u =
∑
q≥−1

�qu, u =
∑
q∈Z

�̇qu

are called inhomogeneous and homogeneous Littlewood–Paley decomposition, respectively.
Let us give the definition of inhomogeneous Besov space as follows.
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APPLICABLE ANALYSIS 5

Definition 2.1: For s ∈ R and 1 ≤ p, r ≤ ∞, and u ∈ S ′. The inhomogeneous Besov space Bsp,r
consists of distributions u in S ′ such that

‖u‖Bsp,r :=
⎛
⎝∑

q≥−1

2rjs‖�qu‖rLp
⎞
⎠

1/r

< +∞.

Let us now introduce the homogeneous Besov space.
Definition 2.2: We denote by S ′

h the space of tempered distributions u such that

lim
q→−∞ Squ = 0 in S ′.

Definition 2.3: Let s be a real number and (p, r) be in [1,∞]2. The homogeneous Besov space Ḃsp,r
consists of distributions u in S ′

h such that

‖u‖Ḃsp,r :=
⎛
⎝∑

q∈Z

2rjs‖�̇qu‖rLp
⎞
⎠

1/r

< +∞.

From now on, the notation Ḃsp, Bsp means Ḃsp,1 and Bsp,1, respectively. The notation Ḃs, Bs means
Ḃs2,1 and Bs2,1, respectively.

The study of non-stationary PDE’s usually requires spaces of type LrT (X) := Lr(0,T;X) for
appropriate Banach spaces X. In our case, X is expected to be a Besov space, so that it is natural
to localize equations through Littlewood–Paley decomposition. We then obtain estimates for each
dyadic block and perform integration in time. However, in doing so, we obtain bounds in spaces that
are not of type Lr(0,T;Bsp) or Lr(0,T; Ḃsp). This approach was initiated in [18] naturally leading to
the following definitions for the inhomogeneous Besov space.
Definition 2.4: Let (r, p) ∈ [1,+∞]2, T ∈ (0,+∞] and s ∈ R. We set

‖u‖L̃rT (Bsp)
:=
∑
q∈Z

2qs
(∫ T

0
‖�qu(t)‖rLp dt

)1/r

and

L̃rT (Bsp) :=
{
u ∈ LrT (Bsp), ‖u‖L̃rT (Bsp)

< +∞
}

.

Owing to Minkowski inequality, we have L̃rT (Bsp) ↪→ LrT (Bsp). That embedding is strict in general
if r > 1. We will denote by C̃T (Bsp) the set of functions u belonging to L̃∞

T (Bsp) ∩ C([0,T];Bsp). For
the homogeneous Besov space, we can define similarly.

Let X stands for B or Ḃ, we have the following interpolation inequality

‖u‖L̃rT (Xs
p)

≤ ‖u‖θ

L̃r1T (Xs1
p )

‖u‖1−θ

L̃r2T (Xs2
p )
,

with

1
r

= θ

r1
+ 1 − θ

r2
and s = θs1 + (1 − θ)s2,
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6 J. JIA AND J. PENG

and the following embeddings

L̃rT (Xn/p
p ) ↪→ LrT (C0) and C̃T (Xn/p

p ) ↪→ C([0,T] × R
n).

Next, let us give the definition and some properties about hybrid Besov spaces.
Definition 2.5: let s, t ∈ R. We set

‖u‖Bs,tq,p :=
∑
k≤R0

2qs‖�̇ku‖Lq +
∑
k>R0

2qt‖�̇ku‖Lp .

and

Bs,tq,p(R
N ) :=

{
u ∈ S ′

h(R
N ) : ‖u‖Bs,tq,p < +∞

}
,

where R0 is a fixed large enough number.
Lemma 2.6:

(1) We have Bs,s2,2 = Ḃs.
(2) If s ≤ t then Bs,tp,p = Ḃsp ∩ Ḃtp. Otherwise, B

s,t
p,p = Ḃsp ⊕ Ḃtp.

(3) The space B0,sp,p coincide with the usual inhomogeneous Besov space.
(4) If s1 ≤ s2 and t1 ≥ t2 then Bs1,t1p,p ↪→ Bs2,t2p,p .
(5) Interpolation: For s1, s2, σ1, σ2 ∈ R and θ ∈ [0, 1], we have

‖f ‖
Bθs1+(1−θ)s2,θσ1+(1−θ)σ2
2,p

≤ ‖f ‖θ

Bs1,σ12,p
‖f ‖1−θ

Bs2,σ22,p
.

From now on, the notations Bs,tp , Bs,t means Bs,tp,p and Bs,t2,2, respectively. For more information on
Besov spaces and hybrid Besov spaces, we give references [19–22].

For the reader’s convenience, we list here an important lemma [5,21] which will be used in the
following.
Lemma 2.7: Let F be a homogeneous smooth function of degree m. Suppose 1 − n/2 < ρ ≤ 1 + n/2
and −1/n < ρ′ ≤ n/2 + 1. Then the following inequialities hold:

|(F(D)�q(v · ∇c)|F(D)�qc)|
≤ Cαq2−q(ρ′−m)‖v‖Ḃn/2+1‖c‖Ḃρ′ ‖F(D)�qc‖L2 ,

|(F(D)�qv · ∇c|F(D)�qc)|
≤ Cαq2−q(ρ−m) min (2q, 1)‖v‖Ḃn/2+1‖c‖Bρ−1,ρ ‖F(D)�qc‖L2 ,

|(F(D)�q(v · ∇c)|�qd)| + |(�q(v · d)|F(D)�qc)|
≤ Cαq2−q(ρ−m) min (2q, 1)‖v‖Ḃn/2+1(‖c‖Bρ−1,ρ ‖�qd‖L2 + ‖d‖Bρ−1,ρ ‖�qc‖L2),

|(F(D)�q(v · c)|�qd)| + |(�q(v · ∇d)|F(D)�qc)|
≤ Cαq‖v‖Ḃn/2+1(2−qρ′ ‖F(D)�qc‖L2‖d‖Ḃρ′

+ 2−q(ρ−m) min (2q, 1)‖d‖Bρ−1,ρ ‖�qd‖L2).

