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Abstract In this paper, we first generalize the classical results on Cauchy problem for posi-
tive symmetric quasilinear systems to more general Besov space. Through this generalization,

d

we obtain the local well-posedness with initial data in the space sz ;rl (R?) which has crit-
ical regularity index. We then apply these results to give an explicit’ characterization on the
isentropic approximation for full compressible Euler equations in R3. This characterization
tells us that isentropic compressible Euler equations is a reasonable approximation to Non-
isentropic compressible Euler equations in the regime of classical solutions. The failure of

such characterization was illustrated when singularities occur in the solutions.
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1 Introduction

This note is devoted to the explicit characterization and mathematical justification on the isen-
tropic approximation for the compressible inviscid fluid flow. For this purpose, we consider
the following Cauchy problem of compressible Euler equations
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dp+u-Vp+pdivu =0, xeR?,
pOu+u-Vu)y+Vp =0,

0s+u-Vs =0,

p(x,0) =po(x) =0, ulx,0)=up(x), s(x,0)=s0(x),

(1.1)

where p is the density, u is the velocity field, s stands for the specific entropy and p(p, s) =
pYe’ is the pressure law for polytropic gas, with the adiabatic exponent y > 1. In many
applications, if in the thermodynamical process the specific entropy has only very small
changes near a constant equilibrium 5, an isentropic approximation is applied by assuming
s(x,t) = 5 which reduces (1.1) to the isentropic Euler equations

hp—+u-Vp+pdivu =0, xeR?
p@u+u-Vu)y+Vp =0, (1.2)
p(x,0) = po(x) =0, u(x,0)=up(x),

where p(p) = p¥e*. Now, if one assumes
so(x) =

in (1.1), the solutions of (1.1) are expected to equal to the corresponding one of (1.2) formally.
The main goal of this paper is to address this issue. More precisely, we will study the limiting
process from solutions of (1.1) to corresponding solutions of (1.2) when

(so(x) —5) — 0.

The main results of the current paper show that, when the solutions of (1.1) and (1.2) are
classical, then such a picture can be justified with sharp error estimates. However, when the
solutions of Euler equations blow up and singularities are developed, the expectation above
is not true at least by the measurement of Sobolev norms.

The main idea of this paper is the following observation. When both (1.1) and (1.2) admit
smooth solutions in R” x [0, T'] for some positive T, the justification of isentropic limit
as (so(x) —s) — 0 can be obtained by means of the continuity dependence of initial data
for solutions of (1.1) near the initial data (pg, ug, s). This comes along with the local well-
posdeness theory for smooth initial data. Therefore, the justification of isentropic limit will
be achieved by a careful energy method for the symmetric hyperbolic systems. One of the

new ingredients of this paper is that the results will be established for solutions in the critical

d
4+1 . . )
Besov space B, (R%). On the other hand, when singularities, say shock waves, occur in

the solution, such picture breaks down. We will show this by an explicit example. Therefore,
our results are somehow optimal for initial data with lowest possible regularity, which is

g+1
By (®RY).

In Sect. 2, we will list some basic information on Besov spaces. In Sect. 3, we will discuss
the local well-posedness theory for symmetric hypderbolic systems, and we will establish the
corresponding theory in the critical Besov space sz ;rl (R4) which is applicable to compress-
ible Euler Eq. (1.1). We will then justify the isenfropic limit in Sect. 4 within the regime
of classical solutions. Finally, we will discuss the failure of isentropic approximation when
singularity occurs in the solutions in the last section.

For compressible Euler equations in one space dimension, such a problem was inves-
tigated by Saint—-Raymond [12] for BV solutions, where the difference between solutions
of isentropic and full Euler equations measured by BV-norm was shown to grow at most
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linearly in time. For the steady Euler flows, similar results were obtained in [2] and [8].
It remains an interesting open problem on how to offer a (physically and mathematically)
sound explanation on the isentropic approximation for physically admissible weak solutions
for compressible Euler equations.

