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Abstract. In this paper, we consider the global solutions to a generalized
2D Boussinesq equation

Ow+u-Vw+vA®w = 0,,,

U=V = (=0, 00, )0, Ap=A"(log(I — A))w,

00 +u-VO+rA0=0,

w(z,0) =wo(z), 6(z,0) =00(x),
with o > 0,v>0,v >0,k >0, < 1and § < 1. When ¢ = 0,
v>0,xa€[0.951) and 8 € (1 — o, g()), where g(a) < 1 is an explicit

function as a technical bound, we prove that the above equation has a
global and unique solution in suitable functional space.
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1. Introduction
The aim of this paper is prove that the following generalized 2D Boussinesq
equation has a global solution in suitable functional settings.
0w +u - Vw +vA% = 0,,,
w=V"r = (=0n,,02,)0, A=A (log(I — A))w,
o0 +u-VO+ kAP0 =0,
w(z,0) =wp(z), O(x,0)=0q(x),
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where w = w(z,t), ¥ = ¢(z,t) and 6 = O(x,t) are scalar functions of z € R?
and t > 0, u = u(z,t) : R? — R? is a vector field, 0 < a < 1,0 < 3 < 1,
o > 0 and v > 0 are real parameters, and A = (—A)% and A% are Fourier
multiplier operators with

A f(&) = I€17 f(©)-
This generalized 2D Boussinesq equation proposed in [1] firstly. In [1], D.
Chae and J. Wu proved that the above vorticity equation does have the
velocity formation as follows

oo 4+ ut(VE - v) + vA% = —Vp + ey,
V-v=0, u=A%log(I—A))v,

00 +u-VO+ kA0 =0,

v(x,0) = vo(z), 6(x,t) =0(x).

Obviously, the above model can be seen as a generalization of the 2D Boussi-
nesq equations.

From physical view, Boussinesq type equations model the oceanic and
atmospheric motions [2]. From the mathematical view, the fully viscos model
with v > 0, k > 0, = f = 2 is the simplest one to study. And the most
difficult one for the mathematical study is the inviscid model, that is when
v = k = 0. In addition, the 2D Boussinesq equations acts very similar to
the 3D Euler and Navier-Stokes equations, so it is hoped that the study of
the 2D Boussinesq equations may shed light on the global regularity problem
concerning the 3D Euler and Navier-Stokes equations.

Now, there are numerous studies about 2D Boussinesq equations. In
2006, D. Chae proved the global in time regularity for the 2D Boussinesq
system with either the zero diffusivity or the zero viscosity in [3]. In 2010,
further progress has been made by Hmidi et al., who proved the global regu-
larity when the full Laplacian dissipation is replaced by the critical dissipation
represented in terms of /—A [4, 5]. Recently, Miao and Xue generalized the
results to accommodate both fractional dissipation and fractional thermal
diffusion [6]. Some results about 3D case have been obtained in [8] by Hmidi
et at. At the same time, some other generalized models have been considered.
M. Lai, R. Pan and K. Zhao studied the initial boundary value problem of
2D Boussinesq equations over a bounded domain with smooth boundary [9].
In 2011, C. Wang and Z. Zhang discussed the global well-posedness for the
2D Boussinesq system with the temperature-dependent viscosity and thermal
diffusivity [7]. In 2012, G. Wu and L. Xue showed that there is a global u-
nique solution to the two-dimensional inviscid Bénard system with fractional
diffusivity system [10].

We note that D. Chae and J. Wu only studied system (1.1) in the case
v >0,k =0, a =0 [1]. Concerning the other cases, can we get similar
results as in 2D Boussinesq system for system (1.1) which is a meaningful
generalization. In this paper, we focus on the case v > 0, k > 0,0 < a < 1
and 0 < 8 < 1. Obviously, @ and g should satisfy the relation o + 8 > 1, for

(1.2)
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the maximal gain of « derivative from the dissipation term should at least
roughly compensate the loss of one derivative in 6 in the vorticity equation of
system (1.1) with the help of the diffusion effect in the temperature equation.
For brevity, we always set v = k = 1 in the following. We shall adopt the
subtle method used in [1, 4, 5, 6] to study the coupled effects of the generalized
system. More precisely, we have the following result.

Theorem 1.1. Consider the generalized Boussinesq equations (1.1) with o =0
andy > 0. Let o € [$2,1), B € (1— v, g()) with g() := min{2—2a, § a -2,
510{(_11}? }. Assume the initial data (wo, 0y) satisfies wy € L2NLP for any p > 2

and 0y € H1=>N B;O_"f‘“ for arbitrary small € > 0. Then (1.1) has a unique
global solution (w,0) satisfying for any t > 0,

we LPLPNLXLP N Ltlng1
0 e L(H ™ NBL ot Y nLi(H " n B;;?W*f).

0,1

For the definitions of Besov space B, ,, generalized Besov space B,J and
mixed space-time Besov space see the next section below. Now, we should
give some comments.

Remark 1.2. We know that the case for « < 1, 8 < 1 and a+ 8 > 1
is nontrivial. Until now there is no effective way to treat this case, for the
regularization from the fractional diffusion term not strong enough. So we
have to exploit the structure of the system to overcome the difficulty. In this
paper, the method is workable but very restrictive.

Remark 1.3. In our theorem, we need ( smaller than a very complicated
function. It is a technical assumption. In common sense, the term A? is a
good term when f is large. So we can gauss that the result in Theorem 1.1

is hold for v € [$3,1), B € (1 —a,1).

To prove Theorem 1.1, there are two main difficulties. Firstly, following
the procedure as in [1], we will encounter the operator like R, = A~%*0;
which is different from Riesz Transform and is not a bounded operator in L?
space. So the technique used in [1] can not be used here without significant
changes. On the other hand, considering the structure of the system (1.2), we
hardily obtain the L? estimates of v. Hence, the techniques used in [6] also
need lots of nontrivial changes.

The paper is organized as follows. In Section 2, we list some useful
results about Besov space and some estimates which will be used in our
proof. Section 3 is devoted to prove some priori estimates which are the main
part of this paper. In Section 4, we give the proof of the uniqueness part of
Theorem 1.1. Finally, some technical lemmas are shown in Section 5.