2.3. Useful theorems

In this part, we will list two theorems for (1.6) which are essential for our proof of Theorem 1.2. We
denote

Ep(T) :=
{
v ∈ C([0,T];Bn/pp ), ∂tv,∇2v ∈ L1

(
0,T;Bn/pp

)}
.
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APPLICABLE ANALYSIS 7

For v ∈ Ep(T) will be endowed with the norm

‖v‖Ep(T) := ‖v‖L∞
T (Bn/p−1

p )
+ ‖∂tv,∇2v‖L1T (Bn/p−1

p )
.

Employing similar methods used in [8] or by simple changing the low frequency estimates in [5], we
obtain Theorem 2.8. We omit the proof because it has no new features.
Theorem 2.8: Let 1 < p < 2n and n ≥ 2. Let v0 be vector field in Bn/p−1

p . Assume ρ0 satisfies
a0 := ρ0 − 1 ∈ Bn/pp , U0 satisfies F0 := U0 − I ∈ Bn/pp and

inf
x

ρ0(x) > 0. (2.1)

Then system (1.6) has a unique local solution (ρ, v,U) with v ∈ Ep(T), U − I ∈ C([0,T];Bn/pp ), ρ
bounded away from 0 and ρ − 1 ∈ C([0,T];Bn/pp ).

Denote:

E s :=
{
(a, u, F) ∈ (L1(0,∞;Bsp+1,s

2,p ) ∩ L̃∞(0,∞;Bsp−1,s
2,p ))

× (L1(0,∞;Bsp+1,s+1
2,p ) ∩ L̃∞(0,∞;Bsp−1,s−1

2,p ))n

× (L1(0,∞;Bsp+1,s
2,p ) ∩ L̃∞(0,∞;Bsp−1,s

2,p ))n×n
}
,

where sp = s − n
p + n

2 .
The following Theorem 2.9 shows that system (1.6) has a unique global solution in critical Besov

spaces.
Theorem 2.9: [8] Let ρ̄ > 0 be a constant such that P′(ρ̄) > 0. Suppose that n = 3. There exist two
positive constants α0 and C such that for all (ρ0, v0,U0)with ρ0 − ρ̄ ∈ Bn/2−1,n/p

2,p , U0− I ∈ Bn/2−1,n/p
2,p ,

v0 ∈ Bn/2−1,n/p−1
2,p , and

‖ρ0 − ρ̄‖Bn/2−1,n/p
2,p

+ ‖v0‖Bn/2−1,n/p−1
2,p

+ ‖U0 − I‖Bn/2−1,n/p
2,p

≤ α0, (2.2)

then if 2 ≤ p < n, system (1.6) has a unique global solution (ρ − ρ̄, v,U − I) ∈ En/p with

‖(ρ − ρ̄, v,U − I)‖En/p ≤ C
(
‖ρ0 − ρ̄‖Bn/2−1,n/p

2,p
+ ‖v0‖Bn/2−1,n/p−1

2,p

+ ‖U0 − Ū‖Bn/2−1,n/p
2,p

)
.

Remark 2.10: Taking p = 2 in Theorem 2.9, we gain global well-posedness in critical homogeneous
Besov spaces. Assume

‖(ρ0 − ρ̄,U − I)‖Bn/2∩Ḃ01,∞ + ‖v0‖Bn/2−1∩Ḃ01,∞ ≤ δ,

as in our main Theorem 1.2. If δ > 0 is taken to be small enough, then the above-mentioned
assumption implies (2.2) for p = 2. Hence, we obtain the results in Theorem 2.9. In particular, we
know that ∫ ∞

0
‖v‖Ḃn/2+1dt ≤ Cδ. (2.3)

In the following sections, this estimate plays an essential role.
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8 J. JIA AND J. PENG

3. Analysis of low frequency part

In this section, we first decompose the system into three small systems and then carefully analyze the
semigroup of the low frequency part. Without losing generality, we assume P′(1) = 1, ρ̄ = 1 and set
ν = λ + 2μ, A = μ� + (λ + μ)∇div. Define

K(a) = P′(1 + a)
1 + a

− 1, d = �−1divv,

� = �−1curlv with (curlv)ij = ∂xj v
i − ∂xi v

j,

Eij = �−1∂xi�
−1∂xj (F

ij + Fji),

W = �−1∂xk (F
lk∇lFij − Flj∇lFik) − �−1∂xk (F

lk∇lFji − Fli∇lFjk).

where

�sf = F−1(|ξ |s f̂ ) for s ∈ R.

We adopt decompositions used in [6] to obtain the following equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ta + �d = L − v · ∇a,
∂td − μ�d − 2�a = G − v · ∇d,
∂tE + 2�d = J − v · ∇E ,
∂t(FT − F) + �� = I − v · ∇(FT − F),
∂t� − μ�� − �(FT − F) = H − v · ∇�.