2 Preliminaries

In this section, we collect some basic facts on Besov spaces that will be used in this paper.
The following notations will be used throughout this paper.

e For any tempered distribution u, both & and F(u) denote the Fourier transform of u.

e Forevery p € [1, 00], || - ||L» denotes the norm of the Lebesgue space L”.

e The norm in the mixed space—time Lebesgue space L ([0, T1; L" (R?)) is denoted by
Il - | Lo (with the obvious generalization to || - || Lx for any normed space X).

e For any pair of operators P and Q on some Banach space X, the commutator [P, Q] is
givenby PQ — QP.
e For any function u, d;u stands for dy,u withi =1,2,...,d.

Then, we give a short introduction to the Besov type spaces. Details about Besov type
space can be found in [1] or [11]. There exist two radial positive functions y € D(RY) and
¢ € D(RY\{0}) such that

o X&)+ 2 ,509(279) =1;VYq > 1, suppx Nsuppp(277-) = ¢,
e suppp(2/+) Nsuppp (275 = ¢, if |j — k| > 2,
For every v € s (R?) we set

A_jv=x(Dy, ¥geN, Ajy=¢Q2 /D and Sj= D A, (21

—1<m<j—1
With our choice of ¢, one can easily verify that

AjALf =0 if |j—k| > 2. 2.2)
Aj(Sk—1fArf) =0 if |j—k[=5. (2.3)

Like in Bony’s decomposition, we split the product uv into three parts
uv = T,v+ Tyu + R(u, v), 2.4)
with

T,v = ZSj_luAjv,
J
R(u,v) = ZAjquv,
J

where Zj =A;j 1 +A;j+ A
We now define inhomogeneous Besov spaces. For p,r € [1, +oc] and s € R we define
the inhomogeneous Besov space B), , as the set of tempered distributions u such that

lullgs , == Q7NIAjullLr)e < +o0.

Notice that the usual Sobolev spaces H* coincide with B , forevery s € R. For simplicity,
we will use B* to stand for the Besov space B, ;.
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The following two Lemmas will be used frequently in this paper.

Lemma 2.1 [4] Lets > 0and 1 < p,q < oo. Then B;’q N L is an algebra and we have
luvlips,, < Clullzellvlizs, 4+ llvlizeellullss ).

where C is a positive constant.

Lemma 2.2 [4] Let I be an open interval of R. Let s > 0 and o be the smallest integer such
thato > s. Let F : I — R satisfy F(0) = 0 and F' € W?°°(I; R). Assume that v € Bz’q
has values in J CC I. Then F(v) € B, , and there exists a constant C depending only on
s, I, J and N, and such that

IF@Is;, < C A+ vllz) IF lwoseqn Il -

3 Positive Symmetric Hyperbolic Systems

In this section, we concentrate on the following quasilinear system

d
AU, x, 00U + D AU, x, )% U = B(U, x, 1),
k=1
U(x,0) = Up(x),

(3.1)

where the n x n matrices Ay(U, x, t), Ax(U, x, t) and the source term B(U, x, t) depend on
UecR' xcRY andr € [0, 0co) smoothly. For 0 < 71 < 13, and for subsets O of R”, and 2
of RY, (3.1) is called positive symmetric hyperbolic on O x Q2 X [t1, 12], if, forany U € O,
x € Q,andt € [11, 12], A (k =0, ...,d) are symmetic and A is positive definite.

The following Theorem is due to [3,5,7,9], and [1].

Theorem 3.1 Assume that (3.1) is positive symmetric hyperbolic for its arguments, and U
belongs to H* (R?) for some s > % + 1. There exits a positive time T such that (3.1) has a
unique solution U (x, t) € C([0, T]: H*) N C'([0, T]; H*~'). Moreover, T can be bounded
from below by c ||U0(x)||;£, where c| depends only on Ay (k = 0, ...,d). The maximal
time of existence T* of such a solution is independent of s and satisfies

T*
TF < 00 :>/ VU, t)| L~ dt = co.
0

The positive symmetric hyperbolic systems cover an important class of quasi-linear hyper-
bolic systems. Although many physical systems are not exactly in positive symmetric form,
like (1.1) and (1.2), they are symmetrizable, in the sense that there exists a transformation
of unknown functions rendering the system into postive symmertic hyperbolic systems in
the new variables. In particular, when a quasi-linear hyperbolic system endowed with a con-
vex entropy, it is symmetrizable by Herssian matrix of this entropy. Therefore, Theorem 3.1
finds applications for many physical systems including isentropic Euler (1.2) and full Euler
systems (1.1).

