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Abstract. In this paper, we consider the global solutions to a generalized
2D Boussinesq equation

∂tω + u · ∇ω + νΛαω = θx1 ,

u = ∇⊥ψ = (−∂x2 , ∂x1)ψ, ∆ψ = Λσ(log(I −∆))γω,

∂tθ + u · ∇θ + κΛβθ = 0,

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

with σ ≥ 0, γ ≥ 0, ν > 0, κ > 0, α < 1 and β < 1. When σ = 0,
γ ≥ 0, α ∈ [0.95, 1) and β ∈ (1− α, g(α)), where g(α) < 1 is an explicit
function as a technical bound, we prove that the above equation has a
global and unique solution in suitable functional space.

Mathematics Subject Classification (2010). 76D03, 76D05.

Keywords. Generalized 2D Boussinesq equation, Global regularity, Su-
percritical Boussinesq equations, Regularization effect.

1. Introduction

The aim of this paper is prove that the following generalized 2D Boussinesq
equation has a global solution in suitable functional settings.

∂tω + u · ∇ω + νΛαω = θx1 ,

u = ∇⊥ψ = (−∂x2 , ∂x1)ψ, ∆ψ = Λσ(log(I −∆))γω,

∂tθ + u · ∇θ + κΛβθ = 0,

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

(1.1)
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where ω = ω(x, t), ψ = ψ(x, t) and θ = θ(x, t) are scalar functions of x ∈ R2

and t ≥ 0, u = u(x, t) : R2 → R2 is a vector field, 0 < α < 1, 0 < β < 1,

σ ≥ 0 and γ ≥ 0 are real parameters, and Λ = (−∆)
1
2 and Λσ are Fourier

multiplier operators with

Λ̂σf(ξ) = |ξ|σ f̂(ξ).

This generalized 2D Boussinesq equation proposed in [1] firstly. In [1], D.
Chae and J. Wu proved that the above vorticity equation does have the
velocity formation as follows

∂tv + u⊥(∇⊥ · v) + νΛαv = −∇p+ θe2,

∇ · v = 0, u = Λσ(log(I −∆))γv,

∂tθ + u · ∇θ + κΛβθ = 0,

v(x, 0) = v0(x), θ(x, t) = θ0(x).

(1.2)

Obviously, the above model can be seen as a generalization of the 2D Boussi-
nesq equations.

From physical view, Boussinesq type equations model the oceanic and
atmospheric motions [2]. From the mathematical view, the fully viscos model
with ν > 0, κ > 0, α = β = 2 is the simplest one to study. And the most
difficult one for the mathematical study is the inviscid model, that is when
ν = κ = 0. In addition, the 2D Boussinesq equations acts very similar to
the 3D Euler and Navier-Stokes equations, so it is hoped that the study of
the 2D Boussinesq equations may shed light on the global regularity problem
concerning the 3D Euler and Navier-Stokes equations.

Now, there are numerous studies about 2D Boussinesq equations. In
2006, D. Chae proved the global in time regularity for the 2D Boussinesq
system with either the zero diffusivity or the zero viscosity in [3]. In 2010,
further progress has been made by Hmidi et al., who proved the global regu-
larity when the full Laplacian dissipation is replaced by the critical dissipation
represented in terms of

√
−∆ [4, 5]. Recently, Miao and Xue generalized the

results to accommodate both fractional dissipation and fractional thermal
diffusion [6]. Some results about 3D case have been obtained in [8] by Hmidi
et at. At the same time, some other generalized models have been considered.
M. Lai, R. Pan and K. Zhao studied the initial boundary value problem of
2D Boussinesq equations over a bounded domain with smooth boundary [9].
In 2011, C. Wang and Z. Zhang discussed the global well-posedness for the
2D Boussinesq system with the temperature-dependent viscosity and thermal
diffusivity [7]. In 2012, G. Wu and L. Xue showed that there is a global u-
nique solution to the two-dimensional inviscid Bénard system with fractional
diffusivity system [10].

We note that D. Chae and J. Wu only studied system (1.1) in the case
ν > 0, κ = 0, α = 0 [1]. Concerning the other cases, can we get similar
results as in 2D Boussinesq system for system (1.1) which is a meaningful
generalization. In this paper, we focus on the case ν > 0, κ > 0, 0 < α < 1
and 0 < β < 1. Obviously, α and β should satisfy the relation α+ β ≥ 1, for
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the maximal gain of α derivative from the dissipation term should at least
roughly compensate the loss of one derivative in θ in the vorticity equation of
system (1.1) with the help of the diffusion effect in the temperature equation.
For brevity, we always set ν = κ = 1 in the following. We shall adopt the
subtle method used in [1, 4, 5, 6] to study the coupled effects of the generalized
system. More precisely, we have the following result.

Theorem 1.1. Consider the generalized Boussinesq equations (1.1) with σ = 0
and γ ≥ 0. Let α ∈ [ 19

20 , 1), β ∈ (1−α, g(α)) with g(α) := min{2−2α, 8
3 α−2,

5α(1−α)
11−10α }. Assume the initial data (ω0, θ0) satisfies ω0 ∈ L2∩Lp for any p > 2

and θ0 ∈ H1−α ∩B1−α+ε
∞,1 for arbitrary small ε > 0. Then (1.1) has a unique

global solution (ω, θ) satisfying for any t > 0,

ω ∈ L∞t L2 ∩ L∞t Lp ∩ L1
tB

0,γ
∞,1

θ ∈ L∞t (H1−α ∩B1−α+ε
∞,1 ) ∩ L1

t (H
1−α+β ∩B1−α+β+ε

∞,1 ).

For the definitions of Besov space Bsp,q, generalized Besov space Bs,γp,q and
mixed space-time Besov space see the next section below. Now, we should
give some comments.

Remark 1.2. We know that the case for α < 1, β < 1 and α + β ≥ 1
is nontrivial. Until now there is no effective way to treat this case, for the
regularization from the fractional diffusion term not strong enough. So we
have to exploit the structure of the system to overcome the difficulty. In this
paper, the method is workable but very restrictive.

Remark 1.3. In our theorem, we need β smaller than a very complicated
function. It is a technical assumption. In common sense, the term Λβ is a
good term when β is large. So we can gauss that the result in Theorem 1.1
is hold for α ∈ [ 19

20 , 1), β ∈ (1− α, 1).

To prove Theorem 1.1, there are two main difficulties. Firstly, following
the procedure as in [1], we will encounter the operator like Rα = Λ−α∂1

which is different from Riesz Transform and is not a bounded operator in Lp

space. So the technique used in [1] can not be used here without significant
changes. On the other hand, considering the structure of the system (1.2), we
hardily obtain the L2 estimates of v. Hence, the techniques used in [6] also
need lots of nontrivial changes.

The paper is organized as follows. In Section 2, we list some useful
results about Besov space and some estimates which will be used in our
proof. Section 3 is devoted to prove some priori estimates which are the main
part of this paper. In Section 4, we give the proof of the uniqueness part of
Theorem 1.1. Finally, some technical lemmas are shown in Section 5.

2. Preliminaries

Throughout this paper we will use the following notations.
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• For any tempered distribution u both û and Fu denote the Fourier
transform of u.
• For every p ∈ [1,∞], ‖ · ‖Lp denotes the norm in the Lebesgue space Lp.
• The norm in the mixed space-time Lebesgue space Lp([0, T ];Lr(Rd)) is

denoted by ‖ ·‖LpTLr (with the obvious generalization to ‖ ·‖LpTX for any

normed space X).
• For any pair of operators P and Q on some Banach space X, the com-

mutator [P,Q] is given by PQ−QP .

Then, we give a short introduction to the Besov type space. Details
about Besov type space can be found in [11] or [12]. There exist two radial
positive functions χ ∈ D(Rd) and ϕ ∈ D(Rd\{0}) such that

• χ(ξ) +
∑
q≥0 ϕ(2−qξ) = 1; ∀q ≥ 1, suppχ ∩ suppϕ(2−q·) = φ,

• suppϕ(2−j ·) ∩ suppϕ(2−k·) = φ, if |j − k| ≥ 2,

For every v ∈ S′(Rd) we set

∆−1v = χ(D)v, ∀q ∈ N, ∆jv = ϕ(2−qD)v and Sj =
∑

−1≤m≤j−1

∆m.

The homogeneous operators are defined by

∆̇qv = ϕ(2−qD)v, Ṡj =
∑

m≤j−1

∆̇jv, ∀q ∈ Z.

One can easily verifies that with our choice of ϕ,

∆j∆kf = 0 if |j − k| ≥ 2 (2.1)

∆j(Sk−1f∆kf) = 0 if |j − k| ≥ 5. (2.2)

As in Bony’s decomposition, we split the product uv into three parts

uv = Tuv + Tvu+R(u, v),

with

Tuv =
∑
j

Sj−1u∆jv,

R(u, v) =
∑
j

∆ju∆̃jv

where ∆̃j = ∆j−1 + ∆j + ∆j+1.
Let us now define inhomogeneous Besov spaces. For (p, q) ∈ [1,+∞]2

and s ∈ R we define the inhomogeneous Besov space Bsp,q as the set of
tempered distributions u such that

‖u‖Bsp,q := (2js‖∆ju‖Lp)`q < +∞.

The homogeneous Besov space Ḃsp,q is defined as the set of u ∈ S′(Rd) up to
polynomials such that

‖u‖Ḃsp,q := (2js‖∆̇ju‖Lp)`q < +∞.
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Notice that the usual Sobolev spaces Hs coincide with Bs2,2 for every s ∈ R
and that the homogeneous spaces Ḣs coincide with Ḃs2,2.

For s ∈ (0, 1) and 1 ≤ p, q ≤ ∞, we can define Besov spaces equivalently
as follows

‖u‖Ḃsp,q =

(∫
Rd

(‖u(x+ t)− u(x)‖Lp)q

|t|d+sq
dt

)1/q

, (2.3)

‖u‖Bsp,q = ‖u‖Lp +

(∫
Rd

(‖u(x+ t)− u(x)‖Lp)q

|t|d+sq
dt

)1/q

. (2.4)

When q =∞, the expressions are interpreted in the normal way.
We shall need some mixed space-time spaces. Let T > 0 and ρ ≥ 1, we

denote by LρTB
s
p,q the space of distribution u such that

‖u‖LρT Ḃsp,q := ‖(2js‖∆̇ju‖Lp)`q‖LρT < +∞.