2. Preliminaries

Throughout this paper we will use the following notations.
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e For any tempered distribution w both % and Fu denote the Fourier
transform of u.
e For every p € [1,00], || - ||z» denotes the norm in the Lebesgue space LP.
e The norm in the mixed space-time Lebesgue space LP([0,T]; L"(R9)) is
denoted by |- ||z - (with the obvious generalization to ||- ||z x for any
normed space X).
e For any pair of operators P and @ on some Banach space X, the com-
mutator [P, @] is given by PQ — QP.
Then, we give a short introduction to the Besov type space. Details
about Besov type space can be found in [11] or [12]. There exist two radial
positive functions x € D(RY) and ¢ € D(R¥\{0}) such that

o X(§) + 250 #(279€) = 1; Yg > 1, suppx Nsuppp(277-) = ¢,
o suppp(277-) Nsuppp(2~*-) = ¢, if |j — k| > 2,
For every v € S' (R%) we set
A_jv=x(D)v, VgeN, Ajuv=¢2 D)y and S;= Z A,
—1<m<j—1
The homogeneous operators are defined by
A= p(279D)v, Sj = Z Ajv, Yq € Z.
m<j—1
One can easily verifies that with our choice of ¢,
AAF=0 if [j—k>2 (2.1)

Aj(Sk—1fARf)=0 if |j—k| >5. (2.2)
As in Bony’s decomposition, we split the product wv into three parts
wv = Tyv + Tyu + R(u,v),
with
T.v = ZSj_luAjv,
J

R(u,v) = Z Ajuﬁjv
J

Where Kj = Aj,1 =+ Aj =+ Aj+1.

Let us now define inhomogeneous Besov spaces. For (p,q) € [1,+00]?
and s € R we define the inhomogeneous Besov space B, , as the set of
tempered distributions u such that

ullBs , = (2°|Ajull Lo )ea < 400

The homogeneous Besov space B;q is defined as the set of u € S'(R%) up to
polynomials such that

[[ul

By, = (2 A5ullLo)en < Fo0.
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Notice that the usual Sobolev spaces H*® coincide with B3, for every s € R

and that the homogeneous spaces H® coincide with 3572.
For s € (0,1) and 1 < p, g < oo, we can define Besov spaces equivalently

as follows
(Ju(z +t) —u@)|r)?  \"*
lullg, . = (/R e at) (2.3)

u(x —u(x)||gr)? 1
ngq”U”LPJr(‘/Rd (ru(@ 1) — w(@)lr) dt> . (249)

|t|d+sq

[[ul

When g = oo, the expressions are interpreted in the normal way.
We shall need some mixed space-time spaces. Let T'> 0 and p > 1, we
denote by L7.Bj , the space of distribution u such that

lull g gy = 127 1AzulLr)eall g, < +o0.
We say that u belongs to the space L”TB;',q if
lullzg 55, = (@1 Asull g 1o )en < +oo.
Through a direct application of the Minkowski inequality, the following links
between these spaces is true [13]. Let € > 0, then

LLBS < LEBS < LEBSF, ifq>p,

LABytE — LAB: , — L4Bs . ifp>q.
Then, we give the definition of a generalized Besov spaces which include
an algebraic part of the modes. For s,7 € Rand 1 < p, ¢ < oo, the generalized
Besov spaces B;’g and Bp'7 are defined by

lull gs.o == 11271+ LI Agull o lles < oo,
el gy = 12751+ 1) 1Ayl o fleo < 0.
The space L{ B3, LY B3, LY By7 and Ly B3 are defined similar as in Besov
space.
Bernstein type inequalities for fractional derivatives and Osgood in-

equality are often used in our proof. For reader’s convenience, we list them
here.

Lemma 2.1. Let > 0. Let 1 < p < g < 0.
(DIf u satisfies
sup@ C {{ € RY ¢l < K2j},
for some integer j and a constant K > 0, then
I(=2)ull oy < Cr22 G0 u| 1y gay-
(2)If u satisfies
supt C {€ € R+ K127 < |¢] < Ky27}
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for some integer j and constants 0 < Ky < Ko, then
) 1
C12% |[u| pagray < (=) *ul| pa(ray < C22* 9= |u| 1y (ga)
where Cy and Cs are constants depending on «, p and q only.

Lemma 2.2. Let o(t) > 0 be a locally integrable function. Assume w(t) > 0

satisfies
<1
dr = oo.
/0 w(r)

Suppose that p(t) > 0 satisfies

) < at [ alsulo(s) ds

to

for some constant a > 0. Then if a =0, then p =0; if a > 0, then

—Q(p(t)) + Q(a) < / a(r) dr,

to

Q(x):/:w(lr)dr

At the end of this section, we collect some useful estimates for the
smooth solutions of the following linear transport-diffusion equation

{at9+u.ve+Aﬁe:f, Belo,1]

where

divu =0, 6(z,0) = 0p(x). (2:5)

The following Lemmas can be found in [6, 14, 15, 16].

Lemma 2.3. Let u be a smooth divergence-free vector field of R and 6 be a
smooth solution of equation (2.5). Then for every p € [1,00] we have

t
16)ze < 160l +/O () e dr.

Lemma 2.4. Let u be a smooth divergence-free vector field of R with vorticity
w be a smooth solution of equation (2.5). Then for every (p,p) € (1,00) x
[1, 0], we have

8
SUEW" [Ajullzere Spp 100lle + 1160l llwllzy e + (112 po-
JE

Lemma 2.5. Let —1 < s < 1, (p,p1,p,7) € [1,00]*, p1 < p and u be a
divergence-free vector field belonging to L}, (R*; Lip(R?)). We consider a s-

mooth solution 0 of the equation (2.5), then there exists C' > 0 such that for
every t € RT,

100255, + 1(Id= A0l s < CeCU® (||90|

t—P,q

By, + IF s, ) -

t—p,q
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and

< CU(t) .
HQHZPBer% — Ce ||00||stJ,q + ||fHZle;J;%7B )

t—P,q

where U(t) = fot (IVu(T)|| Lo dr.

3. Commutator estimates

First we recall a pseudo-differential operator R, defined by R, := A~%dy,
0 < a < 1. Considering R, = A' R, where R is the usual Riesz transform,
we call R, the modified Riesz transform. The following theorem can be found
in [6].

Theorem 3.1. Let 0 < a < 1, ¢ € N and R,, := [‘3—5 be the modified Riesz
transform.
(1)Let x € D(RY). Then for every (p,s) € [1,00] X (o — 1,00),

||Asx(2_qA)Ra||L(Lv) < ga(s+l-a)

(2)Let C be a ring. Then there exists ¢ € S(RY) whose spectrum does
not meet the origin such that

Rau = 2900170 5(94.) 4y,
for every u with Fourier variable supported on 29C.
The following Lemma is useful in dealing with the commutator terms.

Lemma 3.2. Let p € [1,00] and 6 € (0,1).
(DIf |z|°¢ € L', f € B __ and g € L™, then

.00
16 (f9) = f(@*g)lle < Cllal’dllze I fll g5 _llgllz~. (3.1)
In the case when § = 1, we have
6% (fg) — F(¢* 9llLe < Cll|2lBll 2 IV fllzellgll Lo (3.2)
(2)If |z|°¢ € L', f € B, ., and g € LP, then
16 (fg) = F(¢ = g)llze < Clllal* @Il [1fll s, _llallze- (3.3)

In the case when 6 = 1, we have

1% (fg) = f(&* g)llze < Clll|dll L[V Lo llgll Lo (3-4)

The first part is proved in [1], so we just prove the second part of the
above Lemma.
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Proof. By Minkowski’s inequality, for any p € [1, o],

o+ (fg) = f(¢*g)llLr

¢ *

[/W (x_z))g(iﬁ—z)dzpdaz]l/p
/V‘é —flz—2))g(z —2)| dasr/p dz
/Ilf ||5 >|\Lm|||q5 </|gzz|pdm> e

1fC) = fC =2l
< el gl sup = g,
|21>0 ||
5
< Clll2°@l el fllsg, Nglle
In the last inequality, we use the definition of B, .. O

The next Theorem concerns the crucial commutators involving R.