One of our goals is to establish the analog theory of Theorem 3.1 with intial data of

|
crticital regularity, i.e., in the Besov space BQZ,IL (R?) for (3.1). In [1], this was achieved
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when Ag = I,, and the result there finds application to the isentropic Euler Eq. (1.2). In fact,
if one introduces the quantity

—_

4yes)2 -
o= (Vyf)l T (3:2)

then the isentropic Euler system turns into

{ a,—l—u~VU+yT_lodivu:O, (3.3)

u,—i—u-Vu—l—yT_laVo:O.

This, however, is not the case for the full Euler Eq. (1.1). In order to generalize this theory to
cover full Euler equations, we will extend the results of [1] for Ag = I, to (3.1) for positive
definite Ag = Ag(U).

3.1 Linear Positive Symmetric System

We first consider the following positive symmetric linear system

d
Ao(x, )0, U + D Ap(x, NoU = B(x, U + F(x, 1). (3.4)
k=1
where the n x n matrices Ay (k =0, ..., d) and B are smooth functions.

The following classical results (c.f. [6]) is often very useful.

Theorem 3.2 Assume that (3.4) is positive symmetric for all x € RY and t > 0, such that
Ao(x, t) satisfying

Bl, < Ag < g1,

for some positive constant B in the sense of quadratic forms. Assume that Ao, Ar, B and
their first order derivatives are bounded. Then, for all T > 0 and U € C([0, T; HY N
C([0, T1; L?), it holds that

t
BAUDI3, < e U3, + /O e’ ONF (D)3, dT, (3.5)
forallt € [0, T). y is chosen to be large enough, so that
d
By =1 = |od0+ Y ok(a0 +B| . (3.6)
k=1

We now prove the following result.

Theorem 3.3 Assume that (3.4) is positive symmetric for all x € RY and t > 0, such that
Ao(x, t) satisfying

Bl, < Ay < B,

for some positive constant B in the sense of quadratic forms. Suppose that B €
L%O(B%H(Rd)), and that Ay, A = {Ak}1<k<a have the following form

Ap(x, 1) = Ap 4+ Ar(x, 1), Ao(x, 1) = Ag + Ag(x, 1), (3.7)

where Ay, A are constant matrices, and Ay € LC}O(B%“), Ag € L%O(B%J’]), 3 Ay €
LS (L), Then, forall T > 0 and U € C([0, T]; B2 N C'([0, T]; BY), it holds that
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-2 ! -2 _ _
BIUDI g < NUOI g, M’+CM2/O PN AT F O] g, d.

(3.8)

where

M = 18; AollLge (L) + I Bl ¢\ TIIVAI d
Aol 1Ay B Aollzoo ooy IV(Ay ' A
Aol zse )1 Ag IIL%O(BgH)JrII ollze=) V(A )lngo(B%)’
My =1+All _/ a1\

Proof Taking the operator A ; on both sides of (3.4), we obtain

d
Aj(AodU) + D Aj(AdhU) = Aj(BU) + A F. (3.9)
k=1

Following [1], we define
S’j = §;, if j > 0; and S'j = A_j, otherwise,

Tj, (Ao = 'Zo SiadkUA j Ay,
=

and therefore, (3.9) is reduced to

d 3
Apdi AU + D 85 1(ADKA;U = Aj(BU) + Aj(F) + > R — A}, Agla, U,
k=1 =1
(3.10)

where

Rj= D [A}, S 1(AD1A ;3 U,
lj'=J1=N1

Ry = > (Sp-1(A) — §-1(A0) AjA ;3 U,
lj'=jl=1
d
3 -
R} = 8; 2 Tip (4.
k=1
where N is the fixed integer defined as in the proof Lemma 4.14 in [1] page 184 such that