(3.1)

In addition, equation of d has the following equivalent form

∂td − ν�d − �E = K − v · ∇d, (3.2)

where

L = −adivv,

G = v · ∇d + �−1div
(

−v · ∇v + F∇F − K(a)∇a − a
1 + a

Av − div(aF)

)
,

H = v · ∇� + �−1curl
(

−v · ∇v + F∇F − K(a)∇a − a
1 + a

Av
)

+ W ,

I = (∇vF)T − ∇vF,

J = −[�−1∂xi�
−1∂xj , v

k]∂xk (Fij + Fji)

+ �−1∂xi�
−1∂xj ((∇vF)ij + (∇vF)ji),

K = v · ∇d + �−1div( − v · ∇v + F∇F − K(a)∇a − a
1 + a

Av + div(aF)).

Here, we denote

M1(t) := sup
0≤τ≤t

(1 + τ)n/4
(‖a(τ )‖Bn/2−1,n/2 + ‖d(τ )‖Ḃn/2−1

)
,

M2(t) := sup
0≤τ≤t

(1 + τ)n/4
(‖E(τ )‖Bn/2−1,n/2 + ‖d(τ )‖Ḃn/2−1

)
,

M3(t) := sup
0≤τ≤t

(1 + τ)n/4
(
‖(FT − F)(τ )‖Bn/2−1,n/2 + ‖�(τ)‖Ḃn/2−1

)
,
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APPLICABLE ANALYSIS 9

M4(t) := sup
0≤τ≤t

(1 + τ)n/4
(‖a‖L2 + ‖F‖L2 + ‖v‖L2

)
,

and

M(t) := sup
0≤τ≤t

(1 + τ)n/4
(‖a‖Bn/2 + ‖F‖Bn/2 + ‖v‖Bn/2−1

)
.

From basic properties of Besov spaces, we easily know

M(t) ≈ M1(t) + M2(t) + M3(t) + M4(t),

under smallness conditions of the initial data, where we used (5.13) to (5.15) in [8]. Here, we also
need to denote

M̄1 =
(
L − v · ∇a
G − v · ∇s

)
, M̄2 =

(
J − v · ∇E
K − v · ∇d

)
, (3.3)

and

M̄3 =
(
I − v · ∇(FT − F)

H − v · ∇�

)
. (3.4)

Now, we need to introduce the following linearized system with convection terms.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ta + �d = L − v · ∇a,
∂td − μ�d − 2�a = G − v · ∇d,
∂tE + 2�d = J − v · ∇E ,
∂t(FT − F) + �� = I − v · ∇(FT − F),
∂t� − μ�� − �(FT − F) = H − v · ∇�.

(3.5)

We can decompose the above system into three subsystems.
{

∂ta + �d = L − v · ∇a,
∂td − μ�d − 2�a = G − v · ∇d.

(3.6)

{
∂tE + 2�d = J − v · ∇E ,
∂td − ν�d − �E = K − v · ∇d.

(3.7)

{
∂t(FT − F) + �� = I − v · ∇(FT − F),
∂t� − μ�� − �(FT − F) = H − v · ∇�.

(3.8)

The above three systems have similar mathematical structures, so that we only need to study the
following linear system, which captures the main structures of the systems (3.6)–(3.8).

{
∂t c + α�u = 0,
∂tu − κ�u − β�c = 0,

(3.9)
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10 J. JIA AND J. PENG

where c, u are scalar functions and α, β , κ are positive constants. We first provide some important
properties of the Green’s matrix of the above system (3.9).
Lemma 3.1: Let G be the Greenmatrix of system (3.9). Then we have the following explicit expression
of Ĝ:

Ĝ(ξ , t) =
⎛
⎝ λ+eλ−t−λ−eλ+t

λ+−λ− −α
(
eλ+t−eλ−t

λ+−λ−

)
|ξ |

−β
(
eλ+t−eλ−t

λ+−λ−

)
|ξ | λ+eλ+t−λ−eλ−t

λ+−λ−

⎞
⎠

where

λ± = −1
2
κ|ξ |2 ± 1

2

√
κ2|ξ |4 − 4αβ|ξ |2.

Lemma 3.2: Given R > 0, there is a positive number ⊆ depends on R such that, for any multi-indices
γ and |ξ | ≤ R,

|Dγ
ξ Ĝ(ξ , t)| ≤ Ce−⊆|ξ |2t(1 + |ξ |)|γ |(1 + t)|γ |

where C = C(R, |γ |).
The proof of the above two lemmas follows those of Lemma 3.1 and Theorem 3.2 in [23], so that

we omit the proof for simplicity. Next, we prove an important lemma that has a key role in the low
frequency analysis.
Lemma 3.3: Let G be the Green matrix of system (3.9), dimension n = 3. Denote U0 = (c0, u0), then
G(t) satisfies the estimate

∑
q≤R

‖G(t)�̇qU0‖L2 ≤ C(1 + t)−n/4‖U0‖Ḃ01,∞

for t ≥ 0 and R > 0 is a large positive constant.
Proof: Using Placherel’s theorem and Lemma 3.2, we have

‖G(t)�̇qU0‖L2 �
(∫

3
4 2

q<|ξ |< 8
3 2

q

∣∣∣eĜ(ξ)tφq(ξ)Û0

∣∣∣2 dξ

)1/2

�
(∫

3
4 2

q<|ξ |< 8
3 2

q
e−θ |ξ |2t

∣∣∣φq(ξ)Û0

∣∣∣2 dξ

)1/2

� ‖�̇qU0‖L1
(∫

3
4 2

q<|ξ |< 8
3 2

q
e−θ |ξ |2tdξ

)1/2

� t−n/4‖�̇qU0‖L1
(∫

√
t 34 2

q<|ξ |<√
t 83 2

q
r
n−1
2 e−θr2dr

)1/2

� t−n/4‖U0‖Ḃ01,∞e−
2
9 4

qtθ
(
1 − e−

20
3 4qtθ

)1/2

(3.10)
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APPLICABLE ANALYSIS 11