Theorem 3.3. Let a € (0,1),e > 0 taken to be small enough, u be a smooth
divergence-free vector field of R and 0 be a smooth scalar function. Then,

(1)For every (s,p,q) € (=1, — ) x [2,00] X [1,00] and take ¢ > 0
satisfy s + o0 + € < a we have

1[Ras - F10ll;, S llullpgze (10l pgesioree + 1012 ) . (35)

(2)In the 2 dimensional case, if u = VEATIAT (log(ld — A)) w , w =
G+Rab and 0 <o < a < 1. Then for every 0 < s < a — o, taking arbitrary
small € > 0 such that s + 0 + € < «, we have

1R lfllare SIGH 22 160 pesgre + 10w 0l mesreore 2 (36)

+ HGIIL2||9|| 021101, 2. (3.7)

Proof. (1) Due to Bony’s decomposition we split the commutator term into
three parts

[Rett-V]0 = [Ra, Sn1u- VIALO+ > [Ra, Apu- V]S, 10
neN neN
+ ) [Ra, Apu- VA0
n>—1

=I+I1I+1I1

For I, since for every n € N the Fourier transform of S,,_juA,, 0 is supported
in a ring of size 2", then from Theorem 3.1 and Lemma 3.2, we have for every
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1A Te S Y lén*s Snoau- VIALG Lo

[n—j|<4
< Y 2 ul gy 2 Al o
[n—j]<4

< 6277 ul| g1

0||B;ig+e+1fo<,

where ¢, (z) := 2MdF1=p(2n7) with ¢ € S and (¢;);>—1 with |[cj]je = 1.
Thus we obtain

1lls;, S lull gye

SN 9||ng+5+lfa.

For II, similar to I we have
AT e
S > ek Anu- VIS, 10 s

In—jl<4,n€N
S D 2O g

In—j|<4

—18 l_ ] — —€e—8 / S —
5””“3;‘;‘52 js <Z/< 2(n j)(a—o—e .5)2n (s+o+e a+1)HAn’9||L°°~
—1<n’'<j4+2

VS, 10| L

Thus using discrete Young’s inequality we obtain

111

B, S

o S lullgreellBllgergsen e

For III, we further write

1T =" div[Ra, Agu] Anf + Y [0Ra, A_1uf]A_10

n>0 1<i<n
=III" + 1112

Considering Bernstein’s inequality and Theorem 3.1, we deal with the term
IIT" as follows

|AG;IITY| e
S Y 1AdIVRG(AnuA) e+ D (1A div(A,uRAL0)| e
n>j—3,n>0 n>j—3,n>0

§ Z (2j(27a)+2j2n(17a))27n(17076)”AnAlfoeu”Lpnznoan

n>j—3

§||U||B,1,;g—f2_js Z (2(j_n)(s+2_a)+2(j_n)(s+1))2n(s+1+0+6_u)HAn6||L°°~
n>j—4

Thus we obtain for every s > —1

| I11%|

Bs, S

o0 S lull =g 10l gez1eose—a
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Choosing a suitable function y € D(R?), we have
II1* = > [0Rax(D), A_1u']A_40.
1<i<n

By Theorem 3.1, we know that 0;R.x(D) is a convolution operator with
kernel h satisfying

|h(z)| < CA+|z|)~972%  for all z € R

Next, from the fact that A;ITI% = 0 for every j > 3 and using Lemma 3.2,
we have

112 35, S M1l Ay u) A48 1o

S [T Y 1Y PN

Ol Lo

A_10]| g~

< llull 3o

Hence, the proof of the first part is complete.
(2) As in the first part, we can get the following equality by Bony’s
decomposition.

[Ra,ulf = > [RaySn-1t]And + > [Ra, Apt]Suc10+ > [Ra, ApulA,0
neN neN n>—1
=I+I1I+1I1I.

For brevity, let P(A) := A7 (log(Id — A))”. For I, denote I, := [Ra, Sn—_1u]A,0.
Since for each n € N the Fourier transform of S,,_juA,# is supported in a
ring of size 2", from Theorem 3.1 there exists ¢ € S(R?) whose spectrum is
away from the origin such that

In = [pn*, 81 VAT P(A)G]ALE + [fnx, St VEATIP(A) RGO ALY,
where ¢, (z) = 21 p(27z). Using Lemma 3.2 and Theorem 3.1, we
obtain

[ £nllze Sl Gullpa A8 1 VAT P(A)G 12| A )|

+ ] TPl L AT TS VEATIP(A) R Lo | An0] 12
S22 G 11 |G| 2 | A | e
+ 2= g 170G L1 [6]| oo | A B 2
S2MF |G| 2| A0 e + 27T D2 ETO6] e || ARG 2
Thus, we can obtain
1Tl S UG 22O pge + 18] e [0 rrscrser-2c.
For 11, denote II,, := [Rq, Apu]Sp—16. As in I, we have
IT, = [pn*, ApATIVEP(A)G]Sn_ 10 + [n*, Ay ATIVEP(A) RIS, 10
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By Lemma 3.2, we get
1 Lallz2 Slllz[* =7 nllpr [AT A, VEATIP(A) G| 2] S —16| o
Iz Pull o AT AL VAT P(A) RG] 12 | S8 L
2| G L2 | S O] Lo + 27T D2 TN A6 12| oo
Hence, by discrete Young’s inequality, we have
[ {|re S NGl 2210l porgre—e + 10l Lo 0] sros1+otemza.
We further write IIT as follows

T =Y Ra(Auln0) + > ApuRaAn0 + [Ro, A_yu]A_10
n>0 n>0

=III" +1IT* + 111°.
First, we note that for every n > 0
1Apul 2 S 27T VARG 2 + 2" | A0 2
Then by a direct computation we have
20° | A T1TY
P S T Al An0]

n>j—3,n>0

1) S (DA, G s + 27T A0 12 ) B e
n>j—3

< Z 2(j—n)(s+1fa)<2n(s+0'+6704)||An0”L30||G||L2

n>j—4

2 THET2 A, )] 2 6] ).
Thus discrete Young’s inequality yields
I 7+ S (1G] 216]

BFgte-a + ||9||Loo ||0HH5+1+0+572Q.
For I11?, similar to IT1' and using Theorem 3.1 we have
2% | A TP 1
SP0 N A el RaB
n>j—3,n>0
<2 N0 (20D ALG e + 27T Al ) 2707 Bl
n>j—3
DI G E PR e
n>j—4
+ 2n(s+a+e+1—2a) ||An0HL2 ||9||LOC) )
Using convolution inequality, we obtain

||IIIQ||H5 5 HGHLzHeHngﬂ—a + ||(9||Loo||9HHs+1+a+e—2a.
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For I11%, since A;I1I* = 0 for every j > 3, then from Bernstein’s inequality
we immediately have