AjZSj/_lAkijakU:Aj Z AkAj/akU
J lJ/—jI=N1

Hence, we can easily give the estimates about le., R]g and R? asin [1]

i(4+1
2J(2 )IIR}Ile = CejIVAIL=IIVUI 4

$+1
2J(2 )IIR?IILz = CejIVAIL=IIVUI 4

[SEW

J\5+1 3
2( )IIRJ-IILz < CCjHVA”B%”VU”B . (3.11)

[SEW
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The first two terms on the right hand side of (3.10) can be estimated as follows
7+1 ’

S d
j(4+1
2 (2 )llAj(BU)||L2 = ClelBllBgH ||U||B¢21

i(4+1 i(4+1 _
/(5 )||Aj(F)||Lz=2’(2 )||A,-<A0A01F>||Lz
< Cc;j (1 + ||Ao||B%H) ||A51F||B%H. (3.12)

Now, we consider the term —[A ;, Ap]0,U. Since

d
—[A}, Aold,U = —[Aj, Ag] [— DAY AU + Ay BU + A(;IF]
k=1

[Aj, AglAy Ak U — [A}, AglAy ' BU — [A}, AolAy ' F

Il
M=

1
+ 11+ 111

~NO

For I, we have

I = i (A)Aw0U) = AgA; (45" Ak ))

k=1
d d

= DA AJRU = D AolAj, Ay AdloyU
k=1 k=1

=L+ 1.

For I, we know that

PEN e = 322D anao,:
k=1

< ch”VA”B% ||U||B%+1, (3.13)
where we used Lemma 2.100 in [1]. For I, we have
d
(d (d
2’(2“)||12||Lz < 22’<2+‘)||A0[Aj, Ay AU | 2
k=1
-1
< CejllAoll=IV (45" A) I _¢IUI g, (3.14)
where we also used Lemma 2.100 in [1]. The term I/ will be treated as follows
i(4+1 i(4+1 _
(! )unuLz < (! )u[Aj, AolAg'BU || 2
j(%+1) -1
=2 CTHI8;BU)I + 1408 (45 BU)I2 | (3.15)

-1
< Cejl1Bllgansi U g, + Cejlldolli=liAg Bl g1 IUN g,

For 111, we have

(d S(d
o/ (5+1) 1112 < »/(5+1) I[A;, AolAg ' FlI,2

< CejllAoll g I1Ag FIl g (3.16)

@ Springer



752 J Sci Comput (2015) 64:745-760

Due to the following two equalities

d 1 d B
—Z i—1(ADKA U, AU = EZ W (Sj—1A0A;U, A;U),
k=1 k=1
1d 1
37 (AoA;U, AjU) = (Agd AU, AJ-U)+5 (0;A0A;U, A;U) ,
we have
1d 1 d 1
Ed_(AOA U, Aj U = Z 3k(S] 1Ak)A U, A; U)+E(8tA0AjU, AjU)
k=1

+(A;(BU), AjU) + (Aj(F), AjU)

+Z3:(R’ A; U) (I, A;U) = (11, A,U)

— (111, A;U).

Since Ay is positive definite and symmetric, we know that there exist symmetric positive
definite matrix / Aq satisfies

d
o (Aoa UL 8,U) = = (VAoa;U. VAga,U) .