Now, we perform some calculations about
∑

q≤R e
− 2

9 4
qtθ
(
1 − e− 20

3 4qtθ
)1/2

. Let k = −q, then we
have

∑
q≤R

e−
2
9 4

qtθ
(
1 − e−

20
3 4qtθ

)1/2 =
∞∑

k=−R

e−
2
9

(
1
4

)k
tθ
(
1 − e−

20
3

(
1
4

)k
tθ
)1/2

= I + II + III ,

where

I =
0∑

k=−R

e−
2
9

(
1
4

)k
tθ
(
1 − e−

20
3

(
1
4

)k
tθ
)1/2

,

II =

[
log4

20
3 tθ

]
∑
k=1

e−
2
9

(
1
4

)k
tθ
(
1 − e−

20
3

(
1
4

)k
tθ
)1/2

and

III =
∞∑

k=
[
log4

20
3 tθ

]
+1

e−
2
9

(
1
4

)k
tθ
(
1 − e−

20
3

(
1
4

)k
tθ
)1/2

.

For I , we have I ≤ R · 1 ≤ C < ∞. For an arbitrary t > 0, there exists a positive integer N > 0 such
that tθ ≤ 3

204
N . Hence, without loss of generality, we can choose tθ = 3

204
N . For II , we have

II =
N∑
k=1

e−
2
9

(
1
4

)k 3
20 4

N
(
1 − e−

(
1
4

)k
4N
)1/2

≤C
N∑
k=1

e−
1
30

(
1
4

)k
4N ≤ C

N∑
k=1

e−
1
30 4

−(k−N)

≤C
N−1∑
m=0

e−
1
30 4

m ≤ C < ∞.

Using Taylor’s formula, we have

1 − e−
20
3

(
1
4

)k
tθ = 20

3

(
1
4

)k
tθ +

∞∑
n=2

( − 1)n+1

n!

(
20
3

(
1
4

)k
tθ

)n

.

When k > log4
20
3 tθ , we have

20
3
( 1
4
)k tθ < 1. Through properties of alternating series, we know

1 − e−
20
3

(
1
4

)k
tθ ≤ 40

3

(
1
4

)k
tθ. (3.11)

Substituting (3.11) into III , we obtain

III ≤C
∞∑

k=
[
log4

20
3 tθ

]
+1

e−
2
9

(
1
4

)k
tθ
(
1
4

)k/2 √
tθ
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12 J. JIA AND J. PENG

≤C
√
tθe−

2
9 tθ

∞∑
k=
[
log4

20
3 tθ

]
+1

(
1
2

)k

≤C < ∞.

Summing up the estimates for I , II , III , we finally get

∑
q≤R

e−
2
9 4

qtθ
(
1 − e−

20
3 4qtθ

)1/2 ≤ C < ∞, (3.12)

where C does not depend on t.
Through estimates (3.10) and (3.12), we obtain

∑
q≤R

‖G(t)�̇qU0‖L2 ≤Ct−n/4‖U0‖Ḃ01,∞
∑
q≤R

e−
2
9 4

qtθ
(
1 − e−

20
3 4qtθ

)1/2
≤Ct−n/4‖U0‖Ḃ01,∞ .

(3.13)

Similarly, we also find that

∑
q≤R

‖G(t)�̇qU0‖L2 ≤C
∑
q≤R

‖�̇qU0‖L1
(∫

3
4 2

q≤r≤ 8
3 2

q
rn−1e−θr2tdr

)1/2

≤C‖U0‖Ḃ01,∞
∑
q≤R

(
√
8)q ≤ C < ∞.

(3.14)

Through estimates (3.13) and (3.14), we finally obtain our desired results. �
Remark 3.4: LetG1,G2 andG3 stand for theGreenmatrix of system (3.6)–(3.8), respectively.Denote
V1
0 = (a0, d0),V2

0 = (E0, d0) andV3
0 = (FT0 −F0,�0). By similar methods used to prove Lemma 3.3,

we will have

∑
q≤R

‖Gi(t)�̇qVi
0‖L2 ≤ C(1 + t)−n/4‖Vi

0‖Ḃ01,∞

for i = 1, 2, 3.
Next, we need to consider estimates for M̄1, M̄2, M̄3 defined in (3.3) and (3.4).

Lemma 3.5: There exists a constant δ > 0 such that if

‖a0‖Bn/2 + ‖v0‖Bn/2−1 + ‖F0‖Bn/2 ≤ δ,

then there exists a constant C > 0 independent of time T such that

‖M̄1, M̄2, M̄3‖Ḃ01,∞ ≤ C(1 + t)−n/4M(t)f (t) + C(1 + t)−n/2M2(t)

for t ∈ [0,T], where f (t) = ‖v(t)‖Ḃn/2+1 ∈ L1(0,∞).
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APPLICABLE ANALYSIS 13

Proof: Now, we start with M̄1. For the term v · ∇a, we have

‖v · ∇a‖Ḃ01,∞ ≤C ‖v · ∇a‖L1 ≤ C ‖v‖L2‖∇a‖L2
≤C (1 + t)−n/4M4(t)‖a‖Bn/2−1,n/2

≤C (1 + t)−n/2M2(t).

(3.15)

For the term adivv, we have

‖adivv‖Ḃ01,∞ ≤C ‖adivv‖L1 ≤ C ‖a‖L2‖∇v‖L2

≤C (1 + t)−n/4M4(t)

⎛
⎝∑

q≤R

‖�̇q∇v‖L2 +
∑
q>R

‖�̇q∇v‖L2
⎞
⎠

≤C (1 + t)−n/4M4(t)
(‖v‖L2 + ‖v‖Ḃn/2+1

)
≤C (1 + t)−n/2M4(t)

(
M4(t) + f (t)

)
≤C (1 + t)−n/2M2(t) + C (1 + t)−n/4M(t)f (t).