112 s < | Ra(A_1uA_10)]|| 12 + | A_1uRaA_10]| 12

<A uA_10]| 12 + | A uRoA_16]| 12
S Gz N101 = +118llz= 161,

e
Here, we used the following fact
1A 1uB 16llzs S 1A 1wl o |A-16]| 0
SIA ATl o [[A- 1] o
S A 1w]|zo [A—16]| o2
SIA LG Lo [A 16l o2 + A1 Rab][ o1 | A16] o2
SNGllee |1l zez + (101 Les [10]] ez,

1,1 _1 1,1 _1,190 : _ _ 2
where ot =2 and ot =t And taking p; = 2, po = == in our

deduction. From all the above statements, we can obtain our conclusion. [J

4. Some priori estimates

First we need to introduce some notations. Let G := w — R,0. Considering
the vorticity equation

0w +1u - Vw + A% = 910,
and the acting of R,, on the temperature equation
DR+ 1u-VRoO + ARy = —[Ru,u- Vb,
we directly have
G +u-VG+AG = [Ra,u- V] +AR.0 (4.1)

4.1. Estimation of ||G|| .2

We present a Lemma that is proved in [6], for it is useful in our proof.

Lemma 4.1. Let (w,8) be a smooth solution of the system (1.1). Then for
every m € [2,00] and t € RT

1611, , & < 6ol 2 (4.2)

Ly Hm
and for p € [1, 0]
16)|ze < [I6o]lr- (4.3)

The following is our estimation about ||G||pz.
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Theorem 4.2. Consider (1.1) with ¢ = 0 and v > 0. Assume that (wy, 6p)
satisfies the conditions in Theorem 1.1. Let (w,8) be the corresponding solu-
tion of (1.1), G is defined as above. Then if o, B satisfies (a, B) € (3,1) x
(1 - a,min{3a — 2,2 — 2a})].

Then the following inequality holds true

t
GO + [ IGEIE, s ar < Ba) (1.4)
where B(t) is a smooth function of t depending on the initial data only.

Proof. Multiplying G to equation (4.1) and integrating with spatial variable,
we obtain

1 o
§%|\G||ZLQ + A5G, = /[Ra,u~V]9de+/Aﬁ_a819de
—I+1I

For I, we have

|| = ‘/div[Ra,udeI

< ”A%C:”L2 ||[Ra7u}9||H‘l—% .

2
%a—l—e

Choosing p3 > and using Theorem 3.3, we obtain

IR, )] 1- 5
SIGHL2 01 vve-go + 1012 101l ot g + [Gllz2116]] 22 + 1161 22101l 2
00,2

SIGI L2101l es + 100161l ose—ga + G2 1012 + 1012 10| 2,
where € > 0 is an arbitrary small number. For II, choosing s; € [0, §], we
have

[TI] < [|A* G| 2 |AFP =071 .
From above statements, we can obtain

1d a
5 IGIE: + A2 Gl

SIGlz2110lzes + 161z 161l 24 e g
G2 1002 + 101122101l 2 + [|A™ Gl L2 [10]] gras sy

From interpolation inequality and Young’s inequality, we obtain

1011 gra+5-a—e1 Gl g

251 1_2s1
SCONl gravp-a-ai |Gl 5 1Gll 2 ©

1
<CUOF5-0-u + ClIGIZ2 + 71G 5 -
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Using Young’s inequality and the above inequality, we have

d a
ZIGlze + 1A% G

<C|Gll72 + Clifol r2nz~ + Cll6]2 + 1015 aer

H2+57—a

Gronwall’s inequality thus leads to

t
G2 + / IA2G(r)|2 dr

<O (4102, g+ 105 )

If % <a< %, for 1 —a < 8 < 3a — 2, then clearly for € > 0 small enough we
have

0<14+p8—
0<24¢—

Using Lemma 4.1 and interpolation inequality we easily get

6] +16)2 S+t

L2H1+ﬁffa ~
If # <o <1, wechoose s =2—2a € (0,%),and for 1 —a < 8 < 2— 20,
then

L2H27—oc+e

0§B—1+a§§-

Using Lemma 4.1 and interpolation inequality we get
||0||L2H5 1+a + ||0||L2H27—04+e S I+t
Hence, the proof is complete. (I

4.2. Estimation of ||G||« for ¢ in suitable range

This subsection presents the estimate of |G|/« for ¢ in some suitable range.
Before the main theorem, we need two Lemmas [17, 6].

Lemma 4.3. Suppose that s € [0,1], and f, (=A)"f € LP(R?), p > 2. Then

P=2r(_A)Sfdx 2 _A)3
Lrrearsae=2 [ ()

Lemma 4.4. Let v € [2,00), s € (0,1), a € (::—:;1,2), Then for every smooth
function f we have

A7 Fll e S ||f||” A st - 2y

£1%)? da

The main theorem in this subsection can be stated as follows.
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Theorem 4.5. Consider (1.1) with o = 0 and v > 0. Assume that (wo, 8p) sat-

isfies the conditions in Theorem 1.1. Let (w,0) be the corresponding solution

of (1.1), G is defined as in (4.1). If o, B satisfies

—12 —4 1-—
(a,ﬂ)€<98qq_8,1>><<1a,min{22a,5qa2 a 2})

_ A 1y
3¢g—4 a(l q)
for some q € [2,2). Then for every q € [2,q], we have for every t € RT

GO+ [ 16T 4, dr < B (4.5)

Proof. Multiplying (4.1) by |G|972G and integrating in the spatial variable
we obtain for every sz, s3 € (0, §] (53 < s2 and both will be chosen later)

Lja)| / AGIGIT2G (1) di
g/ div[Ra,u]9|G|fI*2G(t)dx+/ AP=29,0|G|72G(t) dx
R2 R2
<[|[Ren, )6t

10 122 G2 GOl oo + 10| r+5-0—ss GG ()] 72
Lemma 4.3 and continuous embedding 0% < L77 lead to
[ avciair 26t ez |61 L,
R? L2
Using Lemma 4.4 we obtain

NG =2Gl e, < I\Gllq 20 Gl 02w, 1523

From the above statements, we have
L@l + el

dt La L

SHRa, ulf ()| -

-2
F 10O g5 IGO egra-2) -0 IGO? =,

—2
|G(t)||H52+(17%)(27a) HG(t)HZ/;fq

=g

Then we choose sy such that so + (1 — 7)(2 — a) = < which calls for so =

- (1- 7)(2 —a) € (0, 5], this is plausible if o € (4q 81) for q € [2,4).
Smce S3 § s2 by mterpolatlon we have

GO esra2r60 S 1GOOI 5 IG@I°
5
BOIGOI g
where § := 2 (53 +(1- %)(2 — a)). Form the definition, we know that § < 1.