Combining this with Eq. (3.10) and the estimates (3.11), (3.12), (3.13), (3.14), (3.15),
(3.16), we have

1 1
B2IA; UMz = B 2IA;UWO) 12
t

3
s (||8tA0||L°° +IVAIL ) I1A,U (D]l 2 dT
0
repren () y /||U(r>|| g dr

+Cpre2 i(8+1) /||A F@ ¢, dv. (3.17)

where

(S W

a

M; = ||B VA Aolly oo | V(AT A
1= ||L%O(Bg+1)+|| ”Loo(Bg)H' ollzge o) IIV (A )”L‘;O(B

)

—1
+ Aol gz 14 B”LOO(B‘;H)'

T

My =1+ ||A0|| ( 2+1)

i(d
Multiplying 2’/ (2 +1) on both sides of (3.17), and summing up for j, we obtain
1 1 ! 1
B2NU () garzr1 = B2 [[U0)] gare+1 + Cﬁ_zM/ B2IU () pare1 dT
0

t
1
+C,8_2M2/ 1Ay F (D)l garnr dr.
0

Finally, by Gronwall’s inequality, we complete the proof of this Lemma. O
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Remark 3.1 Here, we actually proved the following stronger result

: -2
B D 2UEDAU o2y < U] gaps1eP ™!
j=—1

t
+CM; / eCP 2M<f—f>||Ag‘F(r)||Bd/z+1 dr.
0

(3.18)
3.2 Quasilinear Positive Symmetric System
We now consider the following quasilinear system
d
Ao(U)dU + ;Ak(U)akU = B(U), (3.19)

U(x,t) =Up(x).
For this problem, we make the following assumptions.

Condition 3.1 Assume the n x n symmetric matrices Ay (U) and the source term B(U)
smoothly depend on U € R" and B(0) = 0. Ax(U) has the following form

Ar(U) = A + Ay (U) fork=0,1,....d,

where Ay are constant matrices, Ak(U ) smoothly depend on U € R", Ak (0) =0and Ayg(U)
is positive definite.

We now prove the following local theory.

Theorem 3.4 Assume Condition 3.1. Let O be any open subset of R". For the Cauchy prob-
lem (3.19) with initial data Uy € B%H(Rd) taking values in O, there exists T > 0 such
that the system has a unique solution U € C YRY x [0, T1). Furthermore, U belongs to
C(10. T1: BEH' (®RD) N C (0, T; B ®R)).

Proof The proof is based on the following iteration scheme

d
AoUMRU"! + 3 AUMBU"! = BU™).
k=1
li=0 = SNy 4n+1U0.

(3.20)

Since Sy, Uy tends to Uy in B% (Rd ) when N> goes to +00, by the embedding

B2 (RY) < L®(RY),

there are Ny, § > 0 and a relatively compact open subset V of O such that any smooth
function U satisfying the estimate

IU = SmUoll ¢, =8 (3.21)

takes values in V.
The relatively compact subset ) will serve as a reference for energy estimates. We take
B > 0 so that

Bl, < Ag(U) < B, (3.22)
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forall U e V.
We proceed by induction. Initially, we have U%(¢) = S N, Up and thus

U° — Sy, U,
I N, ollL%o(Bz

5+, =0=<39,
for any T and 8. We assume that for all < k, U' is defined inductively by (3.20) and satisfies
the estimate

1" — Sy, Ug| <. (3.23)

d
LEMB2*h

We are going to show that the same estimate (3.23) holds for / = k + 1, provided that T
is suitably chosen.

We introduce the notations V4! := U*k+1 — Sy Uj. By definition, V¥*! must solve the
following Cauchy problem

d d
Ag(U) VT + 3" A;U59; VI = BWUY - D7 A (U0, Sy, U,
j=1 j=1
VEL0) = Sny 144100 — Sw, Uo.

(3.24)

Applying Theorem 3.3 to the above iterative system (3.24), we have

t
BIVEL O gy < IVEF O g, €D M 4 CMpe M1 / G(r)dr. (3.25)
0

where

d
G() = | Ay (WHBWU" + D AT (WUHA;WUD;(Sw, Vo) ,

j=1 B%H

M = [0 Ag(U") | o) + IBAWDT oy, + IVAUY)]
L‘}O(BZ ) L%o(B

(SN

)

k —1 77k k
HIA (U lLg ) 145 (U BWU >||L%O(Bgﬂ)
AU g 1) I V(AT WHAUNI o gy
L%(Bz)
My =1+ AU 1 4.y
L?(BZ )