We say that u belongs to the space L̃ρTB
s
p,q if

‖u‖L̃ρT Ḃsp,q := (2js‖∆̇ju‖LρTLp)`q < +∞.

Through a direct application of the Minkowski inequality, the following links
between these spaces is true [13]. Let ε > 0, then

LρTB
s
p,q ↪→ L̃ρTB

s
p,q ↪→ LρTB

s−ε
p,q , if q ≥ ρ,

LρTB
s+ε
p,q ↪→ L̃ρTB

s
p,q ↪→ LρTB

s
p,q, if ρ ≥ q.

Then, we give the definition of a generalized Besov spaces which include
an algebraic part of the modes. For s, γ ∈ R and 1 ≤ p, q ≤ ∞, the generalized
Besov spaces Ḃs,γp,q and Bs,γp,q are defined by

‖u‖Ḃs,γp,q := ‖2js(1 + |j|)γ‖∆̇ju‖Lp‖`q <∞,

‖u‖Ḃs,γp,q := ‖2js(1 + |j|)γ‖∆ju‖Lp‖`q <∞.

The space LρtB
s,γ
p,q , Lρt Ḃ

s,γ
p,q , L̃ρtB

s,γ
p,q and L̃ρt Ḃ

s,γ
p,q are defined similar as in Besov

space.
Bernstein type inequalities for fractional derivatives and Osgood in-

equality are often used in our proof. For reader’s convenience, we list them
here.

Lemma 2.1. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.
(1)If u satisfies

sup û ⊂
{
ξ ∈ Rd : |ξ| ≤ K2j

}
,

for some integer j and a constant K > 0, then

‖(−∆)αu‖Lq(Rd) ≤ C122αj+jd( 1
p−

1
q )‖u‖Lp(Rd).

(2)If u satisfies

sup û ⊂
{
ξ ∈ Rd : K12j ≤ |ξ| ≤ K22j

}
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for some integer j and constants 0 < K1 ≤ K2, then

C122αj‖u‖Lq(Rd) ≤ ‖(−∆)αu‖Lq(Rd) ≤ C222αj+jd( 1
p−

1
q )‖u‖Lp(Rd)

where C1 and C2 are constants depending on α, p and q only.

Lemma 2.2. Let α(t) > 0 be a locally integrable function. Assume ω(t) ≥ 0
satisfies ∫ ∞

0

1

ω(r)
dr =∞.

Suppose that ρ(t) > 0 satisfies

ρ(t) ≤ a+

∫ t

t0

α(s)ω(ρ(s)) ds

for some constant a ≥ 0. Then if a = 0, then ρ = 0; if a > 0, then

−Ω(ρ(t)) + Ω(a) ≤
∫ t

t0

α(τ) dτ,

where

Ω(x) =

∫ 1

x

1

ω(r)
dr.

At the end of this section, we collect some useful estimates for the
smooth solutions of the following linear transport-diffusion equation{

∂tθ + u · ∇θ + Λβθ = f, β ∈ [0, 1]

divu = 0, θ(x, 0) = θ0(x).
(2.5)

The following Lemmas can be found in [6, 14, 15, 16].

Lemma 2.3. Let u be a smooth divergence-free vector field of Rd and θ be a
smooth solution of equation (2.5). Then for every p ∈ [1,∞] we have

‖θ(t)‖Lp ≤ ‖θ0‖Lp +

∫ t

0

‖f(τ)‖Lp dτ.

Lemma 2.4. Let u be a smooth divergence-free vector field of Rd with vorticity
ω be a smooth solution of equation (2.5). Then for every (p, ρ) ∈ (1,∞) ×
[1,∞], we have

sup
j∈N

2j
β
ρ ‖∆ju‖LρtLp .ρ,p ‖θ0‖Lp + ‖θ0‖L∞‖ω‖L1

tL
p + ‖f‖L1

tL
p .

Lemma 2.5. Let −1 < s < 1, (ρ, ρ1, p, r) ∈ [1,∞]4, ρ1 ≤ ρ and u be a
divergence-free vector field belonging to L1

loc(R+; Lip(Rd)). We consider a s-
mooth solution θ of the equation (2.5), then there exists C > 0 such that for
every t ∈ R+,

‖θ‖L̃∞t Bsp,q + ‖(Id−∆−1)θ‖
L̃ρtB

s+
β
ρ

p,q

≤ CeCU(t)
(
‖θ0‖Bsp,q + ‖f‖L1

tB
s
p,q

)
,
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and

‖θ‖
L̃ρt Ḃ

s+
β
ρ

p,q

≤ CeCU(t)

(
‖θ0‖Ḃsp,q + ‖f‖

L̃
ρ1
t Ḃ

s+
β
ρ1
−β

p,q

)
,

where U(t) :=
∫ t

0
‖∇u(τ)‖L∞ dτ .

3. Commutator estimates

First we recall a pseudo-differential operator Rα defined by Rα := Λ−α∂1,
0 < α < 1. Considering Rα = Λ1−αR, where R is the usual Riesz transform,
we call Rα the modified Riesz transform. The following theorem can be found
in [6].

Theorem 3.1. Let 0 < α < 1, q ∈ N and Rα := ∂1
Λα be the modified Riesz

transform.

(1)Let χ ∈ D(Rd). Then for every (p, s) ∈ [1,∞]× (α− 1,∞),

‖Λsχ(2−qΛ)Rα‖L(Lp) . 2q(s+1−α).

(2)Let C be a ring. Then there exists φ ∈ S(Rd) whose spectrum does
not meet the origin such that

Rαu = 2q(d+1−α)φ(2q·) ∗ u

for every u with Fourier variable supported on 2qC.

The following Lemma is useful in dealing with the commutator terms.

Lemma 3.2. Let p ∈ [1,∞] and δ ∈ (0, 1).

(1)If |x|δφ ∈ L1, f ∈ Ḃδp,∞ and g ∈ L∞, then

‖φ ∗ (fg)− f(φ ∗ g)‖Lp ≤ C‖|x|δφ‖L1‖f‖Ḃδp,∞‖g‖L∞ . (3.1)

In the case when δ = 1, we have

‖φ ∗ (fg)− f(φ ∗ g)‖Lp ≤ C‖|x|φ‖L1‖∇f‖Lp‖g‖L∞ . (3.2)

(2)If |x|δφ ∈ L1, f ∈ Ḃδ∞,∞ and g ∈ Lp, then

‖φ ∗ (fg)− f(φ ∗ g)‖Lp ≤ C‖|x|δφ‖L1‖f‖Ḃδ∞,∞‖g‖Lp . (3.3)

In the case when δ = 1, we have

‖φ ∗ (fg)− f(φ ∗ g)‖Lp ≤ C‖|x|φ‖L1‖∇f‖L∞‖g‖Lp . (3.4)

The first part is proved in [1], so we just prove the second part of the
above Lemma.
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Proof. By Minkowski’s inequality, for any p ∈ [1,∞],

‖φ ∗ (fg)− f(φ ∗ g)‖Lp

=

[∫ ∣∣∣∣∫ φ(z) (f(x)− f(x− z)) g(x− z) dz
∣∣∣∣p dx]1/p

≤
∫ [∫

|φ(z) (f(x)− f(x− z)) g(x− z)|p dx
]1/p

dz

≤
∫
‖f(·)− f(· − z)‖L∞

|z|δ
|z|δ|φ(z)|

(∫
|g(x− z)|p dx

)1/p

dz

≤ ‖|x|δφ‖L1 sup
|z|>0

‖f(·)− f(· − z)‖L∞
|z|δ

‖g‖Lp

≤ C‖|x|δφ‖L1‖f‖Ḃδ∞,∞‖g‖Lp .

In the last inequality, we use the definition of Ḃδ∞,∞. �

The next Theorem concerns the crucial commutators involving Rα.

Theorem 3.3. Let α ∈ (0, 1),ε > 0 taken to be small enough, u be a smooth
divergence-free vector field of Rd and θ be a smooth scalar function. Then,

(1)For every (s, p, q) ∈ (−1, α − σ) × [2,∞] × [1,∞] and take ε > 0
satisfy s+ σ + ε < α we have

‖[Rα, u · ∇]θ‖Bsp,q . ‖u‖Ḃ1−σ−ε
p,∞

(
‖θ‖Bs+1+σ+ε−α

∞,q
+ ‖θ‖L∞

)
. (3.5)

(2)In the 2 dimensional case, if u = ∇⊥∆−1Λσ (log(Id−∆))
γ
ω , ω :=

G+Rαθ and 0 ≤ σ < α < 1. Then for every 0 < s < α− σ, taking arbitrary
small ε > 0 such that s+ σ + ε < α, we have

‖[Rα, u]θ‖Hs .‖G‖L2‖θ‖Bs+σ+ε−α∞,2
+ ‖θ‖L∞‖θ‖Hs+1+σ+ε−2α (3.6)

+ ‖G‖L2‖θ‖
L

2
1−σ

+ ‖θ‖L2‖θ‖
L

2
1−σ

. (3.7)

Proof. (1) Due to Bony’s decomposition we split the commutator term into
three parts

[Rα, u · ∇]θ =
∑
n∈N

[Rα, Sn−1u · ∇]∆nθ +
∑
n∈N

[Rα,∆nu · ∇]Sn−1θ

+
∑
n≥−1

[Rα,∆nu · ∇]∆̃nθ

=I + II + III

For I, since for every n ∈ N the Fourier transform of Sn−1u∆nθ is supported
in a ring of size 2n, then from Theorem 3.1 and Lemma 3.2, we have for every
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j ≥ −1

‖∆jI‖Lp .
∑
|n−j|≤4

‖[φn∗, Sn−1u · ∇]∆nθ‖Lp

.
∑
|n−j|≤4

2n(σ+ε−α)‖u‖Ḃ1−σ−ε
p,∞

2n‖∆nθ‖L∞

. cj2
−js‖u‖Ḃ1−σ−ε

p,∞
‖θ‖Bs+σ+ε+1−α

∞,q
,

where φn(x) := 2n(d+1−α)φ(2nx) with φ ∈ S and (cj)j≥−1 with ‖cj‖`q = 1.
Thus we obtain

‖I‖Bsp,q . ‖u‖Ḃ1−σ−ε
p,∞

‖θ‖Bs+σ+ε+1−α
∞,q

.