(3.16)

For the term v · ∇d, we have

‖v · ∇d‖Ḃ01,∞ ≤C ‖v · ∇d‖L1 ≤ C ‖v‖L2‖∇d‖L2
≤C ‖v‖L2

(‖v‖L2 + ‖v‖Ḃn/2+1
)

≤C (1 + t)−n/2M2(t) + C (1 + t)−n/4M(t)f (t).

(3.17)

For the term �−1div(v · ∇v), we have

‖�−1div(v · ∇v)‖Ḃ01,∞ ≤C ‖v · ∇v‖Ḃ01,∞ ≤ C ‖v · ∇v‖L1
≤C ‖v‖L2

(‖v‖L2 + ‖v‖Ḃn/2+1
)

≤C (1 + t)−n/2M2(t) + C (1 + t)−n/4M(t)f (t).

(3.18)

For the term �−1div(F∇F), similar to (3.18) and (3.15), we can obtain

‖�−1div(F∇F)‖Ḃ01,∞ ≤ C (1 + t)−n/2M2(t). (3.19)

Using composition rules (for example: Theorem 2.61 in [19]), we could obtain

∥∥∥∥�−1div
(

a
1 + a

Av
)∥∥∥∥

Ḃ01,∞
≤C

∥∥∥∥ a
1 + a

Av
∥∥∥∥
L1

≤C ‖a‖L2‖∇2v‖L2
≤C ‖a‖L2

(‖v‖L2 + ‖v‖Ḃn/2+1
)

≤C (1 + t)−n/2M2(t)
+ C (1 + t)−n/4M(t)f (t),

(3.20)

where we used n/2 + 1 > 2. Summing up estimates from (3.15) to (3.20), we could get

‖M̄1‖Ḃ01,∞ ≤ C (1 + t)−n/2M2(t) + C (1 + t)−n/4M(t)f (t). (3.21)
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14 J. JIA AND J. PENG

Next, let us estimate M̄2. The terms v · ∇E , v · ∇d and K can all be estimated similar to the terms
appeared in M̄1, so we just need to give the following estimates about J . Since∥∥∥�−1∂xi�

−1∇xj

[(∇vF
)ij + (∇vF

)ji]∥∥∥
Ḃ01,∞

≤ C ‖∇v‖L2‖F‖L2
≤ C (1 + t)−n/2M2(t) + C (1 + t)−n/4M(t)f (t),

(3.22)

and

‖
[
�−1∂xi�

−1∂xj , v
k
]
∂xk (F

ij + Fji)‖Ḃ01,∞
≤ ‖�−1∂xi�

−1∂xj(v
k∂xk (F

ij + Fji))‖Ḃ01,∞
+ ‖vk · �−1∂xi�

−1∂xj(∂xk (F
ij + Fji))‖Ḃ01,∞

≤ C (1 + t)−n/2M2(t) + C ‖v‖L2‖�−1∂xi�
−1∂xj(∂xk (F

ij + Fji))‖Ḃ01,∞
≤ C (1 + t)−n/2M2(t) + C ‖v‖L2

(‖F‖L2 + ‖F‖Bn/2−1,n/2
)

≤ C (1 + t)−n/2M2(t),

(3.23)

we have

‖M̄2‖Ḃ01,∞ ≤ C (1 + t)−n/2M2(t) + C (1 + t)−n/4M(t)f (t). (3.24)

Since all terms appeared in M̄3 can be estimated similar to the terms appeared in M̄1 and M̄2, here,
we just give the estimates as follows

‖M̄3‖Ḃ01,∞ ≤ C (1 + t)−n/2M2(t) + C (1 + t)−n/4M(t)f (t). (3.25)

At this stage, we easily finished the proof by just summing up (3.21), (3.24) and (3.25). �
Denote V = (a, v, F), V1 = (a, d), V2 = (E , d), V3 = (FT − F,�) and define �Rf := �−1f +∑
0≤q≤R �qf for a tempered distribution f . Now, we can prove the following proposition which is

the main result for the low frequency part.
Proposition 3.6: Let n = 3, there exists a constant δ > 0 such that if

‖a0‖Bn/2 + ‖v0‖Bn/2−1 + ‖F0‖Bn/2 ≤ δ,

then there exists a constant C > 0 independent of time T such that

sup
0≤τ≤t

(1 + τ)n/4‖�RV(τ )‖L2 ≤ C ‖V0‖Ḃ01,∞ + C δM(t) + CM2(t)

for t ∈ [0,T].
Proof: Through the properties of the Littlewood–Paley operator and (5.13), (5.14), (5.15) in [8], we
have

‖�RV(τ )‖L2 ≤
∑
q≤R

‖�̇q�RV(τ )‖L2 �
∑
q≤R

‖�̇qV(τ )‖L2

�
∑
q≤R

‖�̇qV1(τ )‖L2 +
∑
q≤R

‖�̇qV2(τ )‖L2

+
∑
q≤R

‖�̇qV3(τ )‖L2 +
∑
q≤R

‖�̇q�
−1(F∇F)(τ )‖L2

(3.26)
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APPLICABLE ANALYSIS 15