With he help of the inductive assumption, Lemma 2.1 and Lemma 2.2, we know that there
exists a constant My > 0O such that

max { M, My, sup G(t); < My < +o0.
1€[0,T]

Hence, the inequality (3.25) implies

BV ON gy < VO] g, P TM0T - CTMGEP M7, (3.26)
Taking N, large enough, 7' small enough, we finally obtain
sup [VEHY D)) 4,y <. (3.27)
1€[0,T] B2
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Using the similar method as in [6], we can prove U" is a Cauchy sequence in L3’ (L?) for
small enough 7 > 0. By interpolation, U" is also a Cauchy sequence in L‘;O(BS/) for any
s’ < ‘2—1 + 1. The limit U of U" is obvious a solution of (3.19). Using the Fatou property for

d
2+1

the Besov space B2, we conclude that U belongs to

L(10, T): B=H)y nC((0. T1; By nC'((0. T1: B,
for any s" < ‘2—1 + 1. In order to prove that U belongs to C([0, T']; B%“), we observe from
(3.27) and Remark 3.1 that
(d
Jjlz+1
> 2 (2 )uA,-UnLc;o(Lz) <8+ 1S3 Uoll g
jz-1
which implies that for any positive €, there is some integer jo such that

S 2 ) AUl <

Jj=Jjo

NN

Therefore, for ¢, t' € [0, T], we have

i(4+1
UG =UCO gy <D 2y a ;W — Ul
J<Jjo
(4
Jj=Jjo

o4
=< C2]O(2+1) UG =UC )2+ %

Because U isin C ([0, T']; L?), the first term on the right-hand side tends to O when ¢’ — 1.
This implies that U is continuous in time with values in B2 7!, O

Now, one can follow the standard continuity argument to extend the existence time 7" of
the solution to a maximal one; c.f. [1]. Therefore, the following theorem can be proved in
the same manner as in [1].

Theorem 3.5 Under the Condition 3.1, assume that (3.19) is positive symmetric hyperbolic
for its arguments, with the initial data Uy(x) € B g+ (RY). There exits a positive time T such
that (3.19) has a unique solution U (x, t) € C([0, T]; B%H) ncl(o, T1; B%). Moreover, T
can be bounded from below by c1||Up(x) ||;1%+1, where ci depends onlyon Ay (k =0, ...,d).

The maximal time of existence T™* of such a solution satisfies
T*
T* < o0 =>/ VU, t)|| L~ dt = oo.
0

Remark 3.2 Itis clear that if the initial data Up — {7 €B 2+ for some constant U Replacing
B(0) = 0 and {\k(O) = 0 with B(U) = 0 and Ax(U) = 0 in Condition 3.1, Theorem 3.5
holds for U — U.

The following theorem is about the continuous dependence of the solutions, which will be
useful in the next section for the description of isentropic approximations for compressible
Euler equations.
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Theorem 3.6 Assume that Ag is positive definite such that
IBIn <Ay =< ,B_lln

for B > 0in the sense of quadratic forms. Let U¢ and U be solutions of (3.19) on R¢ x [0, T,
with initial data U5, Ug € B%“(Rd) respectively. Then
e%(H—Cﬁ*Z)T
sup |[U(t) —U@)|l2 £ ————— U5 — Uoll 2.
1€[0,T] B

where C depends on the L°-norms of VU and VUS€, and A is a large enough constant
satisfing

d

AU + Dk Ar(U)
k=1

=g —1.

L (L)

Proof From Theorem 3.5, it is clear that 7 > 0 is smaller than the maximimal existence
times of U€ or U. Therefore, we have that

sup ([(Ur, VUG, Dl + 11U, VUG Dlliee) < C,

0<t<T
for some positive constant C. Denote U = U€ — U, we know that

d
Ao(U)3,8U + Z A(U)38U = F, (3.28)
k=1

where
F = B(U®) — B(U) — (Ao(U®) — Ap(U)) [Ao(U)]™'B(U®)

d

+ > (AU = Ag()) [Ao(U)T ™ AU )3 U
k=1

M=

(Ar(U) — A (D)) 0 U°.