Also noting that if a € (gg:i, 1), we have 1 —s5 € (0, «), then form Theorem
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3.3 and estimation of |G||z2, we further get
IR, ulO() | 11222
SIG@ 22110l grsz—ere + 0@ |22 [10E)] 2o 20+
+ HG(t)HL?H@(f)lle +10@) |2 10| 2

Since « > 0. Hence, we

further get
I[Ra, ul0(O)|[ 122 < B(t) 4 [|0(2) [ pr2-sz—20cte.

Therefore we further have
d
—|G(t)]| G@)|*
LIGOIL + IGOI .,
S (B +1000) 12200t

BONO@) 1+5-ae

Using Young inequality as follows

| A1 As As| < C1|A1|&5 + Co|As|F + Z|A3|%z, for all§ € (0, 1],

|G(t )II" 20 1G5
()Ilq o G5

For

43%(; > 2, we have
d
ZIGOIZ + NGB -
L=

SB(t) + (1ot )||H2 2amszre TG4 + B0 )Iljip‘ffg sy

For other cases, we have

d q q
GO + IIG(t)IIL;fq

B(t) + [0t )IIHz zacepre TGO g + 1003050y

Integrating in time yields

t
GO + [ 1GEI  dr

24 _2q
SB) + 101" 2, + B0 5, ;
Lt4—<1 H2—2a—sa+e Lt‘l—qé l1+B—a—s3
for 4225 > 2, and
6 /HG 0 o d
<BW) + 1007, S CIOT PPy

47 9 fg2—2a—sgto+te

for other cases. In the above calculus we use the conclusion of Theorem 4.2,
so the range of o and 8 must satisfy the conditions in Theorem 4.2.
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Let g € [2,2). If a € (32, 2222, we choose s3 = 85 = 24— 404—1—7—2
4

8q—8 7 7qg—4
for e (1—a, gg a — 2] and for small enough € > 0, we have

4_
0<1+B8—a—s<—18
2q

4_
0<2+e—2a—sy<-—9g
2q

From Lemma 4.1 and interpolation inequality we find

101 2o Bl L T S+t
L ‘IH1+['3 L ‘IH2+U+€ 2a—sg
Let ¢ € [2,%). If a € (gg i,l), we choose s3 = 2 — 2a < so, then § =
2 (272a+ %(Qfa» and for 3 € (1 — a, min {2 — 20, 4(1 a3 2})
can get "
4—qd
0<f-1+a<— L
0<p—-1+a< g
Hence, we have
1ol A0l Lz prs-ass ST

L4 q(SH +B—a—s3

The range of o and  will monotonously shrink when ¢ increase. Hence for
some ¢ € [2, %) and for every ¢ € [2,q] we have for every t € RT

1G] / GO L, dr < Bl

4.3. Estimation of ||jw||;1 17 for every ¢ € [2,¢] and for some ¢ € [2, 20)
In this subsection we give the estimate of [|w|[ 17 for ¢ € [2,q] for some
€2,2).

Theorem 4.6. Consider (1.1) with ¢ = 0 and v > 0. Assume that (wy, 6p)
satisfies the conditions in Theorem 1.1. Let (w, ) be the corresponding solu-
tion of (1.1). For some q € [2, %) and for all § € [2,q], when («a, ) satisfies
the same conditions as in Theorem 4.5, we have

[wlzize < B(t).

Proof. we choose g as in Theorem 4.5. Since § > 1 — a, there exists a fixed
constant p > 1 such that % > 1 — a. From the explicit formula of G we have
for every q € [2,¢]

lwllpiza < Gllpira + RabllLi s,

< B(t)+t 77 |Ra Olzrmo -
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By a high-low frequency decomposition and a continuous embedding qu’ o &
Bz, we find
IRaOllzppo | < 1A-1RaOlzp o +[Id = A1)llzp e
S A0 opa + [I(1d — A—1)9||zp s

t q,00

1 8
S t7l10ollpa + sup 2”2 [| A0 e pa.
jEN

Inserting the above estimate into the previous one and applying Lemma 2.4
we obtain

lwllspe < B) +Ct' 5wl v,
where C is an absolute constant depending only on ¢, p and ||0g||pznpe. If
Ct'=s = % equivalently, ¢ = (%)ﬁ := Ty, then for every t < Tj
|wllpra < B(t)-

Furthermore, if we evolve the system from the initial data (u(75), 0(Tp)), then
using the time translation invariance and the fact that ||0(T)|lra < ||foll 14,
we have for every t < Tj

[l ra < B(To+1).

To,To+t]

Tterating like this, we finally get for every t € R

[wlzize < B(t).

4.4. Estimation of ||G||L%Bl‘; N

In this subsection, we give the estimation of ||G|| 1 s . First we give a Lemma
t2q,

which is proved in [18]

Lemma 4.7. Let p € [2,00) and o € [0,1]. Then there exist two positive

constants cp, and Cp such that for any f € S and j € Z, we have

2aj

cp2 7 18 flle < IATAGFIE) 2 < Cop277 | A £l

Theorem 4.8. Consider (1.1) with o = 0 and v > 0. Assume that (wo, 6p)
satisfies the conditions in Theorem 1.1. Let (w, ) be the corresponding solu-

tion of (1.1). Let G defined as in (4.1). For o € [$2,1), 8 € (1 — a,min{2 —

20, S — 2, 510{(_11}‘2)}) and &5 < s <2a— 1. We have

IGllm: , < B,

where q¢ = % — €1 for €1 > 0 is arbitrary small. In particular,

1G], < B().
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Proof. Applying the frequency localization operator A; to the equation (4.1)
we get

8tAjG +u- VA]G + AaAjG = — [A]’,u . V]G - A]([’Ra,u . V]G)
+ AjAP9,0
=fi(®).

Multiplying the above equation by |A;G|772A;G and integrating in the spa-
tial variable we obtain

1d 9ra _
*@HAJ‘G(t)Hqu +/ AJ’G|AJ‘G|Q A AJ’Gdm = / fjAjG|AjG|q %
q R2 R2
Using Lemma 4.7 and Lemma 4.3, we can obtain
/ A“AG|A;G9 2 de > 27| A G4,
RQ
with some positive constant ¢ independent of j. So we can obtain
1d o _
Q@IIAjG(t)lquq + 218G < N Filleall &GN
Furthermore, we have
d j
18 GWLe + 2 A;G ()| < [ fjllze,
then
185Gl e S277185G(0)]| 2o + 2772 A;0)| 1

+2—ja/0 12;([Rasw - V10)| pa dr (4.6)

t
n 2*]’&/0 1A, u - V]Gl 1o dr.

Now we deal with the second term on the right hand side of the above in-
equality. For every j € N, by Lemma 2.4 we have

14,0l pira <2777 B(1).