For the last term appearing in the above inequality (3.26), we have
∑
q≤R

‖�̇q�
−1(F∇F)(τ )‖L2 ≤C ‖F‖Ḃ02,2‖F‖Ḃn/2

≤C (1 + t)−n/2M2(t),
(3.27)

where we used Lemma A.4 in [8](take t̃ = s = 0, s̃ = t = 1
2 , p = 2 and γ = 0). From (3.1) and (3.2),

we easily obtain

�̇qV1(t) = G1(t)�̇qV10 +
∫ t

0
G1(t − s)�̇qM̄1(s)ds,

�̇qV2(t) = G2(t)�̇qV20 +
∫ t

0
G2(t − s)�̇qM̄2(s)ds,

�̇qV3(t) = G3(t)�̇qV30 +
∫ t

0
G3(t − s)�̇qM̄3(s)ds.

(3.28)

By using Remark 3.4 and Lemma 3.5, we will obtain

‖�RV(τ )‖L2 �
∑
q≤R

‖�̇qV1(τ )‖L2 +
∑
q≤R

‖�̇qV2(τ )‖L2

+
∑
q≤R

‖�̇qV3(τ )‖L2 + (1 + τ)−n/2M2(τ )

� I + II + (1 + τ)−n/2M2(τ ),

(3.29)

where

I =
∑
q≤R

{‖G1(τ )�̇qV10‖L2 + ‖G2(τ )�̇qV20‖L2 + ‖G3(τ )�̇qV30‖L2
}

≤C (1 + τ)−n/4
{
‖V10‖Ḃ01,∞ + ‖V20‖Ḃ01,∞ + ‖V30‖Ḃ01,∞

}
≤C (1 + τ)−n/4‖V0‖Ḃ01,∞ ,

(3.30)

and

II =
∑
q≤R

∫ τ

0

{
‖G1(τ − s)�̇qM̄1(s)‖L2 + ‖G2(τ − s)�̇qM̄2(s)‖L2

+ ‖G3(τ − s)�̇qM̄3(s)‖L2
}
ds

≤C
∫ τ

0
(1 + τ − s)−n/4

{
‖M̄1‖Ḃ01,∞ + ‖M̄2‖Ḃ01,∞ + ‖M̄3‖Ḃ01,∞

}
ds

≤C (1 + τ)−n/4M(t)
∫ τ

0
f (s)ds + C (1 + τ)−n/2M2(τ )

≤C (1 + τ)−n/4M(t)δ + C (1 + τ)−n/2M2(τ ),

(3.31)

where we used Lemma 3.5 in the above estimates. Summing up (3.29)–(3.31), we finally obtain

sup
0≤τ≤t

(1 + τ)n/4‖�RV(τ )‖L2 ≤ C ‖V0‖Ḃ01,∞ + C δM(t) + CM2(t). (3.32)

�
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16 J. JIA AND J. PENG

4. Analysis of high frequency part

In this part, we need to convert the system into another form and obtain the estimates in the high
frequency domain which is completely different from the low frequency domain.

Without loss of generality, assume ρ̄ = 1 and γ = √
P′(ρ̄) − 1. Denote a = ρ − 1, F = U − I ,

� = ( − �)1/2, d = �−1divv, eij = �−1∇jvi. From U�k∇�Uij − U�j∇�Uik = 0, we easily know

�−1(∇j∇kFik) = −�Fij − �−1∇k

(
F�j∇�Fik − F�k∇�Fij

)
.

Hence, we can convert the system (1.6) into the following new form.

∂ta + v · ∇a + �d = G1,
∂t eij + v · ∇eij − μ�eij − (λ + μ)∇i∇jd

+ �−1∇i∇ja + �Fij = Gij
2

∂tFij + v · ∇Fij − �eij = Gij
3 ,

(4.1)

where

G1 = a divv, Gij
3 = ∇kvi Fkj,

and

Gij
2 = v · ∇eij − �−1∇j

[
v · ∇vi + C(a)Av + Fjk∇jFik

]
+ �−1∇k(F�j∇Fik − F�k∇�Fij)

with C(a) = a
1+a , K(a) = P′(1+a)

1+a − 1. Moreover, we have

∇iFij = −∇ja + Gj
0, Gj

0 = −∇i(aFij). (4.2)

Now, we provide the main estimate for the high frequency part in the following proposition.
Proposition 4.1: There exists a constant δ > 0 such that if

‖a0‖Bn/2 + ‖v0‖Bn/2−1 + ‖F0‖Bn/2 ≤ δ,

then there holds

d
dt

Eq(t) + c0Eq(t) ≤C
{
αq(1 + t)−n/4M(t)f (t)

+ αq‖G1,G3‖Bn/2−1,n/2 + αq‖G0,G2‖Ḃn/2−1

}

for t ∈ [0,T] and q ≥ R, where
∑

q≥1 αq ≤ 1,

∫ ∞

0
f (t)dt =

∫ ∞

0
‖v(t)‖Ḃn/2+1dt ≤ Cδ
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APPLICABLE ANALYSIS 17

and c0 does not depend on q.Here, Eq(t) is equivalent to 2
n
2 q‖�̇qa‖L2 +2

n
2 q‖�̇qF‖L2 +2

( n
2−1

)
q‖�̇qe‖L2

defined as

Eq(t) = 2
( n
2−1

)
q
(
‖�̇qe‖2L2 + ξ(λ + 2μ)‖��̇qa‖2L2 + ξμ‖��̇qF‖2L2

+ ξ(λ + μ)‖�−1∇i∇j�̇qFij‖2L2 − 2ξ(��̇qa|�̇qd) + 2ξ(��̇qF|�̇qe)
)

with ξ > 0 is a small enough positive constant. That is, there exists a constant D1 such that

1
D1

Ẽq ≤ Eq ≤ D1Ẽq

where

Ẽq = 2
n
2 q‖�̇qa, �̇qF‖L2 + 2

( n
2−1

)
q‖�̇qe‖L2

Proof: Applying the operator �̇q to the system (4.1), we find that (a, e, F) satisfies