k=1

Using mean-value theorem, it holds that

IFC Ol < CUWU, U)oy + IVU L o) IUCL 1) = UG, D)l g2
< C|U(C,t) =UC, Dl 2. (3.29)

Multiplying both sides of (3.28) with (SU)”, and then integrating over R¢, integrating by
parts, we obtain

%(AO(U)éU, SU) < B(h — 1)(8U, 8U) + B(SU, 8U) + B~1(F, F)

< AM(Ao(U)8U, 8U) + BHIF (. D)3,
< A(Ag(U)8U, 8U) 4+ CB~(8U, 8U)
< (A 4+ CB ) (Ap(U)SU, 8U).
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Therefore, we have

e(x+c,3*2)T
sup [US(1) = U®)Il7, < —IU§ — ol
1€[0,T] B
Hence, the proof is completed. O

4 Explicit Characterization About Isentropic Approximation

In this section, we apply the general results obtained in Sect. 3 to the compressible Euler
equations, and then give an explicit characterization about isentropic approximation. Firstly

as in [10], we use
(%)) (y—1) r=Ds

w=p?¥ =p 2 e ¥ 4.1)

to transform Euler Eq. (1.1) into
d
Ao, U + D" Aj(U)d,;U =0,
j=1
U(x,0) = Uo(x),

4.2)

for U = (w, uy, up, us, s), and the matrices

/1 0 0
2 _s
AWy = |0 Y e v 0],
\0 0 1
[w w0
A;j(U) = VT_lweJT (y;yl) e vujlz 0 (J=12,3).
\ 0 0 uj

Here, ¢; is the j—th row of I3. Theorem 3.4 and Therem 3.5 give the following Theorem.

_ _ - _=h -Ds C o
Theorem 4.1 If for some constants p > 0, s and w = p 2 e 2 > 0, the initial data

Uy = (wo, ug, so) satisfies that Uy — (w, 0, 5) € B% (R3), there exists a constant T > 0 and
a unique solution U = (w, u, s) to the problem (4.2) such that

U — ,0,5) € C(0,T]: B>(®3)NC'(0,T]: B> (R)).

If in addition wo(x) > 0 for all x € R3, then w(x,t) > 0 forall (x,t) € R3 x [0, T].
Equivalently, if 1 <y <3, po € Cl(R3), po > 0 and

Up — (,0,5) € B2 (RY),

then there exists a positive number T and a unigue solution (p, u, s)(x,t) € C'([0, T] x R3)
to problem (1.1) such that p(x,t) > 0 forall (x,t) € R3 x [0, T] and

y—=1) (=Ds
Ux,1) = (p Te ¥ ,u,s) (x,1)
is the solution of (4.2) such that

U — .0,5) € C([0,T]: B>®3 N C([0.T]: B> (R)).
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Remark 4.1 This Theorem includes the cases of initial data with or without vacuum. For the
H* theory with s > %, the case with initial data including vacuum was given in [10], and the
case with initial data away from vacuum was given in [9].

In order to give a precise description on the isentropic approximation for compressible
Euler equations, we now assume that

so(x) —s = ¢e@(x) (4.3)

forg(x) € B> (R3), and ¢ > 0 is the controlling parameter. As explained in the introduction,
given an initial data (pg, ug, so) or (wo, ug, so) as in Theorem 4.1, the Cauchy problem
(1.1) has a smooth solution (w, u, s)(x, ) defined on R? x [0, 7] for some positive 7. We
denote this solution as U®(x, t) = (w, u, s)(x, t). If one assigns an initial data (pg, ug, 5)
or (wo, ug, s) with w = w(p,s) to (1.1), the unique solution of (1.1) on R3 x [0, T] is
the same one to (1.2) with initial data (pq, ug) or (wo, ug), and we denote this solution by
Ul(x,t) = (w!, u!, 5). We can now apply Theorem 3.6 to obtain the following theorem.