For the third term on the right hand side of the inequality (4.6). Using The-
orem 3.3 we have

t
g-ia / 18 ([Rau - V18) | o dr
0
t
Syt / IR V6l g2 dr
0 e

t
52](14-6—20‘)/ HUHB;T,E (HGHB& w T HHHLOO) dr
; , :

SPOH2 ]l 1y |00

52]’(1—&-6—2@)3(15)'
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For the fourth term on the right hand side of the inequality (4.6). Using
Lemma 6.1 in the appendix, we have

t
Q_ja/ 1A, w- VG| dr
0
52;(1+672a)/ 21(@=1=9[A},u - V]G||pa dT
0
] t
523(1+5—20¢)/ (HGHB;”;J + |Gz + ||90||meL2> IGllBe, . dr
0 , ,
t
§23(1+e—2a)/ (IGllLs + IG Iz + 160l Lonz2) 1G5z, dr
0
t
523‘(“6‘2‘”/ B(M|Gl sz, dr,
; ,

where s > %. Let ¢ € N be a number chosen later, then we have

1Glz:

=> 2™ AnGlpipe + Y 2™ ARG 11 1

m<gq m>gq
S2EB(1) + Y 2727 AR G(0) | Lo + 272 B(1)
mz2q
+ om(+e=20) B(¢) 4 2m(1+6_2Q)B(t)||G||L§B;,1}
S20B(1) + Y 26T ALGO)||Le + Y 22 B()
m>q mz2q
n Z gm(stlte=20) gy 4 Z 2m(5+1+6_20‘)3(t)HG||L§B;1~

m2q m2q

If o > 22% and % < s < 2a— 1 we can take € > 0 so small in the above

statements such that s < a and s + 1 4+ € — 2a < 0. From Theorem 4.5, we
know that for 2 < ¢ < %O

99— 12 244
8¢ -8 2¢

max { }<a<l

Through simple calculations, we easily know that the range of o can be the

largest one when we choose ¢ = % — ¢ for €1 > 0 is arbitrary small. So, we

have
19
—.1

) 8 S5a(l — a)
1- 2%, -a—2,> "%
66( a,mm{ a,ga 11— 10a })

e



Well-posedness of Boussinesq equations 21

Hence, we finally obtain
Gl zi5: , < B(£)2% + 2799 B(1) |G| 1 s -

Choosing ¢ such that 2-92=s=1-¢) B(t) ~
RT

%. Thus we obtain for every t €
1Gllyps , < B(1).
By embedding this immediately leads to

IGI, . < BO.

t~oo,1
4.5. Estimation of ||</J||L}ng1 and ||9||L}B§<;71

Lemma 4.9. Consider (1.1) with 0 =0 and v > 0. Assume that (wg,80) sat-
isfies the conditions in Theorem 1.1. Let (w,0) be the corresponding solution
of (1.1). Take p large enough such that % +1<a+ p. Then we have

lwllzzre < B(#).
Proof. For a+ > 1, we choose p > 1 such that % > 1—a From the definition
of G as in (4.1), we have
lwllizire <IGlLiBo, a2y + IRabllzipo
1—1
<B(t) +t7 7 [|Rabllzppo -

Then through the same idea in the proof of Theorem 4.6, we can easily get
the conclusion. O

Now we state the main theorem in this section.

Theorem 4.10. Consider (1.1) with o = 0, v > 0 and (o, 8) satisfies con-
ditions as in Theorem 4.8. Assume that (wo,0p) satisfies the conditions in
Theorem 1.1. Let (w, 8) be the corresponding solution of (1.1). Then we have

Il oo, < B(#)
160113 5o, < B(t).
Proof. Since for s > % where g as in Theorem 4.8, we have
1Gllpoe = 37 (L4 1) 146G o~
Jj=-1
<3 (1 131)728927527 | A G
j>—1
<C|G| 5,
From Theorem 4.8, we obtain

Gl Ligo, < ClGllrp;, < B(1)-



22 J. Jia, J. Peng and K. Li

Using the definition of G as in (4.1), we have
ol o, < NGl Ly por, + IRl L1 po,
< B(t) + |\Ra9\|L,{ngl~
For the second term, we have

IRabl 12 50,

= > A+ NA RO i~
i>=1

SIAZ RO Lz + Y (14 i) 1A RO L2 1
320

o0
SIA A0 prpee + D27+ )14, 11 o
=0

oo
Stlollze + Y- 279D (L 4 11727 86 1y o
§=0
Stlibollzz + [18ollze + 100l o lwll £y e
SB(t),
where % + 1 < a+ 8 and we have used Lemma 2.4 and the estimation of
|wllz1»- Hence we obtain

wll L2 o, < B(D).

For 6 we have

— 1YY .
1010, = S U+ L1400y
j=—1
Stllfoll e + 31+ 1317275 2799297 A0 130
j=0
Stl60ll = + 160l o + 00l [l 2 10
<B(1),

~

where 12; 4+ 1 < a+ (. Thus, the proof is complete. (I
4.6. Estimation of ||9||Z;’°(H1*O‘OB;I(1’+E)’ ||w||LtooLp.
The following is the main result of this subsection.

Theorem 4.11. Consider (1.1) with o = 0, v > 0 and (o, 8) satisfies con-
ditions as in Theorem 4.8. Assume that (wo,60o) satisfies the conditions in
Theorem 1.1. Let (w,0) be the corresponding solution of (1.1). Then for ar-
bitrary small € > 0 and any p > 2 we have

HHHZgO(Hl—amB;‘i"‘*'E) + ||6HZ%(H1*0¢+5QB;®7)1&+5+5) < B(t)
[wllLgerr < B(2).
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Proof. Our proof can be divided into three steps. Step 1: let us give the
estimation of |[ufz1p: . Since for s > % where ¢ as in Theorem 4.8, take

e>OsuChthats—%—e>0,wehave

|G|

B, = D YA
j>—1
< 37 27978979597 | A G|
jz-1
< > 27T 928G
j>—1

<C|d|

s .
Bq,1

From Theorem 4.8, we obtain [|Gllipe = < ||G||L%Bg1 < B(t). Using the

~

definition of G as in (4.1), we have

lwlizipe,, < IGlleipe,, + IRabllLipe , < B@) + Rabllrpe_,-

tPoc,1 —

For the second term, we have

IRabllLipe, = D 212 Rabll s 1
i>—1
SIA RGOl L pee + Y 2 A RG] 1 o

Jj=0

SNAL O] prpe + > 27702 A0 1y 1o
j=0

oo

S tlbollpe + D 2711020008 | A 11 1
j=0

S tllbollzz + ll6ollze + 160l Lo [|wl| L1 Lo

< B(1).

where % + 1+ € < a+ S and we have used Lemma 2.4 and the estimation
of [|w||z1z»- Hence, we obtain [w|r1pe =~ < B(t). On the other hand, by
Hardy-Littlewood-Sobolev inequality, we obtain

1A -vullpi e S IAA T 0l e SHAGAT W], 2 S wllzyze S B().
From the above statements, we finally get

lullip , S 1A vullpize + > 1A Vul i
qeN

SlAwullpype + llwlinpe,
S B(@).
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Step 2: estimation of 6. Using Lemma 2.5 and the result in step 1, we can
obtain

HGHZ?C(HFQHB;?“) + HQHZ%(HlfaJerB;f”“e)
SHGHZZOO(HlfamB;‘IHE) + ||(Id - A—l)QHZ%(H17a+603;j‘1*+3+€)

+0°] L2nr
<ec|luHL%Béc,1

~

<B(1).