�̇q∂ta + ��̇qd = �̇qG1 − �̇q(v · ∇a),
�̇q∂t eij − μ��̇qeij − (λ + μ)∇i∇j�̇qd + �−1∇i∇j�̇qa

+ ��̇qFij = �̇qG
ij
2 − �̇q(v · ∇eij),

�̇q∂tFij − ��̇qeij = �̇qG
ij
3 − �̇q(v · ∇Fij),

(4.3)

where i, j = 1, 2, 3. Taking the L2-product of the second equation of (4.3) with �̇qeij, then summing
up the resulting equation with respect to indexes i, j, we can get

1
2
d
dt

‖�̇qe‖2L2 + μ‖��̇qe‖2L2 + (λ + μ)‖��̇qd‖2L2 − (�̇qa|��̇qd)

+ (��̇qF|�̇qe) = (�̇qG2|�̇qe) − (�̇q(v · ∇e)|�̇qe),
(4.4)

where we used the fact d = −�−2∇i∇jeij. We apply the operator � to the first equation of (4.3)
and take the L2-product of the resulting equation with −�̇qd and take the L2-product of the second
equation of (4.3) with �−1∇i∇j�̇qa. Then, summing up the resulting equations yields that

− d
dt

(��̇qa|�̇qd) − ‖��̇qd‖2L2 + ‖��̇qa‖2L2 − (λ + 2μ)(�2�̇qd|��qa)

+ (�̇qFij|∇i∇j�̇qa) = −(��̇qG1|�̇qd) + (�̇qG
ij
2 |�−1∇i∇j�̇qa)

+ (��̇q(v · ∇a)|�̇qd) − (�̇q(v · ∇eij)|�−1∇i∇j�̇qa).

(4.5)

We apply the operator � to the third equation of (4.3) and take the L2-product of the resulting
equation with �̇qeij and take the L2-product of the second equation of (4.3) with ��̇qFij. Then,
summing up the resulting equations yields

d
dt

(��̇qF|�̇qe) − ‖��̇qe‖2L2 + ‖��̇qF‖2L2 + μ(�2�̇qe|��̇qF)

+ (λ + μ)(∇i∇j�̇qd|��̇qFij) + (∇i∇j�̇qa|�̇qFij)
= (�̇qG2|��̇qF) + (��̇qG3|�̇qe) − (��̇q(v · ∇e)|�̇qF)

− (��̇q(v · ∇F)|�̇qe).

(4.6)
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18 J. JIA AND J. PENG

Now, applying the operator � to the first and the third equations of (4.3), then taking the L2 product
of the resulting equations with ��̇qa and ��̇qFij, we will obtain

1
2
d
dt

‖��̇qa‖2L2 + (�2�̇qd|��̇qa)

= (��̇qG1|��̇qa) − (��̇q(v · ∇a)|��̇qa),
(4.7)

and

1
2
d
dt

‖��̇qF‖2L2 − (�2�̇qe|��̇qF)

= (��̇qG3|��̇qF) − (�̇q(v · ∇F)|��̇qF).

(4.8)

We apply the operator �−1∇i∇j to the third equation of (4.3) and take the summation with respect
to i, j, then we take the L2 times the resulting equation with �−1∇i∇j�̇qFij to get

1
2
d
dt

‖�−1∇i∇j�̇qFij‖2L2 + (��̇qd|∇i∇j�̇qFij)

= (�−1∇i∇j�̇qG
ij
3 |�−1∇k∇��̇qFk,�)

− (�−1∇i∇j�̇q(v · ∇Fij)|�−1∇k∇��̇qFk,�).

(4.9)

For small ξ > 0, performing the following calculation

(4.4) + ξ (4.5) + ξ (4.6) + ξ(λ + 2μ)(4.7) + ξμ(4.8) + ξ(λ + μ)(4.9)

yields that

1
2
d
dt

f 2q + f̃ 2q + 2(�̇qFij|∇i∇j�̇qa) = (�̇qG2|�̇qe) − ξ(��̇qG1|�̇qd)

− ξ(�̇qG
ij
2 |�−1∇i∇j�̇qa) + ξ(�̇qG2|��̇qF) + ξ(��̇qG3|�̇qe)

+ ξ(λ + 2μ)(��̇qG1|��̇qa) + ξμ(��̇qG3|��̇qF)

+ ξ(λ + μ)(�−1∇i∇j�̇qG3|�−1∇k∇��̇qFk�) + Fq,

(4.10)

where

f 2q = ‖�̇qe‖2L2 + ξ(λ + 2μ)‖��̇qa‖2L2 + ξμ‖��̇qF‖2L2
+ ξ(λ + μ)‖�−1∇i∇j�̇qFij‖2L2 − 2ξ(��̇qa|�̇qd) + 2ξ(��̇qF|�̇qe),

f̃ 2q = (μ − ξ)‖��̇qe‖2L2 + (λ + μ − ξ)‖��̇qd‖2L2 + ξ‖��̇qa‖2L2 + ξ‖��̇qF‖2L2
− (�̇qa|��̇qd) + (��̇qF|�̇qe),

Fq = − (�̇q(v · ∇e)|�̇qe) + ξ
(
(��̇q(v · ∇a)|�̇qd) + (�̇q(v · ∇eij)|�−1∇i∇j�̇qa)

)
+ ξ

(
(��̇q(v · ∇e)|�̇qF) − (��̇q(v · ∇F)|�̇qe)

)
− ξμ(��̇q(v · ∇F)|��̇qF)

− ξ(λ + μ)(�−1∇i∇j�̇q(v · ∇F)|�−1∇k∇��̇qFk�)
− ξ(λ + 2μ)2(��̇q(v · ∇a)|∇�̇qa)
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APPLICABLE ANALYSIS 19

Here, we can choose ξ small enough and R to be a large enough fixed constant. For q > R, we can
easily obtain

f 2q ≈ 22q‖�̇qa‖2L2 + ‖�̇qe‖2L2 + 22q‖�̇qF‖2L2 , (4.11)

and

22q‖�̇qa‖2L2 + ‖�̇qe‖2L2 + 22q‖�̇qF‖2L2 � f̃ 2q . (4.12)

Using the identity (4.2), we find that

(�̇qFij|∇i∇ja) = (∇i∇j�̇qFij|�̇qa)

= ‖��̇qa‖2L2 + (��̇qa|�−1∇jG
j
0).