For II, similar to I we have

‖∆jII‖Lp

.
∑

|n−j|≤4,n∈N

‖[φn∗,∆nu · ∇]Sn−1θ‖Lp

.
∑
|n−j|≤4

2n(σ+ε−α)‖u‖Ḃ1−σ−ε
p,∞

‖∇Sn−1θ‖L∞

.‖u‖Ḃ1−σ−ε
p,∞

2−js
∑

−1≤n′≤j+2

2(n′−j)(α−σ−ε−s)2n
′(s+σ+ε−α+1)‖∆n′θ‖L∞ .

Thus using discrete Young’s inequality we obtain

‖II‖Bsp,q . ‖u‖Ḃ1−σ−ε
p,∞

‖θ‖Bs+σ+ε+1−α
∞,q

.

For III, we further write

III =
∑
n≥0

div[Rα,∆nu]∆̃nθ +
∑

1≤i≤n

[∂iRα,∆−1u
i]∆̃−1θ

= III1 + III2.

Considering Bernstein’s inequality and Theorem 3.1, we deal with the term
III1 as follows

‖∆jIII
1‖Lp

.
∑

n≥j−3,n≥0

‖∆jdivRα(∆nu∆̃nθ)‖Lp +
∑

n≥j−3,n≥0

‖∆jdiv(∆nuRα∆̃nθ)‖Lp

.
∑

n≥j−3

(2j(2−α) + 2j2n(1−α))2−n(1−σ−ε)‖∆nΛ1−σ−εu‖Lp‖∆̃nθ‖L∞

.‖u‖Ḃ1−σ−ε
p,∞

2−js
∑

n≥j−4

(2(j−n)(s+2−α) + 2(j−n)(s+1))2n(s+1+σ+ε−α)‖∆nθ‖L∞ .

Thus we obtain for every s > −1

‖III1‖Bsp,q . ‖u‖Ḃ1−σ−ε
p,∞

‖θ‖Bs+1+σ+ε−α
∞,q
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Choosing a suitable function χ ∈ D(Rd), we have

III2 =
∑

1≤i≤n

[∂iRαχ(D),∆−1u
i]∆̃−1θ.

By Theorem 3.1, we know that ∂iRαχ(D) is a convolution operator with
kernel h satisfying

|h(x)| ≤ C(1 + |x|)−d−2+α, for all x ∈ Rd.

Next, from the fact that ∆jIII
2 = 0 for every j ≥ 3 and using Lemma 3.2,

we have

‖III2‖Bsp,q . ‖[h∗,∆−1u]∆̃−1θ‖Lp

. ‖|x|1−σ−εh‖L1‖∆−1u‖Ḃ1−σ−ε
p,∞

‖∆̃−1θ‖L∞

. ‖u‖Ḃ1−σ−ε
p,∞

‖θ‖L∞ .

Hence, the proof of the first part is complete.

(2) As in the first part, we can get the following equality by Bony’s
decomposition.

[Rα, u]θ =
∑
n∈N

[Rα, Sn−1u]∆nθ +
∑
n∈N

[Rα,∆nu]Sn−1θ +
∑
n≥−1

[Rα,∆nu]∆̃nθ

= I + II + III.

For brevity, let P (Λ) := Λσ (log(Id−∆))
γ
. For I, denote In := [Rα, Sn−1u]∆nθ.

Since for each n ∈ N the Fourier transform of Sn−1u∆nθ is supported in a
ring of size 2n, from Theorem 3.1 there exists φ ∈ S(R2) whose spectrum is
away from the origin such that

In = [φn∗, Sn−1∇⊥∆−1P (Λ)G]∆nθ + [φn∗, Sn−1∇⊥∆−1P (Λ)Rαθ]∆nθ,

where φn(x) := 2n(d+1−α)φ(2nx). Using Lemma 3.2 and Theorem 3.1, we
obtain

‖In‖L2 .‖|x|1−σ−εφn‖L1‖Λ1−σ−εSn−1∇⊥∆−1P (Λ)G‖L2‖∆nθ‖L∞

+ ‖|x|1−σ−εφn‖L1‖Λ1−σ−εSn−1∇⊥∆−1P (Λ)Rαθ‖L∞‖∆nθ‖L2

.2n(σ+ε−α)‖|x|1−σ−εφ‖L1‖G‖L2‖∆nθ‖L∞

+ 2n(σ+ε−α)2n(1−α)‖|x|1−σ−εφ‖L1‖θ‖L∞‖∆nθ‖L2

.2n(σ+ε−α)‖G‖L2‖∆nθ‖L∞ + 2n(σ+ε−α)2n(1−α)‖θ‖L∞‖∆nθ‖L2 .

Thus, we can obtain

‖I‖Hs . ‖G‖L2‖θ‖Bs+σ+ε−α∞,2
+ ‖θ‖L∞‖θ‖Hs+σ+ε+1−2α .

For II, denote IIn := [Rα,∆nu]Sn−1θ. As in I, we have

IIn = [φn∗,∆n∆−1∇⊥P (Λ)G]Sn−1θ + [φn∗,∆n∆−1∇⊥P (Λ)Rαθ]Sn−1θ
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By Lemma 3.2, we get

‖IIn‖L2 .‖|x|1−σ−εφn‖L1‖Λ1−σ−ε∆n∇⊥∆−1P (Λ)G‖L2‖Sn−1θ‖L∞

+ ‖|x|1−σ−εφn‖L1‖Λ1−σ−ε∆n∇⊥∆−1P (Λ)Rαθ‖L2‖Sn−1θ‖L∞

.2n(σ+ε−α)‖G‖L2‖Sn−1θ‖L∞ + 2n(σ+ε−α)2n(1−α)‖∆nθ‖L2‖θ‖L∞ .
Hence, by discrete Young’s inequality, we have

‖II‖Hs . ‖G‖L2‖θ‖Bs+σ+ε−α∞,2
+ ‖θ‖L∞‖θ‖Hs+1+σ+ε−2α .

We further write III as follows

III =
∑
n≥0

Rα(∆nu∆̃nθ) +
∑
n≥0

∆nuRα∆̃nθ + [Rα,∆−1u]∆̃−1θ

= III1 + III2 + III3.

First, we note that for every n ≥ 0

‖∆nu‖L2 . 2n(σ+ε−1)‖∆nG‖L2 + 2n(σ+ε−α)‖∆nθ‖L2 .

Then by a direct computation we have

2js‖∆jIII
1‖L2

.2j(s+1−α)
∑

n≥j−3,n≥0

‖∆nu‖L2‖∆̃nθ‖L∞

.2j(s+1−α)
∑

n≥j−3

(
2n(σ+ε−1)‖∆nG‖L2 + 2n(σ+ε−α)‖∆nθ‖L2

)
‖∆̃nθ‖L∞

.
∑

n≥j−4

2(j−n)(s+1−α)
(

2n(s+σ+ε−α)‖∆nθ‖L∞‖G‖L2

+ 2n(s+σ+ε+1−2α)‖∆nθ‖L2‖θ‖L∞
)
.

Thus discrete Young’s inequality yields

‖III1‖Hs . ‖G‖L2‖θ‖Bs+σ+ε−α∞,2
+ ‖θ‖L∞‖θ‖Hs+1+σ+ε−2α .

For III2, similar to III1 and using Theorem 3.1 we have

2js‖∆jIII
2‖L2

.2js
∑

n≥j−3,n≥0

‖∆nu‖L2‖Rα∆̃nθ‖L∞

.2js
∑

n≥j−3

(
2n(σ+ε−1)‖∆nG‖L2 + 2n(σ+ε−α)‖∆nθ‖L2

)
2n(1−α)‖∆̃nθ‖L∞

.
∑

n≥j−4

2(j−n)s
(

2n(s+σ+ε−α)‖∆nθ‖L∞‖G‖L2

+ 2n(s+σ+ε+1−2α)‖∆nθ‖L2‖θ‖L∞
)
.

Using convolution inequality, we obtain

‖III2‖Hs . ‖G‖L2‖θ‖Bs+σ+ε−α∞,2
+ ‖θ‖L∞‖θ‖Hs+1+σ+ε−2α .



12 J. Jia, J. Peng and K. Li

For III3, since ∆jIII
3 = 0 for every j ≥ 3, then from Bernstein’s inequality

we immediately have

‖III3‖Hs . ‖Rα(∆−1u∆̃−1θ)‖L2 + ‖∆−1uRα∆̃−1θ‖L2

. ‖∆−1u∆̃−1θ‖L2 + ‖∆−1uRα∆̃−1θ‖L2

. ‖G‖L2‖θ‖ 2
1−σ

+ ‖θ‖L2‖θ‖
L

2
1−σ

.

Here, we used the following fact

‖∆−1u∆̃−1θ‖L2 . ‖∆−1u‖Lq1 ‖∆̃−1θ‖Lp2

. ‖∆−1Λσ−1+εω‖Lq1‖∆̃−1θ‖Lp2

. ‖∆−1ω‖Lp1 ‖∆̃−1θ‖Lp2

. ‖∆−1G‖Lp1‖∆̃−1θ‖Lp2 + ‖∆−1Rαθ‖Lp1 ‖∆̃−1θ‖Lp2

. ‖G‖Lp1‖θ‖Lp2 + ‖θ‖Lp1‖θ‖Lp2 ,

where 1
q1

+ 1
p2

= 1
2 and 1

p1
+ 1
p2

= 1
2 + 1−σ

2 . And taking p1 = 2, p2 = 2
1−σ in our

deduction. From all the above statements, we can obtain our conclusion. �

4. Some priori estimates

First we need to introduce some notations. Let G := ω −Rαθ. Considering
the vorticity equation

∂tω + u · ∇ω + Λαω = ∂1θ,

and the acting of Rα on the temperature equation

∂tRαθ + u · ∇Rαθ + ΛβRαθ = −[Rα, u · ∇]θ,

we directly have

∂tG+ u · ∇G+ ΛαG = [Rα, u · ∇]θ + ΛβRαθ (4.1)

4.1. Estimation of ‖G‖L2

We present a Lemma that is proved in [6], for it is useful in our proof.

Lemma 4.1. Let (ω, θ) be a smooth solution of the system (1.1). Then for
every m ∈ [2,∞] and t ∈ R+

‖θ‖
Lmt Ḣ

β
m
. ‖θ0‖L2 (4.2)

and for p ∈ [1,∞]

‖θ(t)‖Lp ≤ ‖θ0‖Lp . (4.3)

The following is our estimation about ‖G‖L2 .



Well-posedness of Boussinesq equations 13

Theorem 4.2. Consider (1.1) with σ = 0 and γ ≥ 0. Assume that (ω0, θ0)
satisfies the conditions in Theorem 1.1. Let (ω, θ) be the corresponding solu-
tion of (1.1), G is defined as above. Then if α, β satisfies (α, β) ∈ ( 3

4 , 1) ×
(1− α,min {3α− 2, 2− 2α})].