Step 3: estimation of w. By the equation (4.1) and Lemma 2.3, we have
t
IG(@)llr <[GollLr +/ [[Ra,w-VIO(T) e dT
0

t
+/ IAPRu6(7)| 1 dr-
0

For the first integral of the RHS, using Theorem 3.3 with s = 0 yields
[[Ra - V10| zo < |Rews - V16 o
S )l gae (16 ppse + 1000 2)
< B(7)lw(m) | -

For the second integral of the RHS, we have

/01 IAPRLO(r) | o dr
SIA10]pape +(|(1d - A—1)9||L}B;;“+B
S T O [ s
<B(1). |
Hence, gathering the upper estimates we obtain

lw®)llze < [IG®)l|Le + [Rab(t)] Lo
t
< B(t) +/ B()||w ()| e dT.
0
Gronwall’s inequality yields

lw(@)[zr < B(#).
(]

At this stage, we can construct approximation system and use similar
methods in [4] to prove the existence of the solution.
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5. Uniqueness

In this section, we prove the uniqueness. For convenience of the reader, we
clarify some notations. Let (w!,0') and (w?,6?) be two solutions of system
(1.1) with ¢ = 0, v > 0. u' and u? be the corresponding velocity fields,
namely

uw =V, Ay = (log(Id — A))w?, j=1,2.
Let vJ = (log(Id — A))™7u?, j = 1,2. Denote
u=u?—ul, 0=0*-0, v=10%—0l, p=p*—p.
Then we give two crucial estimates
Lemma 5.1. Assume that 6 satisfies
O +u-VO +u?-VO+A0=0 0<p<2. (5.1)

Then, for any t > 0,
t
106 5,2, <1052 +C [ Ioluallo' 5 s

1
+C [l 10, . (5.2

Proof. Let j > —1. Applying A; to (5.1), taking the inner product of A;6
with the resulting equation and applying Holder’s inequality, we obtain

%IIAﬂHLz < 1A (w- V0|2 + 114, (w? - VO] 2.
To estimate the first term, we write
Aj(u-VOY = Jy + Jo + J3,
where Ji, Jo and Js3 are given by

J1 = Z Aj(SkfluVAkel),

|7 —k|<2

Jo= Y Aj(ApuVSi_16Y),
li—k|<2

Jgi Z Aj(AkuV&ﬁl).
E>j—1

Ji, Jo and J3 can be estimated as follows.
[Jillzz <C271S;j—1ull g2 ]| 250" o
<C2°920 = |lo]| L2 (1 + |5])7[| 20" || e

SCQja ”U”L2 ”92”3;5’“7'
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[ Jalle <CllAjullz2]|S;-1VO L
<CllAl2 (143 Y 2™ A0 L

m<j—2
) 2m (1 + |m|)~7
<C¥lollsy. D ZFmapn

m<j—2

] 1
<2 [ollpg_ 6" 1=

1 Tsllz2 <C27 > " (1+ B | AR0 | oo | Axv]| 2
k>j—1

207 (14 m]) (| A | o

<Co/1=0) N kI (1 4 |k|) 7| Ak || L 2507 A 2

k>5—1

<020 Y 20RO (g k)T Apf? || oo 220 Agw]| 2

k>5—1

§02j“||v|\33m||€1||B;—,§x,w.
To estimate the second term, we write
Aj(u?- V) = Ki + Ky + K3 + Ky + Ks,
where

Ki= > [Aj, Sk 1u® - VAL,

li—k[<2

Kg = Z (Sk_1u2 - Sju2) . VAJAkQ,
li—k|<2

Kg = SJ‘UZ . VAJ‘H,
K4 = Z A]-(Aku2 . VSkfle),

li—k|<2

Ks= > Aj(Apu?- VAL).

k>5—1

Since V - u? = 0, we know that
/ A,0F dz = 0

By a standard commutator estimate, we obtain

1Kl <Clla; (@)1 V8- 1u?] = [V A6
<Ol (@) 12 o, 18,0152
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where ®;(x) is the kernel of the operator A;. For j > j, with jo = 2, we
apply Bernstein’s inequality to obtain

12| L2 <CllAju?|| 1| VA;6| 2
<C||A;Vu?|| || Az0] 2
<Ol o, 18,0122
Again, for j > jo with jo = 2, we have
1Kallre <ClA UL |81V 2
<CYY| A VP | Y 20Fmmdgmme)A g

m<j—2

§C2jan2||ngl||9HB;§Q'

1Kslz2 <C2 Y | Aku® || oo | Ak 12

E>j—1
<CY* Ny 27RO | ALV | L | A 12
k>j—1
<CYY Y || ARVUP || 27 | A 2
k>j—1

<29 o, 1] 5
From all the above estimates, we obtain
d .
A0z < C2% vl 2|0 | grsr + Cllew? || go, 1126l 2
02 o 1]

Integrating in time leads to

t
18,0012 <IADO) 22 + 02 [ Ju(e)l220" (9] s

t
+ 02 [ 1P0)llp00, 10(6) | . ds

Hence, we finally get

t
1005« <60)]5,2 +C / lo(3)]1 22 16" ()] 1. ds

t
+C /0 lw?($)l1 o, 10(5)l| o ds-

Lemma 5.2. Assume that v satisfies
2
O+ u* - Vo +u- Vol — Z (u?ij + uvajl-) + A% = —Vp+ ey, (54)

Jj=1
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for o € (0,1]. Then

lo(®llsg . <llvO)llpg _ + sup [[6(s)ll 5«
’ ’ 0<s<t e

t
+C [ 1olie (1 (), + 12l ) .

Proof. Let j > —1. After applying A; to equation (5.4), taking the inner
product with Aj;v and integrating by parts, we find

1d ,
5 g 1850l + 2| Avllie = Ly + Lo + Ly + Lo + Ls,
where

L = —/Ajv A (u? - Vo) dz

Ly = —/Ajv “Aj(u- Vo) dz
2
Ly=- Z/Ajv - Aj(ul V) dx
n=1

2
Ly=- Z/Ajv - Aj(u, Vop) dx
n=1

L5 = —/Ajvz . AJH

To estimate Lq, we decompose A;(u? - Vv) as in (5.3) and bound the com-
ponents in a similar fashion as the above Lemma. We obtain after applying
Holder’s inequality

4] < Ol o] 22 e o
To deal with Lo, similar to the proof in the above Lemma we obtain
(L] < Cl1 A7l zalloll e e o,

To handle L3, we integrate by part and use the divergence-free condition to
obtain

2
Ls = Z/Ajv A (v, Vud).
n=1
Then using the same idea as in Lemma 5.1 we have
|Ls| < Cll Al allvll e llw? | oy,

We can easily notice that Ly admits the same bound as Ls. L5 can be bounded
by applying Holder’s inequality

|Ls| < 1A50] L2 1850022 < 27 A0l 2|10 5
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From all the above statements, we find
d o
g 1B83vllze + 27 A 0| 2

<Cllolze (Il llgos, + 1ol o, ) + 27161l e

Integrating in time yields

. t 4
1A0(0) 2 <o 1 A;0(0) 1= + / e 2% (s) | di

t .
+C [P o)l (6o, + 16l o, ) s
0 00,1 oo,
Therefore,

lo@)llsg _ <lv(0)lpy  + sup [16(s)]lp o
: ’ 0<s<t »00

t
e / lo()lzz () o, + [0?(3) s, ) ds.