(4.13)

Let Eq(t) = 2
( n
2−1

)
qfq, we have

Eq(t) ≈ 2
n
2 q‖�̇qa‖L2 + 2

( n
2−1

)
q‖�̇qe‖L2 + 2

n
2 q‖�̇qF‖L2 (4.14)

By (4.10)–(4.14) and Lemma 2.7, we finally obtain

d
dt

Eq(t) + c0Eq(t) ≤Cαq(1 + t)−n/4M(t)f (t) + Cαq‖G1,G3‖Bn/2−1,n/2

+ Cαq‖G0,G2‖Ḃn/2−1 .

�

5. Derivation of the optimal time decay rate

Given the analysis on the low and high frequency parts, we now provide the proof of Theorem 1.2.
From Proposition 4.1, we know that

Eq(t) ≤ e−c0tEq(0) + C
∫ t

0
e−c0(t−τ)

(
αq(1 + τ)−n/4M(τ )f (τ )

+ αq‖G1,G3‖Bn/2−1,n/2 + αq‖G0,G2‖Ḃn/2−1

)
dτ.

(5.1)

Through homogeneous para-differential calculus, we could get

‖G1‖Bn/2−1,/2 ≤C ‖a‖Bn/2−1,n/2‖divv‖Ḃn/2
≤C (1 + τ)−n/4M(τ )f (τ ),

(5.2)

‖G3‖Bn/2−1,n/2 ≤C ‖F‖Bn/2−1,n/2‖∇v‖Ḃn/2
≤C (1 + τ)−n/4M(τ )f (τ ),

(5.3)

‖G0‖Ḃn/2−1 ≤C ‖aF‖Ḃn/2 ≤ C ‖a‖Ḃn/2‖F‖Ḃn/2
≤C (1 + τ)−n/2M2(τ ).

(5.4)

For the term G2, we need to estimate term by term carefully as follows

‖v · ∇e‖Ḃn/2−1 + ‖v · ∇v‖Ḃn/2−1 ≤C ‖v‖Ḃn/2−1‖∇v‖Ḃn/2 (5.5)
≤C(1 + τ)−n/4M(τ )f (τ ). (5.6)
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20 J. JIA AND J. PENG

Since C(0) = K(0) = 0, we get using Lemma 3 and Remark 6 in [5] that

‖C(a)Av‖Ḃn/2−1 ≤ C‖∇2v‖Ḃn/2−1‖C(a)‖Ḃn/2 ≤ C(1 + τ)−n/4M(τ )f (τ ), (5.7)
‖K(a)∇a‖Ḃn/2−1 ≤ C‖K(a)‖Ḃn/2‖∇a‖Ḃn/2−1 ≤ C(1 + τ)−n/2M2(τ ), (5.8)

‖F∇F‖Ḃn/2−1 ≤ C‖F‖Ḃn/2‖∇F‖Ḃn/2−1 ≤ C(1 + τ)−n/2M2(τ ). (5.9)

From the above estimates (5.5)–(5.9), we obtain

‖G2‖Ḃn/2−1 ≤ C(1 + τ)−n/2M2(τ ) + C (1 + τ)−n/4M(τ )f (τ ). (5.10)

Substitute (5.2)–(5.4) and (5.10) into (5.1), we will have

∑
q≥R

Eq(t) ≤ e−c0t
∑
q≥R

Eq(0) + C
∫ t

0
e−c0(t−τ)

(
(1 + τ)−n/2M2(τ )

+ (1 + τ)−n/4M(τ )f (τ )
)
dτ

≤ e−c0t
∑
q≥R

Eq(0) + M(t)
∫ t

0
e−c0(t−τ)(1 + τ)−n/4f (τ )dτ

+ M2(t)
∫ t

0
e−c0(t−τ)(1 + τ)−n/2dτ

≤ e−c0t
∑
q≥R

Eq(0) + C(1 + t)−n/4δM(t) + C(1 + t)−n/2M2(t).

So we obtain

(1 + t)n/4
∑
q≥R

Eq(τ ) ≤ C
(‖(a0, F0)‖Bn/2 + ‖v0‖Bn/2−1

)+ CδM(t) + CM2(t).

Combining the above inequality, Remark 3.4 and using properties of homogeneous Besov space, we
could obtain

M(t) ≤ C
(‖(a0, F0)‖Bn/2 + ‖v0‖Bn/2−1

)+ CδM(t) + CM2(t). (5.11)

By taking δ > 0 suitably small, we finally have

M(t) ≤ C
(‖(a0, F0)‖Bn/2 + ‖v0‖Bn/2−1

)
(5.12)

for all 0 ≤ t ≤ T . It follows from local well-posedness Theorem 2.8 and the above estimate (5.12)
that

M(t) ≤ C < ∞

for all t > 0. Hence, we obtain the desired decay estimates in Theorem 1.2.
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