Then the following inequality holds true

‖G(t)‖2L2 +

∫ t

0

‖G(τ)‖2
Ḣ
α
2
dτ ≤ B(t) (4.4)

where B(t) is a smooth function of t depending on the initial data only.

Proof. Multiplying G to equation (4.1) and integrating with spatial variable,
we obtain

1

2

d

dt
‖G‖2L2 + ‖Λα

2 G‖2L2 =

∫
[Rα, u · ∇]θ Gdx+

∫
Λβ−α∂1θ Gdx

= I + II

For I, we have

|I| =
∣∣∣∣∫ div[Rα, u]θ Gdx

∣∣∣∣
≤ ‖Λα

2 G‖L2‖[Rα, u]θ‖
Ḣ1−α

2
.

Choosing p3 >
2

3
2α−1−ε and using Theorem 3.3, we obtain

‖[Rα, u]θ‖
Ḣ1−α

2

.‖G‖L2‖θ‖
B

1+ε− 3
2
α

∞,2

+ ‖θ‖L∞‖θ‖
H2+ε− 5

2
α + ‖G‖L2‖θ‖L2 + ‖θ‖L2‖θ‖L2

.‖G‖L2‖θ‖Lp3 + ‖θ‖L∞‖θ‖
H2+ε− 5

2
α + ‖G‖L2‖θ‖L2 + ‖θ‖L2‖θ‖L2 ,

where ε > 0 is an arbitrary small number. For II, choosing s1 ∈ [0, α2 ], we
have

|II| ≤ ‖Λs1G‖L2‖Λ1+β−α−s1θ‖L2 .

From above statements, we can obtain

1

2

d

dt
‖G‖2L2 + ‖Λα

2 G‖2L2

.‖G‖L2‖θ‖Lp3 + ‖θ‖L∞‖θ‖
H2+ε− 5

2
α

+ ‖G‖L2‖θ‖L2 + ‖θ‖L2‖θ‖L2 + ‖Λs1G‖L2‖θ‖Ḣ1+β−α−s1

From interpolation inequality and Young’s inequality, we obtain

‖θ‖Ḣ1+β−α−s1 ‖G‖Ḣs1

≤C‖θ‖Ḣ1+β−α−s1 ‖G‖
2s1
α

Ḣ
α
2
‖G‖1−

2s1
α

L2

≤C‖θ‖2
Ḣ1+β−α−s1 + C‖G‖2L2 +

1

4
‖G‖2

Ḣ
α
2
.
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Using Young’s inequality and the above inequality, we have

d

dt
‖G‖2L2 + ‖Λα

2 G‖2L2

≤C‖G‖2L2 + C‖θ0‖L2∩L∞ + C‖θ‖2
H2+ε− 5

2
α

+ C‖θ‖2
Ḣ1+β−α−s1 .

Gronwall’s inequality thus leads to

‖G(t)‖2L2 +

∫ t

0

‖Λα
2 G(τ)‖2L2 dτ

≤CeCt
(
t+ ‖θ‖2

L2
tH

2+ε− 5
2
α

+ ‖θ‖2
L2
t Ḣ

1+β−α−s1

)
.

If 3
4 < α ≤ 4

5 , for 1−α < β ≤ 3α− 2, then clearly for ε > 0 small enough we
have

0 ≤ 1 + β − 3

2
α ≤ β

2
,

0 ≤ 2 + ε− 5

2
α ≤ β

2
,

Using Lemma 4.1 and interpolation inequality we easily get

‖θ‖2
L2
tH

2− 5
2
α+ε

+ ‖θ‖2
L2
t Ḣ

1+β− 3
2
α
. 1 + t

If 4
5 < α < 1, we choose s1 = 2 − 2α ∈ (0, α2 ), and for 1 − α < β ≤ 2 − 2α,

then

0 ≤ β − 1 + α ≤ β

2
.

Using Lemma 4.1 and interpolation inequality we get

‖θ‖2
L2
t Ḣ

β−1+α + ‖θ‖2
L2
tH

2− 5
2
α+ε
. 1 + t.

Hence, the proof is complete. �

4.2. Estimation of ‖G‖Lq for q in suitable range

This subsection presents the estimate of ‖G‖Lq for q in some suitable range.
Before the main theorem, we need two Lemmas [17, 6].

Lemma 4.3. Suppose that s ∈ [0, 1], and f , (−∆)
s

f ∈ Lp(R2), p ≥ 2. Then∫
R2

|f |p−2f(−∆)sf dx ≥ 2

p

∫
R2

((−∆)
s
2 |f |

p
2 )2 dx

Lemma 4.4. Let γ ∈ [2,∞), s ∈ (0, 1), α ∈ (γ−4
γ−2 , 2). Then for every smooth

function f we have

‖|f |γ−2f‖Ḣs . ‖f‖
γ−2

L
2γ

2−α
‖f‖

Ḣ
s+( d

2
− d
γ

)(2−α) .

The main theorem in this subsection can be stated as follows.
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Theorem 4.5. Consider (1.1) with σ = 0 and γ ≥ 0. Assume that (ω0, θ0) sat-
isfies the conditions in Theorem 1.1. Let (ω, θ) be the corresponding solution
of (1.1), G is defined as in (4.1). If α, β satisfies

(α, β) ∈
(

9q − 12

8q − 8
, 1

)
×

(
1− α,min {2− 2α,

5q − 4

3q − 4
α− 2,

1− α
4
α (1− 1

q )− 2
}

)
for some q ∈ [2, 20

9 ). Then for every q̃ ∈ [2, q], we have for every t ∈ R+

‖G(t)‖q̃
Lq̃

+

∫ t

0

‖G(τ)‖q̃
L

2q̃
2−α

dτ ≤ B(t). (4.5)

Proof. Multiplying (4.1) by |G|q−2G and integrating in the spatial variable
we obtain for every s2, s3 ∈ (0, α2 ] (s3 ≤ s2 and both will be chosen later)

1

q

d

dt
‖G(t)‖qLq +

∫
R2

ΛαG|G|q−2G(t) dx

≤
∫
R2

div[Rα, u]θ|G|q−2G(t) dx+

∫
R2

Λβ−α∂1θ|G|q−2G(t) dx

≤‖[Rα, u]θ(t)‖Ḣ1−s2 ‖|G|q−2G(t)‖Ḣs2 + ‖θ(t)‖Ḣ1+β−α−s3 ‖|G|q−2G(t)‖Ḣs3 .

Lemma 4.3 and continuous embedding Ḣ
α
2 ↪→ L

4
2−α lead to∫

R2

ΛαG|G|q−2G(t) dx & ‖G‖q
L

2q
2−α

.

Using Lemma 4.4 we obtain

‖|G|q−2G‖Ḣsi . ‖G‖
q−2

L
2q

2−α
‖G‖

Ḣ
si+(1− 2

q
)(2−α) , i = 2, 3.

From the above statements, we have

d

dt
‖G(t)‖qLq + ‖G‖q

L
2q

2−α

.‖[Rα, u]θ(t)‖Ḣ1−s2‖G(t)‖
Ḣ
s2+(1− 2

q
)(2−α)‖G(t)‖q−2

L
2q

2−α

+ ‖θ(t)‖Ḣ1+β−α−s3‖G(t)‖
Ḣ
s3+(1− 2

q
)(2−α)‖G(t)‖q−2

L
2q

2−α
.

Then we choose s2 such that s2 + (1 − 2
q )(2 − α) = α

2 which calls for s2 =
α
2 − (1 − 2

q )(2 − α) ∈ (0, α2 ], this is plausible if α ∈ ( 4q−8
3q−4 , 1) for q ∈ [2, 4).

Since s3 ≤ s2 by interpolation we have

‖G(t)‖
Ḣ
s3+(1− 2

q
)(2−α) . ‖G(t)‖δ

Ḣ
α
2
‖G(t)‖1−δL2

. B(t)‖G(t)‖δ
Ḣ
α
2
,

where δ := 2
α

(
s3 + (1− 2

q )(2− α)
)

. Form the definition, we know that δ ≤ 1.

Also noting that if α ∈ ( 6q−8
5q−4 , 1), we have 1− s2 ∈ (0, α), then form Theorem
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3.3 and estimation of ‖G‖L2 , we further get

‖[Rα, u]θ(t)‖H1−s2

.‖G(t)‖L2‖θ‖
B

1−s2−α+ε
∞,2

+ ‖θ(t)‖L∞‖θ(t)‖H2−s2−2α+ε

+ ‖G(t)‖L2‖θ(t)‖L2 + ‖θ(t)‖L2‖θ‖L2 .

Since α > 2
3 and 2 ≤ q < 4−2α

3− 5
2α

, we know that 1− s2 − α+ ε < 0. Hence, we

further get

‖[Rα, u]θ(t)‖H1−s2 . B(t) + ‖θ(t)‖H2−s2−2α+ε .

Therefore we further have

d

dt
‖G(t)‖qLq + ‖G(t)‖q

L
2q

2−α

. (B(t) + ‖θ(t)‖H2−2α−s2+ε) ‖G(t)‖q−2

L
2q

2−α
‖G(t)‖

Ḣ
α
2

+B(t)‖θ(t)‖Ḣ1+β−α−s3‖G(t)‖q−2

L
2q

2−α
‖G(t)‖δ

Ḣ
α
2
.

Using Young inequality as follows

|A1A2A3| ≤ C1|A1|
2q

4−qδ + C2|A2|
2
δ +

c

4
|A3|

q
q−2 , for all δ ∈ (0, 1],

For 2q
4−δq ≥ 2, we have

d

dt
‖G(t)‖qLq + ‖G(t)‖q

L
2q

2−α

.B(t) + ‖θ(t)‖
2q

4−q
H2−2α−s2+ε + ‖G(t)‖2

Ḣ
α
2

+B(t)‖θ(t)‖
2q

4−δq

Ḣ1+β−α−s3
,

For other cases, we have

d

dt
‖G(t)‖qLq + ‖G(t)‖q

L
2q

2−α

.B(t) + ‖θ(t)‖
2q

4−q
H2−2α−s2+ε + ‖G(t)‖2

Ḣ
α
2

+ ‖θ(t)‖2
Ḣ1+β−α−s3 .