This completes the proof. O
At the end, we give the main theorem of this section.

Theorem 5.3. Assume that (wg, 6p) satisfies the conditions stated in Theorem
1.1. Let 0 =0, v > 0 and q¢ > 2. Let (w',0') and (w?,6?) be two solutions of
(1.1) satisfying for any t > 0,

whw? € LIL*NLIBYY,, 6'.0% € LyL* N L;BY,.

Then they must coincide.

Proof. Using the notations stated in the beginning of this section, we know
that v, 8, u and p satisfy (5.1) and (5.4). In our deduction, we will use the
following two inequalities

Joll e < Cllolsg _tog (14 )
- Tollng
and
vl < llwtllzz + [|w?|| 2
Combining the inequalities above and setting
Y(t) = 100 ;o + lo(®)llsg .

we obtain

Y(t) < 2Y(0) + C/Ot Di(s) {Y(s) log (1 + ?f(f))) + Y(s)] ds,

where

Di(s) = 16 ()l 51— + 0 (8) L o, + 2 (3)]] o,

Da(s) = [lw?(s)llz2 + lw?(s) | 2



30 J. Jia, J. Peng and K. Li

Using the same idea in the proof of the integrable of ||9||Bo,wl, we can prove
the that ||91(S)HBl—?,w is integrable. Hence, we know that D; and Dy are

integrable. By Osgood’s inequality we get Y (t) = 0. This completes the
proof. O

6. Appendix: Technical Lemmas
Here we give some useful estimates in Besov framework.

Lemma 6.1. Let u be a smooth divergence-free vector field of R? and f be a
smooth scalar function. Then
(1) for every a € (0 +¢,1) and p € [2, 0]
sup 2971 [[Ag u - V] f| 1o

q>—1

S (o<l

mo +lulze ) 1 se,
(2) for a special u = V+AT1A? (log(Id — A))Tw

sup 24(a—1-e=0) I[Ag, w- V]fllLe
g>—1

S (IG s + G2 + 180l zorzz ) 1fllmg. .
Proof. (1) From Bony’s decomposition we have
[Agyu-VIf = Y [AgSeru-VIA; f+ Y [y Aju-VIS;if
l7—ql<4 li—aql<4

+ Y (A0, A uTA f
i>q-3,1<i<n
=1, + I, + III,.

Estimation of I,. Since A, := hy(+)* = 29%h(29-)% with h € S(R?), then from
Lemma 3.2 we get for every a < 1

Hollee S > el gl A TS rull o2’ | A £ L

li—ql<4
<l a6l Y 2U-00-r—gietr—a)
li—al<4
X Z 2(]'7]“)(01*1)2]6(01*1)||AkAlfo'feu||Lp
k<j—2

S L 1 T
thus we have

sup 240711y 1y S A ull g .
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Estimation of I1,. Similar to the estimation of I,, we can obtain

I Lglle S D Ml =7 @ll e IA 7~ Ajull Lo 181 V £ o=

lj—ql<4
§HA1_"_SUHB;; Z 2]' =7yl 12707 |[S; 1 V f| L
[7—ql<4
SHAI_(’_WHB;; Z g~ a(1=o=e)pili=a) Z 27| Ag | Lo
 lj—ql<4 k<j—2

§2q(1—a+a+e) ||A1_U_EU||BE,;} Hf||Bgooo,
thus

sup 27| | S A7l o I fll e, -
q>—1 ’ ’

Estimation of I11,. We further write

I.[Iq = Z [Aqaz,AJUl]£]f+ Z [Aqai,A_lui]ﬁ_lf

j>q—3,jeN,1<i<d 1<i<d
=111, +III;.
For the first term, we get for every a > 0
[111g]|2»
< > 1086 (A ju") A f | o
Jj2q—3,j€N,1<i<d

Y A aAA |
j>q—3,jEN,1<i<d
spltrereme 37 e e A AT By
j2q—3,j€EN
S
P,00 00,00

thus

sup 21N I < A7 ull o fll o, -
2 B o

For the second term, due to III(? = 0 for every g > 3, we get for p > 2

sup 2¢(@-1=¢=) [T117| e
q>-1

= sup 271" [A,0, A u] A f 1o

q>—1

Sllullz2[fllse, . -

Hence, the proof is complete.
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(2) Using Bony’s decomposition, we obtain same formula as in the proof
of (1). Estimation of I,. Similar to the proof of (1), we have

Egllr SIfllpe, . DY, 207 90-o-9piletoma)

l[i—ql<4

x 0 20 RE=DokeD) (IALG| Lo + || ARRaO| 1r)
k<j—2

Ll [le] N P
+1flse. Z 9(i—a)(1—o—€)gj(l+eto—a) Z 20U=R)@=11 9] .
li—ql<4 k<j—2

SO f gy (1G] g + 101l )
thus

sup 2010 % (1G] g + 161l ) [1Fl1me, .

For 11,, we have

Iller S 3 Ml =7 Gl | A5 Al o 1S5 -1 V fl| o

l[i—ql<4
D D T TNV Gt PR R 7 P
[i—ql<4
S Y 2707 (1A, G e + 18 Rabl) 3 25 Al
l[i—ql<4 e
DR E LD DI 1V P ([ P )
li—ql<4 ks

e (e e P N
thus

el 11 PP ([ S o A P

For the term 111 ;. We can calculus as follows.

1111, e

gprlmeterd R0 plrmemem i@l A AT w1 A, || 1os

j>q-3,j€N

<a(l-atote) Z 2(‘1*]')(“*6*”)?(0‘*1)||AjGHLPHij||LOO

Jj=2q—3,jeN

+ 9a(l—atote) Z 2la=ila=or=)9i(@=D || AR 0| v ||Ejf||L°°

j=2q—3,j€N

22075749 (Gl g 2 + 1012 ) 111, .-
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For the term III(?. For every ¢ > 3 we know that III(? =0. So for p > 2, we
have

sup 2d(@—1=e=) ||III§||LP
qg>—1

= sup 297779 [A0, A qul A fl| o

g>—1
SIA-vullze [ fll sy,

SIA AT oI fll o,
S [AGllzr + [AaRabl|e) [ fll e,
S UGz + 16ollL2) 1 fll 5o, . -

From all the above statements, we can obtain our results. O
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