Theorem 4.2 Suppose 1 <y <3,¢ € (0,1], pg € CI(R3), po > 0 and for some p > 0,

=1 (y—1

3 _ ) 5 3 5 3 3 3
pO —p 2 GBZ(R), MOEBZ(R)’ ¢€BZ(R)9

and

=D y-DG+ed) (y—1) @=Ds
2 2y =

po > e _ 55 ™ e BI(RY).
Then, (1.2) has a unique solution
Ulx,t) = !, ul,5)(x, 1),
and (1.1) has a unique solution
Uf(x,t) = (w,u,s)(x,1),
both defined on R3 x [0, T]. Furthermore, the following estimate holds

sup |UC, 1) —U (D)2 < Celldll 2,
tel0,T]

where C is a positive constant depending on C' norms of Ug(x) and T, but not on €.

Proof By Theorem 3.6, we only need to compute ||Ug — Up|| ;2 to complete the proof of this
Theorem, since Ag was bounded by ||s|| . From (4.3) and (4.1), we have

@Y= =15 [ =Des 2 \"?
1UG — Uoll2 < ell@llp2 + / Py’ e (6 ¥oo— 1) dx
R3
’ 1/2
_ (r=Deo
< ellollL2 + CllpollL=, )/,S)(/3 (e o= 1) dX) . (44
R
. 5 N r=Deg
Since ¢ € B2(R”), itisclearthate 2r — 1 tends to zero as |x| — oo0. We now make
the following calculations.
(r=D)eo (r=Deo —1 —1
T < (v )8¢|+|(y )8¢|
2y 2y
< Clglirx, y)(e*¢” + £lg)). (4.5)
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Therefore, we conclude that

1UG — Uoll2 < elldll2 + Cellgll 2
< Cell@ll 2.

which concludes the proof of this Theorem. O

Remark 4.2 This theorem gives a precise justification with an explicit error estimate on
isentropic approximation for compressible Euler equations in the regime of smooth solutions.

5 Failure of Isentropic Limit

In the previous sections, the justification for isentropic limit has been proved for classical
solutions of compressible Euler equations. It is well-known that shock waves may develope
in finite time even for generic small smooth initial data. When shock forms, the justification
of isentropic limit in previous sections breaks down. This can be seen easily by the following
example.

Consider the full compressible Euler equations in one space dimension

por + (pu)y =0, x € R,

(pu); + (pu? + p(p,s))x =0,

(PE); + (pEu+ pu), =0

p(x,0) =po(x) =0, u(x,0) =up(x), s(x,0) =s,

5.1)

where E = %uz + e and pe = % p with two positive constants ¢, and R, and its isentropic
reduction
pr+ (pu)x =0, x € R,

(pu); + (pu* + p(p,5))x =0, (5.2)
p(x,0) = po(x) >0, u(x,0) = up(x).

We remark here that unlike (1.1), we replaced the entropy equation by the energy conser-
vation law in (5.1), since the entropy equation is no longer valid if singularity occurs in the
solutions. It is clear that for any C ! functions po and ug, both (5.1) and (5.2) share exactly
the same C'! solution (p(x,t),u(x,t),5) up to a maximal existence time 77 > 0. However,
when this solution blows up at (x1, 77) for some x; € R, and shocks appear in the solution,
the shock solution for (5.1) is different from that of (5.2). Indeed, the Riemann problems of
(5.1) and (5.2) with the same Riemann data

xggcr]l_(p, u,s)(x, Ty) = (p—,u—,s); XEEIT_(’O’ u,s)(x, Ty) = (o4, u,5), (5.3)

are different since the former one has a variable s (entropy s must increase across a shock
wave, see [13]), while the latter has a constant s in the solution.

Therefore, the framework we used in justification the isentropic limit process in the pre-
vious sections is no longer valid when singularity occurs in the solutions of Euler equations.
New insights and techniques are required to offer possible description of isentropic approx-
imation for entropy weak solutions. Some research activities have been carried out in this
direction, see [2,12] and [8], where the difference between solutions of isentropic and full
Euler equations measured by BV-norm was shown to grow at most linearly in time.
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