Integrating in time yields

‖G(t)‖qLq +

∫ t

0

‖G(τ)‖q
L

2q
2−α

dτ

.B(t) + ‖θ(t)‖
2q

4−q

L
2q

4−q
t H2−2α−s2+ε

+B(t)‖θ(t)‖
2q

4−qδ

L
2q

4−qδ
t Ḣ1+β−α−s3

,

for 2q
4−qδ ≥ 2, and

‖G(t)‖qLq +

∫ t

0

‖G(τ)‖q
L

2q
2−α

dτ

.B(t) + ‖θ(t)‖
2q

4−q

L
2q

4−q
t H2−2α−s2+σ+ε

+ ‖θ(t)‖2
L2
t Ḣ

1+β−α−s3 ,

for other cases. In the above calculus we use the conclusion of Theorem 4.2,
so the range of α and β must satisfy the conditions in Theorem 4.2.
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Let q ∈ [2, 20
9 ). If α ∈ ( 9q−12

8q−8 ,
8q−8
7q−4 ], we choose s3 = s2 = 3q−4

2q α+ 4
q −2,

for β ∈ (1− α, 5q−4
3q−4α− 2] and for small enough ε > 0, we have

0 ≤ 1 + β − α− s2 ≤
4− q

2q
β,

0 ≤ 2 + ε− 2α− s2 ≤
4− q

2q
β.

From Lemma 4.1 and interpolation inequality we find

‖θ‖
L

2q
4−q
t Ḣ1+β−α−s2

+ ‖θ‖
L

2q
4−q
t H2+σ+ε−2α−s2

. 1 + t.

Let q ∈ [2, 20
9 ). If α ∈ ( 8q−8

7q−4 , 1), we choose s3 = 2 − 2α < s2, then δ =

2
α

(
2− 2α+ q−2

q (2− α)
)

and for β ∈
(

1− α,min {2− 2α, 1−α
4
α (1− 1

q )−2
}
)

we

can get

0 ≤ β − 1 + α ≤ 4− qδ
2q

β,

0 ≤ β − 1 + α ≤ β

2
.

Hence, we have

‖θ‖
L

2q
4−qδ
t Ḣ1+β−α−s3

+ ‖θ‖L2
t Ḣ

1+β−α−s3 . 1 + t.

The range of α and β will monotonously shrink when q increase. Hence for
some q ∈ [2, 20

9 ) and for every q̃ ∈ [2, q] we have for every t ∈ R+

‖G(t)‖q̃
Lq̃

+

∫ t

0

‖G(τ)‖q̃
L

2q̃
2−α

dτ ≤ B(t).

�

4.3. Estimation of ‖ω‖L1
tL

q̃ for every q̃ ∈ [2, q] and for some q ∈ [2, 20
9 )

In this subsection we give the estimate of ‖ω‖L1
tL

q̃ for q̃ ∈ [2, q] for some

q ∈ [2, 20
9 ).

Theorem 4.6. Consider (1.1) with σ = 0 and γ ≥ 0. Assume that (ω0, θ0)
satisfies the conditions in Theorem 1.1. Let (ω, θ) be the corresponding solu-
tion of (1.1). For some q ∈ [2, 20

9 ) and for all q̃ ∈ [2, q], when (α, β) satisfies
the same conditions as in Theorem 4.5, we have

‖ω‖L1
tL

q̃ ≤ B(t).

Proof. we choose q as in Theorem 4.5. Since β > 1 − α, there exists a fixed
constant ρ > 1 such that β

ρ > 1− α. From the explicit formula of G we have

for every q̃ ∈ [2, q]

‖ω‖L1
tL

q̃ ≤ ‖G‖L1
tL

q̃ + ‖Rαθ‖L1
tB

0
q̃,1

≤ B(t) + t1−
1
ρ ‖Rαθ‖L̃ρtB0

q̃,1
.
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By a high-low frequency decomposition and a continuous embedding B
β
ρ

q̃,∞ ↪→
B1−α
q̃,q we find

‖Rαθ‖L̃ρtB0
q̃,1
≤ ‖∆−1Rαθ‖L̃ρtB0

q̃,1
+ ‖(Id−∆−1)θ‖L̃ρtB1−α

q̃,1

. ‖∆−1θ‖LρtLq̃ + ‖(Id−∆−1)θ‖
L̃ρtB

β
ρ
q̃,∞

. t
1
ρ ‖θ0‖Lq̃ + sup

j∈N
2j

β
ρ ‖∆jθ‖LρtLq̃ .

Inserting the above estimate into the previous one and applying Lemma 2.4
we obtain

‖ω‖L1
tL

q̃ ≤ B(t) + Ct1−
1
ρ ‖ω‖L1

tL
q̃ ,

where C is an absolute constant depending only on q̃, ρ and ‖θ0‖L2∩L∞ . If

Ct1−
1
ρ = 1

2 equivalently, t = ( 1
2C )

ρ
ρ−1 := T0, then for every t ≤ T0

‖ω‖L1
tL

q̃ ≤ B(t).

Furthermore, if we evolve the system from the initial data (u(T0), θ(T0)), then
using the time translation invariance and the fact that ‖θ(T0)‖Lq̃ ≤ ‖θ0‖Lq̃ ,
we have for every t ≤ T0

‖ω‖L1
[T0,T0+t]

Lq̃ ≤ B(T0 + t).

Iterating like this, we finally get for every t ∈ R+

‖ω‖L1
tL

q̃ ≤ B(t).

�

4.4. Estimation of ‖G‖L1
tB

s
q,1

In this subsection, we give the estimation of ‖G‖L1
tB

s
q,1

. First we give a Lemma

which is proved in [18]

Lemma 4.7. Let p ∈ [2,∞) and α ∈ [0, 1]. Then there exist two positive

constants cp and Cp such that for any f ∈ S ′ and j ∈ Z, we have

cp2
2αj
p ‖∆jf‖Lp ≤ ‖Λα(|∆jf |

p
2 )‖

2
p

L2 ≤ Cp2
2αj
p ‖∆jf‖Lp .

Theorem 4.8. Consider (1.1) with σ = 0 and γ ≥ 0. Assume that (ω0, θ0)
satisfies the conditions in Theorem 1.1. Let (ω, θ) be the corresponding solu-
tion of (1.1). Let G defined as in (4.1). For α ∈ [ 19

20 , 1), β ∈ (1− α,min{2−
2α, 8

3α− 2, 5α(1−α)
11−10α }) and 9

10 ≤ s < 2α− 1. We have

‖G‖L1
tB

s
q,1
≤ B(t),

where q = 20
9 − ε1 for ε1 > 0 is arbitrary small. In particular,

‖G‖L1
tB

0
∞,1
≤ B(t).
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Proof. Applying the frequency localization operator ∆j to the equation (4.1)
we get

∂t∆jG+ u · ∇∆jG+ Λα∆jG =− [∆j , u · ∇]G−∆j([Rα, u · ∇]θ)

+ ∆jΛ
β−α∂1θ

=fj(t).

Multiplying the above equation by |∆jG|q−2∆jG and integrating in the spa-
tial variable we obtain

1

q

d

dt
‖∆jG(t)‖qLq +

∫
R2

∆jG|∆jG|q−2Λα∆jGdx =

∫
R2

fj∆jG|∆jG|q−2.

Using Lemma 4.7 and Lemma 4.3, we can obtain∫
R2

Λα∆jG|∆jG|q−2 dx ≥ c2jα‖∆jG‖qLq ,

with some positive constant c independent of j. So we can obtain

1

q

d

dt
‖∆jG(t)‖qLq + c2jα‖∆jG(t)‖qLq ≤ ‖fj‖Lq‖∆jG‖q−1

Lq .

Furthermore, we have

d

dt
‖∆jG(t)‖Lq + c2jα‖∆jG(t)‖Lq ≤ ‖fj‖Lq ,

then

‖∆jG‖L1
tL

q .2−jα‖∆jG(0)‖Lq + 2j(1+β−2α)‖∆jθ‖L1
tL

q

+ 2−jα
∫ t

0

‖∆j([Rα, u · ∇]θ)‖Lq dτ (4.6)

+ 2−jα
∫ t

0

‖[∆j , u · ∇]G‖Lq dτ.

Now we deal with the second term on the right hand side of the above in-
equality. For every j ∈ N, by Lemma 2.4 we have

‖∆jθ‖L1
tL

q ≤ 2−jβB(t).

For the third term on the right hand side of the inequality (4.6). Using The-
orem 3.3 we have

2−jα
∫ t

0

‖∆j([Rα, u · ∇]θ)‖Lq dτ

.2j(1+ε−2α)

∫ t

0

‖[Rα, u · ∇]θ‖Bα−1−ε
q,∞

dτ

.2j(1+ε−2α)

∫ t

0

‖u‖Ḃ1−ε
q,∞

(
‖θ‖B0

∞,∞
+ ‖θ‖L∞

)
dτ

.2j(1+ε−2α)‖ω‖L1
tL

q‖θ0‖L∞

.2j(1+ε−2α)B(t).
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For the fourth term on the right hand side of the inequality (4.6). Using
Lemma 6.1 in the appendix, we have

2−jα
∫ t

0

‖[∆j , u · ∇]G‖Lq dτ

.2j(1+ε−2α)

∫ t

0

2j(α−1−ε)‖[∆j , u · ∇]G‖Lq dτ

.2j(1+ε−2α)

∫ t

0

(
‖G‖Bα−1

q,∞
+ ‖G‖L2 + ‖θ0‖Lp∩L2

)
‖G‖B0

∞,∞
dτ

.2j(1+ε−2α)

∫ t

0

(‖G‖Lq + ‖G‖L2 + ‖θ0‖Lp∩L2) ‖G‖Bsq,1 dτ

.2j(1+ε−2α)

∫ t

0

B(τ)‖G‖Bsq,1 dτ,

where s ≥ 2
q . Let q ∈ N be a number chosen later, then we have

‖G‖L1
tB

s
q,1

=
∑
m<q

2ms‖∆mG‖L1
tL

q +
∑
m≥q

2ms‖∆mG‖L1
tL

q

.2qsB(t) +
∑
m≥q

2ms{2−mα‖∆mG(0)‖Lq + 2m(1−2α)B(t)

+ 2m(1+ε−2α)B(t) + 2m(1+ε−2α)B(t)‖G‖L1
tB

s
q,1
}

.2qsB(t) +
∑
m≥q

2m(s−α)‖∆mG(0)‖Lq +
∑
m≥q

2m(s+1−2α)B(t)

+
∑
m≥q

2m(s+1+ε−2α)B(t) +
∑
m≥q

2m(s+1+ε−2α)B(t)‖G‖L1
tB

s
q,1
.

If α > 2+q
2q and 2

q ≤ s < 2α − 1 we can take ε > 0 so small in the above

statements such that s < α and s + 1 + ε − 2α < 0. From Theorem 4.5, we
know that for 2 ≤ q < 20

9

max {9q − 12

8q − 8
,

2 + q

2q
} < α < 1.

Through simple calculations, we easily know that the range of α can be the
largest one when we choose q = 20

9 − ε1 for ε1 > 0 is arbitrary small. So, we
have

α ∈
[

19

20
, 1

)
β ∈

(
1− α,min

{
2− 2α,

8

3
α− 2,

5α(1− α)

11− 10α

})
9

10
≤ s < 2α− 1.
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Hence, we finally obtain

‖G‖L1
tB

s
q,1
≤ B(t)2qs + 2−q(2α−s−s−ε)B(t)‖G‖L1

tB
s
q,1
.

Choosing q such that 2−q(2α−s−1−ε)B(t) ≈ 1
2 . Thus we obtain for every t ∈

R+

‖G‖L1
tB

s
q,1
≤ B(t).

By embedding this immediately leads to

‖G‖
L1
tB

s− 9
10

∞,1

≤ B(t).

�

4.5. Estimation of ‖ω‖L1
tB

0,γ
∞,1

and ‖θ‖L1
tB

0,γ
∞,1

Lemma 4.9. Consider (1.1) with σ = 0 and γ ≥ 0. Assume that (ω0, θ0) sat-
isfies the conditions in Theorem 1.1. Let (ω, θ) be the corresponding solution
of (1.1). Take p large enough such that 2

p + 1 < α+ β. Then we have

‖ω‖L1
tL

p ≤ B(t).

Proof. For α+β > 1, we choose ρ > 1 such that β
ρ > 1−α From the definition

of G as in (4.1), we have

‖ω‖L1
tL

p ≤‖G‖L1
t (B

0
∞,1∩L2) + ‖Rαθ‖L1

tB
0
p,1

≤B(t) + t1−
1
ρ ‖Rαθ‖L̃ρtB0

p,1
.

Then through the same idea in the proof of Theorem 4.6, we can easily get
the conclusion. �

Now we state the main theorem in this section.

Theorem 4.10. Consider (1.1) with σ = 0, γ ≥ 0 and (α, β) satisfies con-
ditions as in Theorem 4.8. Assume that (ω0, θ0) satisfies the conditions in
Theorem 1.1. Let (ω, θ) be the corresponding solution of (1.1). Then we have

‖ω‖L1
tB

0,γ
∞,1
≤ B(t)

‖θ‖L1
tB

0,γ
∞,1
≤ B(t).

Proof. Since for s > 2
q where q as in Theorem 4.8, we have

‖G‖B0,γ
∞,1

=
∑
j≥−1

(1 + |j|)γ‖∆jG‖L∞

≤
∑
j≥−1

(1 + |j|)γ2
2
q j2−js2js‖∆jG‖Lq

≤C‖G‖Bsq,1 .

From Theorem 4.8, we obtain

‖G‖L1
tB

0,γ
∞,1
≤ C‖G‖L1

tB
s
q,1
≤ B(t).
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Using the definition of G as in (4.1), we have

‖ω‖L1
tB

0,γ
∞,1
≤ ‖G‖L1

tB
0,γ
∞,1

+ ‖Rαθ‖L1
tB

0,γ
∞,1

≤ B(t) + ‖Rαθ‖L1
tB

0,γ
∞,1

.

For the second term, we have

‖Rαθ‖L1
tB

0,γ
∞,1

=
∑
j≥−1

(1 + |j|)γ‖∆jRαθ‖L1
tL
∞

.‖∆−1Rαθ‖L1
tL
∞ +

∑
j≥0

(1 + |j|)γ‖∆jRαθ‖L1
tL
∞

.‖∆−1θ‖L1
tL
∞ +

∞∑
j=0

2j(1−α)(1 + |j|)γ‖∆jθ‖L1
tL
∞

.t‖θ0‖L2 +

∞∑
j=0

2−j(β+α−1− 2
p )(1 + |j|)γ2jβ‖∆jθ‖L1

tL
p

.t‖θ0‖L2 + ‖θ0‖Lp + ‖θ0‖L∞‖ω‖L1
tL

p

.B(t),

where 2
p + 1 < α + β and we have used Lemma 2.4 and the estimation of

‖ω‖L1
tL

p . Hence we obtain

‖ω‖L1
tB

0,γ
∞,1
≤ B(t).

For θ we have

‖θ‖L1
tB

0,γ
∞,1

=

∞∑
j=−1

(1 + |j|)γ‖∆jθ‖L1
tL
∞

.t‖θ0‖L2 +

∞∑
j=0

(1 + |j|)γ2j
2
p 2−jβ2jβ‖∆jθ‖L1

tL
p

.t‖θ0‖L2 + ‖θ0‖Lp + ‖θ0‖L∞‖ω‖L1
tL

p

.B(t),

where 2
p + 1 < α+ β. Thus, the proof is complete. �

4.6. Estimation of ‖θ‖L̃∞t (H1−α∩B1−α+ε
∞,1 ), ‖ω‖L∞t Lp .

The following is the main result of this subsection.

Theorem 4.11. Consider (1.1) with σ = 0, γ ≥ 0 and (α, β) satisfies con-
ditions as in Theorem 4.8. Assume that (ω0, θ0) satisfies the conditions in
Theorem 1.1. Let (ω, θ) be the corresponding solution of (1.1). Then for ar-
bitrary small ε > 0 and any p ≥ 2 we have

‖θ‖L̃∞t (H1−α∩B1−α+ε
∞,1 ) + ‖θ‖L̃1

t (H
1−α+β∩B1−α+β+ε

∞,1 ) ≤ B(t)

‖ω‖L∞t Lp ≤ B(t).
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Proof. Our proof can be divided into three steps. Step 1: let us give the
estimation of ‖u‖L1

tB
1
∞,1

. Since for s > 2
q where q as in Theorem 4.8, take

ε > 0 such that s− 2
q − ε > 0, we have

‖G‖Bε∞,1 =
∑
j≥−1

2jε‖∆jG‖L∞

≤
∑
j≥−1

2jε2j
2
q 2−js2js‖∆jG‖Lq

≤
∑
j≥−1

2−j(s−
2
q−ε)2js‖∆jG‖Lq

≤ C‖G‖Bsq,1 .

From Theorem 4.8, we obtain ‖G‖L1
tB

ε
∞,1
. ‖G‖L1

tB
s
q,1
. B(t). Using the

definition of G as in (4.1), we have

‖ω‖L1
tB

ε
∞,1
≤ ‖G‖L1

tB
ε
∞,1

+ ‖Rαθ‖L1
tB

ε
∞,1
≤ B(t) + ‖Rαθ‖L1

tB
ε
∞,1

.

For the second term, we have

‖Rαθ‖L1
tB

ε
∞,1

=
∑
j≥−1

2jε‖∆jRαθ‖L1
tL
∞

. ‖∆−1Rαθ‖L1
tL
∞ +

∑
j≥0

2jε‖∆jRαθ‖L1
tL
∞

. ‖∆−1θ‖L1
tL
∞ +

∞∑
j=0

2j(1−α)2jε‖∆jθ‖L1
tL
∞

. t‖θ0‖L2 +

∞∑
j=0

2−j(β+α−1− 2
p )2jε2jβ‖∆jθ‖L1

tL
p

. t‖θ0‖L2 + ‖θ0‖Lp + ‖θ0‖L∞‖ω‖L1
tL

p

. B(t).

where 2
p + 1 + ε < α + β and we have used Lemma 2.4 and the estimation

of ‖ω‖L1
tL

p . Hence, we obtain ‖ω‖L1
tB

ε
∞,1
≤ B(t). On the other hand, by

Hardy-Littlewood-Sobolev inequality, we obtain

‖∆−1u‖L1
tL
∞ . ‖∆−1Λε−1ω‖L1

tL
∞ . ‖∆−1Λε−1ω‖

L1
tL

2
ε
. ‖ω‖L1

tL
2 . B(t).

From the above statements, we finally get

‖u‖L1
tB

1
∞,1
. ‖∆−1u‖L1

tL
∞ +

∑
q∈N
‖∆q∇u‖L1

tL
∞

. ‖∆−1u‖L1
tL
∞ + ‖ω‖L1

tB
ε
∞,1

. B(t).
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Step 2: estimation of θ. Using Lemma 2.5 and the result in step 1, we can
obtain

‖θ‖L̃∞t (H1−α∩B1−α+ε
∞,1 ) + ‖θ‖L̃1

t (H
1−α+β∩B1−α+β+ε

∞,1 )

.‖θ‖L̃∞t (H1−α∩B1−α+ε
∞,1 ) + ‖(Id−∆−1)θ‖L̃1

t (H
1−α+β∩B1−α+β+ε

∞,1 )

+ t‖θ0‖L2∩L∞

.e
C‖u‖

L1
tB

1
∞,1

.B(t).

Step 3: estimation of ω. By the equation (4.1) and Lemma 2.3, we have

‖G(t)‖Lp ≤‖G0‖Lp +

∫ t

0

‖[Rα, u · ∇]θ(τ)‖Lp dτ

+

∫ t

0

‖ΛβRαθ(τ)‖Lp dτ.

For the first integral of the RHS, using Theorem 3.3 with s = 0 yields

‖[Rα, u · ∇]θ(τ)‖Lp ≤ ‖[Rα, u · ∇]θ(τ)‖B0
p,1

. ‖u(τ)‖Ḃ1−ε
p,∞

(
‖θ(τ)‖B1−α+ε

∞,1
+ ‖θ(τ)‖L∞

)
. B(τ)‖ω(τ)‖Lp .

For the second integral of the RHS, we have∫ 1

0

‖ΛβRαθ(τ)‖Lp dτ

.‖∆−1θ‖L1
tL

p + ‖(Id−∆−1)θ‖L1
tB

1−α+β
p,1

.‖θ‖L1
tL

p + e
C‖∇u‖

L1
tL
∞‖θ0‖B1−α

p,1

.B(t).

Hence, gathering the upper estimates we obtain

‖ω(t)‖Lp ≤ ‖G(t)‖Lp + ‖Rαθ(t)‖Lp

≤ B(t) +

∫ t

0

B(τ)‖ω(τ)‖Lp dτ.

Gronwall’s inequality yields

‖ω(t)‖Lp ≤ B(t).

�

At this stage, we can construct approximation system and use similar
methods in [4] to prove the existence of the solution.
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5. Uniqueness

In this section, we prove the uniqueness. For convenience of the reader, we
clarify some notations. Let (w1, θ1) and (ω2, θ2) be two solutions of system
(1.1) with σ = 0, γ ≥ 0. u1 and u2 be the corresponding velocity fields,
namely

uj = ∇⊥ψj , ∆ψj = (log(Id−∆))γωj , j = 1, 2.

Let vj = (log(Id−∆))−γuj , j = 1, 2. Denote

u = u2 − u1, θ = θ2 − θ1, v = v2 − v1, p = p2 − p1.

Then we give two crucial estimates

Lemma 5.1. Assume that θ satisfies

∂tθ + u · ∇θ1 + u2 · ∇θ + Λβθ = 0, 0 ≤ β ≤ 2. (5.1)

Then, for any t > 0,

‖θ(t)‖B−1
2,∞
≤‖θ(0)‖B−1

2,∞
+ C

∫ t

0

‖v(s)‖L2‖θ1‖B1−α,γ
∞,1

ds

+ C

∫ 1

0

‖ω2(s)‖B0,γ
∞,1
‖θ(s)‖B−α2,∞

ds. (5.2)

Proof. Let j ≥ −1. Applying ∆j to (5.1), taking the inner product of ∆jθ
with the resulting equation and applying Hölder’s inequality, we obtain

d

dt
‖∆jθ‖L2 ≤ ‖∆j(u · ∇θ1)‖L2 + ‖∆j(u

2 · ∇θ)‖L2 .

To estimate the first term, we write

∆j(u · ∇θ1) = J1 + J2 + J3,

where J1, J2 and J3 are given by

J1 =
∑
|j−k|≤2

∆j(Sk−1u∇∆kθ
1),

J2 =
∑
|j−k|≤2

∆j(∆ku∇Sk−1θ
1),

J3 =
∑
k≥j−1

∆j(∆ku∇∆̃kθ
1).

J1, J2 and J3 can be estimated as follows.

‖J1‖L2 ≤C2j‖Sj−1u‖L2‖∆jθ
1‖L∞

≤C2αj2(1−α)j‖v‖L2(1 + |j|)γ‖∆jθ
1‖L∞

≤C2jα‖v‖L2‖θ2‖B1−α,γ
∞,1

.
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‖J2‖L2 ≤C‖∆ju‖L2‖Sj−1∇θ‖L∞

≤C‖∆jv‖L2(1 + |j|)γ
∑

m≤j−2

2m‖∆mθ
1‖L∞

≤C2jα‖v‖B0
2,∞

∑
m≤j−2

2mα(1 + |m|)−γ

2jα(1 + |j|)−γ
2(1−α)m(1 + |m|)γ‖∆mθ

1‖L∞

≤C2jα‖v‖B0
2,∞
‖θ1‖B1−α,γ

∞,1
.

‖J3‖L2 ≤C2j
∑
k≥j−1

(1 + |k|)γ‖∆kθ
1‖L∞‖∆kv‖L2

≤C2jα2j(1−α)
∑
k≥j−1

2−k(1−α)(1 + |k|)γ‖∆kθ
1‖L∞2k(1−α)‖∆kv‖L2

≤C2jα
∑
k≥j−1

2(j−k)(1−α)(1 + |k|)γ‖∆kθ
1‖L∞2k(1−α)‖∆kv‖L2

≤C2jα‖v‖B0
2,∞
‖θ1‖B1−α,γ

∞,1
.

To estimate the second term, we write

∆j(u
2 · ∇θ) = K1 +K2 +K3 +K4 +K5, (5.3)

where

K1 =
∑
|j−k|≤2

[∆j , Sk−1u
2 · ∇]∆kθ,

K2 =
∑
|j−k|≤2

(Sk−1u
2 − Sju2) · ∇∆j∆kθ,

K3 = Sju
2 · ∇∆jθ,

K4 =
∑
|j−k|≤2

∆j(∆ku
2 · ∇Sk−1θ),

K5 =
∑
k≥j−1

∆j(∆ku
2 · ∇∆̃kθ).

Since ∇ · u2 = 0, we know that∫
∆jθK3 dx = 0

By a standard commutator estimate, we obtain

‖K1‖L2 ≤C‖xΦj(x)‖L1‖∇Sj−1u
2‖L∞‖∇∆jθ‖L2

≤C‖xΦj(x)‖L1‖ω2‖B0,γ
∞,1
‖∆jθ‖L2 .
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where Φj(x) is the kernel of the operator ∆j . For j ≥ j0 with j0 = 2, we
apply Bernstein’s inequality to obtain

‖K2‖L2 ≤C‖∆ju
2‖L∞‖∇∆jθ‖L2

≤C‖∆j∇u2‖L∞‖∆jθ‖L2

≤C‖ω2‖B0,γ
∞,1
‖∆jθ‖L2 .

Again, for j ≥ j0 with j0 = 2, we have

‖K4‖L2 ≤C‖∆ju
2‖L∞‖Sj−1∇θ‖L2

≤C2jα‖∆j∇u2‖L∞
∑

m≤j−2

2(1+α)(m−j)2−mα‖∆mθ‖L2

≤C2jα‖ω2‖B0,γ
∞,1
‖θ‖B−α2,∞

.

‖K5‖L2 ≤C2j
∑
k≥j−1

‖∆ku
2‖L∞‖∆kθ‖L2

≤C2jα
∑
k≥j−1

2−k2k(1−α)‖∆k∇u2‖L∞‖∆kθ‖L2

≤C2jα
∑
k≥j−1

‖∆k∇u2‖L∞2−kα‖∆kθ‖L2

≤2jα‖ω2‖B0,γ
∞,1
‖θ‖B−α2,∞

.

From all the above estimates, we obtain

d

dt
‖∆jθ‖L2 ≤C2jα‖v‖L2‖θ1‖B1−α,γ

∞,1
+ C‖ω2‖B0,γ

∞,1
‖∆jθ‖L2

+ C2jα‖ω2‖B0,γ
∞,1
‖θ‖B−α2,∞

.

Integrating in time leads to

‖∆jθ(t)‖L2 ≤‖∆jθ(0)‖L2 + C2jα
∫ t

0

‖v(s)‖L2‖θ1(s)‖B1−α,γ
∞,1

ds

+ C2jα
∫ t

0

‖ω2(s)‖B0,γ
∞,1
‖θ(s)‖B−α2,∞

ds

Hence, we finally get

‖θ(t)‖B−α2,∞
≤‖θ(0)‖B−α2,∞

+ C

∫ t

0

‖v(s)‖L2‖θ1(s)‖B1−α,γ
∞,1

ds

+ C

∫ t

0

‖ω2(s)‖B0,γ
∞,1
‖θ(s)‖B−α2,∞

ds.

�

Lemma 5.2. Assume that v satisfies

∂tv + u2 · ∇v + u · ∇v1 −
2∑
j=1

(
u2
j∇vj + uj∇v1

j

)
+ Λαv = −∇p+ θe2, (5.4)
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for α ∈ (0, 1]. Then

‖v(t)‖B0
2,∞
≤‖v(0)‖B0

2,∞
+ sup

0≤s≤t
‖θ(s)‖B−α2,∞

+ C

∫ t

0

‖v(s)‖L2

(
‖ω1(s)‖B0,γ

∞,1
+ ‖ω2(s)‖B0,γ

∞,1

)
ds.

Proof. Let j ≥ −1. After applying ∆j to equation (5.4), taking the inner
product with ∆jv and integrating by parts, we find

1

2

d

dt
‖∆jv‖2L2 + c2jα‖∆jv‖2L2 = L1 + L2 + L3 + L4 + L5,

where

L1 = −
∫

∆jv ·∆j(u
2 · ∇v) dx

L2 = −
∫

∆jv ·∆j(u · ∇v1) dx

L3 = −
2∑

n=1

∫
∆jv ·∆j(u

2
n∇vn) dx

L4 = −
2∑

n=1

∫
∆jv ·∆j(un∇v1

n) dx

L5 = −
∫

∆jv2 ·∆jθ.

To estimate L1, we decompose ∆j(u
2 · ∇v) as in (5.3) and bound the com-

ponents in a similar fashion as the above Lemma. We obtain after applying
Hölder’s inequality

|L1| ≤ C‖∆jv‖L2‖v‖L2‖ω2‖B0,γ
∞,1

.

To deal with L2, similar to the proof in the above Lemma we obtain

|L2| ≤ C‖∆jv‖L2‖v‖L2‖ω1‖B0,γ
∞,1

.

To handle L3, we integrate by part and use the divergence-free condition to
obtain

L3 =

2∑
n=1

∫
∆jv ·∆j(vn∇u2

n).

Then using the same idea as in Lemma 5.1 we have

|L3| ≤ C‖∆jv‖L2‖v‖L2‖ω2‖B0,γ
∞,1

.

We can easily notice that L4 admits the same bound as L2. L5 can be bounded
by applying Hölder’s inequality

|L5| ≤ ‖∆jv‖L2‖∆jθ‖L2 ≤ 2jα‖∆jv‖L2‖θ‖B−α2,∞
.
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From all the above statements, we find

d

dt
‖∆jv‖L2 + 2jα‖∆jv‖L2

≤C‖v‖L2

(
‖ω1‖B0,γ

∞,1
+ ‖ω2‖B0,γ

∞,1

)
+ 2jα‖θ‖B−α2,∞

.

Integrating in time yields

‖∆jv(t)‖L2 ≤e−2jαt‖∆jv(0)‖L2 +

∫ t

0

e−2jα(t−s)2jα‖θ(s)‖B−α2,∞
ds

+ C

∫ t

0

e−2jα(t−s)‖v(s)‖L2

(
‖ω1(s)‖B0,γ

∞,1
+ ‖ω2(s)‖B0,γ

∞,1

)
ds.

Therefore,

‖v(t)‖B0
2,∞
≤‖v(0)‖B0

2,∞
+ sup

0≤s≤t
‖θ(s)‖B−α2,∞

+ C

∫ t

0

‖v(s)‖L2

(
‖ω1(s)‖B0,γ

∞,1
+ ‖ω2(s)‖B0,γ

∞,1

)
ds.

This completes the proof. �

At the end, we give the main theorem of this section.

Theorem 5.3. Assume that (ω0, θ0) satisfies the conditions stated in Theorem
1.1. Let σ = 0, γ ≥ 0 and q > 2. Let (ω1, θ1) and (ω2, θ2) be two solutions of
(1.1) satisfying for any t > 0,

ω1, ω2 ∈ L1
tL

2 ∩ L1
tB

0,γ
∞,1, θ1, θ2 ∈ L1

tL
2 ∩ L1

tB
0,γ
∞,1.

Then they must coincide.

Proof. Using the notations stated in the beginning of this section, we know
that v, θ, u and p satisfy (5.1) and (5.4). In our deduction, we will use the
following two inequalities

‖v‖L2 ≤ C‖v‖B0
2,∞

log

(
1 +

‖v‖H1

‖v‖B0
2,∞

)
,

and

‖v‖H1 ≤ ‖ω1‖L2 + ‖ω2‖L2 .

Combining the inequalities above and setting

Y (t) = ‖θ(t)‖B−α2,∞
+ ‖v(t)‖B0

2,∞
,

we obtain

Y (t) ≤ 2Y (0) + C

∫ t

0

D1(s)

[
Y (s) log

(
1 +

D2(s)

Y (s)

)
+ Y (s)

]
ds,

where

D1(s) = ‖θ1(s)‖B1−α,γ
∞,1

+ ‖ω1(s)‖B0,γ
∞,1

+ ‖ω2(s)‖B0,γ
∞,1

D2(s) = ‖ω2(s)‖L2 + ‖ω2(s)‖L2 .
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Using the same idea in the proof of the integrable of ‖θ‖B0,γ
∞,1

, we can prove

the that ‖θ1(s)‖B1−α,γ
∞,1

is integrable. Hence, we know that D1 and D2 are

integrable. By Osgood’s inequality we get Y (t) = 0. This completes the
proof. �

6. Appendix: Technical Lemmas

Here we give some useful estimates in Besov framework.

Lemma 6.1. Let u be a smooth divergence-free vector field of Rd and f be a
smooth scalar function. Then

(1) for every α ∈ (σ + ε, 1) and p ∈ [2,∞]

sup
q≥−1

2q(α−1−ε−σ)‖[∆q, u · ∇]f‖Lp

.
(
‖Λ1−σ−εu‖Bα−1

p,∞
+ ‖u‖L2

)
‖f‖B0

∞,∞

(2) for a special u = ∇⊥∆−1Λσ(log(Id−∆))γω

sup
q≥−1

2q(α−1−ε−σ)‖[∆q, u · ∇]f‖Lp

.
(
‖G‖Bα−1

p,∞
+ ‖G‖L2 + ‖θ0‖Lp∩L2

)
‖f‖B0

∞,∞
.

Proof. (1) From Bony’s decomposition we have

[∆q, u · ∇]f =
∑
|j−q|≤4

[∆q, Sq−1u · ∇]∆jf +
∑
|j−q|≤4

[∆q,∆ju · ∇]Sj−1f

+
∑

j≥q−3,1≤i≤n

[∆q∂i,∆ju
i]∆̃jf

=Iq + IIq + IIIq.

Estimation of Iq. Since ∆q := hq(·)∗ = 2qdh(2q·)∗ with h ∈ S(Rd), then from
Lemma 3.2 we get for every α < 1

‖Iq‖Lp .
∑
|j−q|≤4

‖|x|1−σ−εφq‖L1‖Λ1−σ−εSj−1u‖Lp2j‖∆jf‖L∞

.‖f‖B0
∞,∞
‖|x|1−σ−εφ‖L1

∑
|j−q|≤4

2(j−q)(1−σ−ε)2j(1+ε+σ−α)

×
∑
k≤j−2

2(j−k)(α−1)2k(α−1)‖∆kΛ1−σ−εu‖Lp

.2q(1+ε+σ−α)‖Λ1−σ−εu‖α−1
Bp,∞
‖f‖B0

∞,∞
,

thus we have

sup
q≥−1

2q(α−1−ε−σ)‖Iq‖Lp . ‖Λ1−σ−εu‖Bα−1
p,∞
‖f‖B0

∞,∞
.
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Estimation of IIq. Similar to the estimation of Iq, we can obtain

‖IIq‖Lp .
∑
|j−q|≤4

‖|x|1−σ−εφq‖L1‖Λ1−σ−ε∆ju‖Lp‖Sj−1∇f‖L∞

.‖Λ1−σ−εu‖Bα−1
p,∞

∑
|j−q|≤4

‖|x|1−σ−εφq‖L12j(1−α)‖Sj−1∇f‖L∞

.‖Λ1−σ−εu‖Bα−1
p,∞

∑
|j−q|≤4

2−q(1−σ−ε)2j(1−α)
∑
k≤j−2

2k‖∆kf‖L∞

.2q(1−α+σ+ε)‖Λ1−σ−εu‖Bα−1
p,∞
‖f‖B0

∞,∞
,

thus

sup
q≥−1

2q(α−1−σ−ε)‖IIq‖Lp . ‖Λ1−σ−εu‖Bα−1
p,∞
‖f‖B0

∞,∞
.

Estimation of IIIq. We further write

IIIq =
∑

j≥q−3,j∈N,1≤i≤d
[∆q∂i,∆ju

i]∆̃jf +
∑

1≤i≤d

[∆q∂i,∆−1u
i]∆̃−1f

= III1
q + III2

q .

For the first term, we get for every α > 0

‖III1
q ‖Lp

≤
∑

j≥q−3,j∈N,1≤i≤d
‖∂i∆q(∆ju

i)∆̃jf‖Lp

+
∑

j≥q−3,j∈N,1≤i≤d
‖∆ju

i∂i∆q∆̃jf‖Lp

.2q(1+ε+σ−α)
∑

j≥q−3,j∈N
2(q−j)(α−ε−σ)2j(α−1)‖∆jΛ

1−σ−εu‖Lp‖∆̃jf‖L∞

.2q(1−α+σ+ε)‖Λ1−σ−εu‖Bα−1
p,∞
‖f‖B0

∞,∞
,

thus

sup
q≥−1

2q(α−1−ε−σ)‖III1
q ‖Lp . ‖Λ1−σ−εu‖Bα−1

p,∞
‖f‖B0

∞,∞
.

For the second term, due to III2
q = 0 for every q ≥ 3, we get for p ≥ 2

sup
q≥−1

2q(α−1−ε−σ)‖III2
q ‖Lp

= sup
q≥−1

2q(α−1−ε−σ)‖[∆q∂,∆−1u]∆̃−1f‖Lp

.‖u‖L2‖f‖B0
∞,∞

.

Hence, the proof is complete.
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(2) Using Bony’s decomposition, we obtain same formula as in the proof
of (1). Estimation of Iq. Similar to the proof of (1), we have

‖Iq‖Lp .‖f‖B0
∞,∞

∑
|j−q|≤4

2(j−q)(1−σ−ε)2j(1+ε+σ−α)

×
∑
k≤j−2

2(j−k)(α−1)2k(α−1) (‖∆kG‖Lp + ‖∆kRαθ‖Lp)

.2q(1+ε+σ−α)‖G‖Bα−1
p,∞
‖f‖B0

∞,∞

+ ‖f‖B0
∞,∞

∑
|j−q|≤4

2(j−q)(1−σ−ε)2j(1+ε+σ−α)
∑
k≤j−2

2(j−k)(α−1)‖θ‖Lp

.2q(1+ε+σ−α)‖f‖B0
∞,∞

(
‖G‖Bα−1

p,∞
+ ‖θ‖Lp

)
,

thus

sup
q≥−1

2q(α−1−ε−σ)‖Iq‖Lp .
(
‖G‖Bα−1

p,∞
+ ‖θ‖Lp

)
‖f‖B0

∞,∞
.

For IIq, we have

‖IIq‖Lp .
∑
|j−q|≤4

‖|x|1−σ−εφq‖L1‖∆jΛ
1−σ−εu‖Lp‖Sj−1∇f‖L∞

.
∑
|j−q|≤4

2−q(1−σ−ε)‖∆jΛ
1−σ−εu‖Lp‖Sj−1∇f‖L∞

.
∑
|j−q|≤4

2−q(1−σ−ε) (‖∆jG‖Lp + ‖∆jRαθ‖Lp)
∑
k≤j−2

2k‖∆kf‖L∞

.
∑
|j−q|≤4

2−q(1−σ−ε)2j(1−α)
∑
k≤j−2

2k‖∆jf‖L∞
(
‖G‖Bα−1

p,∞
+ ‖θ‖Lp

)
.2q(1−α+ε+σ)

(
‖G‖Bα−1

p,∞
+ ‖θ‖Lp

)
‖f‖B0

∞,∞
,

thus

sup
q≥−1

2q(α−1−ε−σ)‖Iq‖Lp .
(
‖G‖Bα−1

p,∞
+ ‖θ‖Lp

)
‖f‖B0

∞,∞
.

For the term III1
q . We can calculus as follows.

‖III1
q ‖Lp

.2q(1−α+σ+ε)
∑

j≥q−3,j∈N
2(q−j)(α−σ−ε)2j(α−1)‖∆jΛ

1−σ−εu‖Lp‖∆̃jf‖L∞

.2q(1−α+σ+ε)
∑

j≥q−3,j∈N
2(q−j)(α−ε−σ)2j(α−1)‖∆jG‖Lp‖∆̃jf‖L∞

+ 2q(1−α+σ+ε)
∑

j≥q−3,j∈N
2(q−j)(α−σ−ε)2j(α−1)‖∆jRαθ‖Lp‖∆̃jf‖L∞

.2q(1−α+σ+ε)
(
‖G‖Bα−1

p,∞
+ ‖θ‖Lp

)
‖f‖B0

∞,∞
.



Well-posedness of Boussinesq equations 33

For the term III2
q . For every q ≥ 3 we know that III2

q = 0. So for p ≥ 2, we
have

sup
q≥−1

2q(α−1−ε−σ)‖III2
q ‖Lp

= sup
q≥−1

2q(α−1−σ−ε)‖[∆q∂,∆−1u]∆̃−1f‖Lp

.‖∆−1u‖Lp‖f‖B0
∞,∞

.‖∆−1Λσ+ε−1u‖Lp‖f‖B0
∞,∞

. (‖∆−1G‖Lp + ‖∆−1Rαθ‖Lp) ‖f‖B0
∞,∞

. (‖G‖L2 + ‖θ0‖L2) ‖f‖B0
∞,∞

.

From all the above statements, we can obtain our results. �
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